
Towards a runtime model based on colored Petri-nets for

the execution of model transformations
Thomas Reiter

Information Systems Group
Johannes Kepler University

Altenbergerstr. 69
4040 Linz, Austria
+43-732-2468-9236

reiter@ifs.uni-linz.ac.at

Manuel Wimmer
Business Informatics Group

Vienna University of Technology
Favoritenstr. 9-11

1040 Vienna, Austria
+43-1-58801-18829

wimmer@big.tuwien.ac.at

Horst Kargl
Business Informatics Group

Vienna University of Technology
Favoritenstr. 9-11

1040 Vienna, Austria
+43-1-58801-18837

kargl@big.tuwien.ac.at

ABSTRACT

Existing model transformation languages, which range from

purely imperative to fully declarative approaches, have the

advantage of either explicitly providing statefulness and the

ability to define control flow, or offering a raised level of

abstraction through automatic rule ordering and application.

Existing approaches trying to combine the strengths of both

paradigms do so on the language level, only, without considering

the benefits of integrating imperative and declarative paradigms in

the underlying execution model. Hence, this paper proposes a

transformation execution model based on colored Petri-nets,

which allows to combine the statefulness of imperative

approaches as well the raised level of abstraction from declarative

approaches. Furthermore, we show how a Petri-net based

execution model lends itself naturally to the integration of an

aspect-oriented style of transformation definition, as

transformation rules can be triggered not only upon the input

model, but on the state of the transformation execution itself.

1. INTRODUCTION
As model transformations play a key role in model driven

development, several dedicated languages have emerged that

allow to define and execute transformations between source and

target metamodels. Compared to transformations implemented in

a general purpose programming language or XSL transformations

which operate on a models serialization, model transformation

languages provide a layer of abstraction by allowing to manipulate

models in terms of their abstract syntax given by its metamodel.

Apart from this basic commonality, different kinds of model

transformation languages exist. These approaches range from

purely imperative styles allowing to define how an transformation

is carried out, to fully declarative transformation definition styles

focusing on what a transformation's output should be like,

according to a certain input.

Declarative approaches (i.e. graph transformations) are typically

based on defining rules that are later on interpreted by an

execution engine to produce the desired result. Hence, the actual

transformation execution as well as the order of rule application

generally need not be handled by the user, although approaches

based on graph transformations like AGG, or VMTS [7] allow to

specify precedence of certain rules. Declarative rules typically

consist of a semantically corresponding source and target patterns,

whereby for each match of the source pattern in the input model, a

target pattern is instantiated in the output model. Additionally,

Triple Graph Grammars (TGG) [5] maintain the state of a

transformation by traces that link matched source and instantiated

target model elements.

Imperative approaches are similar in usage to traditional

programming languages and allow the developer to explicitly

manipulate transformation execution state and control flow.

Although approaches such as the EOL [4], MTL or Kermeta [6]

offer great flexibility and ease of use, the programming model

does not support the intuitive alignment of concepts that is

prevalent in metamodel or schema integration tasks, and one often

needs to implement manually what a more succinct declarative

description would achieve. However, what a declarative approach

gains in abstraction, it loses in flexibility. Naturally, declarative

specifications are convenient language constructs for recurring

transformation tasks, but for “tricky” problems, a rule-based

paradigm can become unwieldy.

To alleviate these limitations, hybrid approaches like ATL [3] or

Xtend [8][9] combine imperative and declarative styles of

transformation definition. (We regard Xtend as hybrid due to its

functional style and rule-like “create” extensions.) Thus, the

imperative part of a hybrid language is available to accomplish

tasks that cannot be adequately solved declaratively. However,

allowing to intermix imperative and declarative statements

requires a developer to be aware of how exactly the engine

orchestrates transformation execution. For instance, when writing

imperative program parts in ATL, one has to be aware that their

execution is subject to the engine’s scheduling, and one may not

assume that certain declarative rules have yet been dealt with, or

that a certain internal state is reached. Hence, the imperative part

is often necessary simply to work around the confines of the

engine’s execution procedure, as opposed to enable algorithmic

computations. As an example, a common work-around is to

explicitly maintain and observe custom state information in global

variables, for instance to be able to manually trigger rules at

certain points during a transformation's execution, in case the state

information (i.e. trace between source and target model) that is

automatically maintained by the execution engine does not

suffice.

In general, existing declarative and hybrid approaches, are

governed by an underlying execution procedure implemented in

This work has been partly funded by the Austrian Federal Ministry of

Transport, Innovation and Technology (BMVIT) and FFG under grant

FIT-IT-810806, and the Austrian Federal Ministry for Education,

Science, and Culture, and the European Social Fund (ESF) under grant

31.963/46-VII/9/2002

the respective transformation engine. In our opinion, this

rigidness is the main cause for trouble when attempting to solve

tricky problems with declarative approaches, or when integrating

them with imperative styles. As the actual transformation

definitions can be seen as merely parameterizing an intrinsically

rigid, pre-defined procedure, we view declarative approaches as

data-oriented, in the sense that they specify how input data is

mapped onto output data. This is reflected in the rationale, that

models are seen as graphs, and therefore graph transformations

are used to describe and implement model transformations.

As opposed to declarative approaches, imperative approaches

express transformations on a very fine-grained level, which is

flexible but incurs explicit handling of control flow without

support for the alignment of concepts as it is prevalent in schema

integration tasks, for instance. Instead of specifying what input

data is mapped onto what output data, imperative approaches

follow a procedure-oriented paradigm and allow to

algorithmically define a function that computes the output model

from the input model.

We propose to rethink the notion of models as input and output

data which is subject to a transformation that is seen either as an

explicit or implicit procedure, but understand a transformation as

a process. In a process-oriented view, a transformation execution

is carried out by interacting entities that control streams of

information from source to target models. The flowing

information stems from the models themselves, and the actual

transformation logic is made up by the behavior of individual

entities and their interaction which each other.

 Consequently, we propose the transformation net formalism,

which is based on conditional, colored Petri-nets, to represent

transformation processes. Such an execution model provides the

explicit statefulness of imperative approaches through markings

contained in the net's places. The abstraction of control flow from

declarative approaches is achieved as transitions can fire

autonomously depending on their environment. To describe

specific firing rules for transitions, we resort to pre/post rules

known from graph transformations.

The following section gives an overview of the transformation net

formalism and describes how models and metamodels can be

mapped onto transformation nets. The example in section three

will describe how higher-level languages can be built on-top of

transformation nets and how a process-oriented view favors the

incorporation of aspect-oriented rules. Section four concludes

with an outlook on future work.

2. TRANSFORMATION NETS
What sets transformation nets apart form existing approaches is

their ability of making the transformation process explicit, as

opposed to assuming a certain predefined execution rigor. Of

course, the Petri-net based formalism needs an execution engine,

too. But the Petri-net execution engine is generic and not tailored

to a specific task unlike declarative model transformation engines.

This makes the transformation net formalism a flexible execution

environment to be targeted by generators of higher-level

transformation languages, such that specific transformation and

integration operators can be defined using the semantics offered

by transformation nets.

As symbolically displayed in Figure 1, the “compilation” step

produces a transformation net in its initial state (i.e. ready for

execution) that uniformly represents models, metamodels and

transformation specifications. The static parts of a transformation

net that correspond to the transformation process’ inputs and

outputs, are generated from models and metamodels, whereas the

part that corresponds to the process’ execution logic is created

from the integration specification by a custom generator for a

certain higher-level language.

Source

Metamodel

Target

Metamodel

Source

Model

Target

Model

Integration

Specification

Source Places Target PlacesTransformation Logic

Transformation Net

conforms
conforms

derive
derive

derive

derive

instantiate

The gap between the modeling and the transformation net

technical space is bridged by the mapping described in the

following. For reasons of brevity, we give a mapping only for the

three main elements of metamodels, that are classes, references

and attributes, and leave other constructs (e.g.: enumerations)

aside.

Classes, references and attributes of metamodels are mapped to

places of a transformation net.

Objects, as instances of classes are mapped to one-colored tokens

within a place that corresponds to the object’s class. The token’s

color represents an object’s unique ID.

Links between objects conforming to a certain reference are

mapped onto two-colored tokens within a place that corresponds

to the link’s reference. The two colors represent a link’s source

(ring color) and target (center color) and stand for the ID of the

linked objects.

Values of attributes are mapped onto two-colored tokens within a

place that corresponds to the values’ attribute. The two colors

represent an object’s unique ID and the denoted value.

To complete the transformation net and to provide the actual

process logic, a system of transitions and places has to be

established that is capable of streaming tokens from the places

corresponding to the input metamodels to places corresponding to

the output metamodel. Thereby, the transitions represent

interacting entities that control the token streams by firing and

removing tokens from their input places and adding tokens to

their output places accordingly. During execution, state

information is explicitly provided by the markings of places,

which makes it possible, to trigger transitions according to a

certain runtime state, as opposed to only act upon data comprising

Figure 1. Overall transformation procedure.

the input model. The notion of triggering transitions according to

runtime events or states is similar to the notion of point-cuts

determining the execution of advice in aspect-oriented

programming. Hence, transformation nets naturally cater for the

use of aspect-oriented techniques on the runtime level. How to

incorporate a weaving mechanism on the language level will be

discussed as part of next section’s example which introduces a

high-level integration language and demonstrates transformation

net generation and execution.

3. EXAMPLE
The example in this chapter deals with the specification of a

transformation between two metamodels, which is compiled into a

net that finally executes the transformation process. Figure 2

shows the source and target metamodels, as well as the input

model and the desired output model. As shown, a transformation

between these two metamodels has to transform array input

models into linked-list output models.

The transformation specification in-between the metamodels is

given in an example language, which comprises several operators

whose exact transformation net semantics will be given in the

following section when describing the runtime level. On the

language level, every operator stands for a certain processing

entity, which has inputs and outputs by which individual

operators can be assembled in a component-based way. For

instance, the C2C (Class2Class) component takes objects from the

“Element” class as input, and outputs them into the “Node” class.

Analogously the R2R (Reference2Reference) component streams

links from “contains” to “head”. The C2C component offers

another output port “history”, of which all this components yet

handled tokens can be accessed. The 2-Buf component connected

to C2C’s “history” sequentially fills an internal buffer of size two,

which is again provided as output port. A Linker component takes

the two objects in the buffer, and produces a link between them

which is streamed into the “next” place. A back-link is produced

by the Inverter component that produces back-links from the

“next” place and streams them into the “prev” place.

Additionally to these “manually” assembled components, certain

operators can cross-cut a transformation specification: Because

the target metamodel classes do not have ID attributes, these

should be stored within an annotation for eventual round-tripping.

This can be accomplished by the Att2Annot component, which

henceforth crosscuts the transformation of every object and is

therefore woven with every C2C component. The transformation

specification is itself a model, and due to the component-like

assembly, existing model weavers can be used to merge the aspect

operator into the base transformation specification. The top of

Figure 2 shows the aspect’s definition in a notation inspired from

XWeave [2]. The query in the aspect selects all C2Cs, with three

additional sub-queries “in.id”, “history” and “out”, relative to the

current C2C operator. The results of “in.id” and “history” are

bound to the “values” and “objects” ports of the Att2Annot

operator, which for every transformed object instantiates a new

Annotation object (“class” port) which is linked up (“ref” port)

with the according Node object and sets its text attribute (“att”

port) to the value of the source objects “id” attribute.

Additionally, the “Annotation” class is woven into the target

metamodel, as indicated through the dotted lines in Figure 2.

Thereby, the result of the “out” query determines the classes to

which an “annot” reference will be added.

LinkedList

Node

prevnext

head

Array

Element

contains

* *

*
1

C2CArray2List

C2C

R2R

Att2Annot

aspect Annotation

%allC2C

contains2head

Elem2Node

id : String

id : String

historyin.id

2-Buf

Linker
Inverter

in

in

in out

out

out
history

history

one two
fromto

out

outin

objects

annot
out

Annotation

text : String

values

next

Example Source Model Desired Target Model

E1:Element

id = „E1“

E2:Element

id = „E2“

E3:Element

id = „E3“

E4:Element

id = „E4“

Arr:Array

id = „Arr “

N1:Node

N2:Node

N3:Node

N4:Node

L1:LinkedList

A1:Annot.

text = „E1“

A2:Annot.

text = „E2“

A3:Annot.

text = „E3“

A4:Annot.

text = „E4“

prev

head
annot

contains

ref att class Annotation

text : String

annot

annot

After the weaving process is carried out on the language level,

generation takes place to produce a transformation net out of an

integration specification. Thereby Petri-net patterns are

instantiated according to the transformation net semantics of the

operators and assembled according to the overall integration

specification. Every such pattern declares input and output arcs

which represent the component ports of the respective language

operators. The top of Figure 3 shows a transformation net

resulting from the above integration specification. The transitions’

firing rules are defined with a visual notation that uses pattern-

filled tokens that can match for certain input tokens and produce

output tokens whose color is either different, the same, or a

combination (two-colored tokens) of the matched input colors.

Places marked as “ordered” index contained tokens and provide

them in a sorted fashion. For instance, the R2R component’s

transition matches “ArrE1” – the “first” input token. Furthermore,

according to the multiplicity of a reference, a place (e.g. “head”)

can have a capacity, which constrains the amount of tokens a

place can hold. Places holding two-colored tokens (references and

attributes) have a double-lined border for easier differentiation.

For simplicity reasons, the example assumes only a single array

object, and since there is only a single ordered reference, the

Element place is compiled into an ordered place as well, as not to

unnecessarily complicate the example.

Figure 2. Integration specification between metamodels

with example models.

Figure 3. Transformation net execution.

Array

contains

LinkedList

Node

head

E1 E2

E3 E4

Arr

Arr

E1

prevnext

1

Arr

E2Arr

E3

Arr

E4

Initial state…

ordered

StringAnnotation

text

annot

annotArr

‚Arr‘

E4

‚E4‘

E1

‚E1‘E2

‚E2‘E3

‚E3‘

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚Arr‘

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

history

hist.

out

one two

from
to

obj.

val.

in

in
out

out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

text

annot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

LinkerE4

Arr

E1

Arr

E2Arr

E3

Arr

E4

‚E1‘

‚E2‘

‚E4‘

‚A‘

Arr

‚Arr‘

E4

‚E4‘

E2

‚E2‘E3

‚E3‘

‚E3‘

E1

Arr
‚E1‘

A1

E1

A1

A1

‚E1‘

E3 E2

E1

E2

E2E3

E3
E2

Arr

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…running…

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

textannot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

E1

E2
E3

E4

Arr

Arr

E1

Arr

E2
Arr

E3

Arr

E4

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚A‘

‚Arr‘

‚E1‘ ‚E2‘

‚E3‘ ‚E4‘

E1

E2

E2

E3
E3

E4

E2

E1

E3

E2
E4

E3

A1 A2

A3

A5

A4

E1

A1
E2

A2
E3

A3
E4

A4

Arr

A5

A1

‚E1‘
A2

‚E2‘

A3

‚E3‘

A4

‚E4‘

A5

‚Arr‘

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…final state

Element

in out

Array

contains

LinkedList

Node

head

E1 E2

E3 E4

Arr

Arr

E1

prevnext

1

Arr

E2Arr

E3

Arr

E4

Initial state…

ordered

StringAnnotation

text

annot

annotArr

‚Arr‘

E4

‚E4‘

E1

‚E1‘E2

‚E2‘E3

‚E3‘

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚Arr‘

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

history

hist.

out

one two

from
to

obj.

val.

in

in
out

out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

text

annot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

LinkerE4

Arr

E1

Arr

E2Arr

E3

Arr

E4

‚E1‘

‚E2‘

‚E4‘

‚A‘

Arr

‚Arr‘

E4

‚E4‘

E2

‚E2‘E3

‚E3‘

‚E3‘

E1

Arr
‚E1‘

A1

E1

A1

A1

‚E1‘

E3 E2

E1

E2

E2E3

E3
E2

Arr

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…running…

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

textannot

annot

id

id

String

Array MM

LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

E1

E2
E3

E4

Arr

Arr

E1

Arr

E2
Arr

E3

Arr

E4

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚A‘

‚Arr‘

‚E1‘ ‚E2‘

‚E3‘ ‚E4‘

E1

E2

E2

E3
E3

E4

E2

E1

E3

E2
E4

E3

A1 A2

A3

A5

A4

E1

A1
E2

A2
E3

A3
E4

A4

Arr

A5

A1

‚E1‘
A2

‚E2‘

A3

‚E3‘

A4

‚E4‘

A5

‚Arr‘

history

hist.

out

one two

from
to

obj.

val.

in

in
out

in

out

obj.

val.

att

class

ref

ref

class

att

hist.

…final state

Element

in out

The middle and the bottom of Figure 3 show the transformation

net during execution and in its finished configuration. For

instance, one can see how the tokens streamed through the C2C

component are stored in its “history” place. (The history place is

duplicated in the lower C2C, as both the Att2Annot and the 2-Buf

components are bound to it.) The 2-Buf component takes in these

tokens and fills its two-place buffer. Once the buffer is full (both

places have a capacity of just one token), the Linker component’s

transition can fire and empty the buffer, producing a two-colored

token which is streamed into the “next” place. Thereby it is to

note, that the creation of two-colored tokens for the “next” link is

based on a certain state of the execution, rather than on the input

model alone.

Furthermore, one can see how the previously weaved operators

form Petri-net patterns that become active after an Array or

Element token was streamed. As an example, in the “running” net,

the lower Att2Annot pattern has already created an annotation

with the according value for the “E1” object, and is currently

enabled to do the same for “E2” and ”E3”, as both have already

been handled by a C2C component. Analogously, the rest of the

patterns stream tokens from source to target places, possibly

depending on other patterns in turn. The actual firing order,

however, is handled by the underlying Petri-net engine. Once the

transformation process has finished, the final net configuration is

used to instantiate a model that conforms to the target metamodel,

as shown in the bottom-right corner of Figure 2.

4. CONCLUSION AND FUTURE WORK
In this paper we have presented a new execution model for model

transformations based on colored Petri-nets. Such a process-

oriented execution model embodies the strengths of imperative

and declarative paradigms and is able to explicitly represent a

transformation’s execution state, which furthermore allows for the

natural integration of aspect-oriented transformation rules.

Furthermore, although transformation nets are intended as a low-

level execution model, transformation tasks like establishing the

correct links in the above linked-list example can be expressed

elegantly and encapsulated in reusable components.

Currently we have developed the TROPIC prototype

(TRansformations on Petri-nets In Color) which can transform

integration specifications established with the CARMEN mapping

framework [10] into colored Petri-nets that can be executed using

the ExSpecT [1] tool. After execution, the resulting Petri-net is

transformed into the actual target model. The CARMEN

framework builds upon an integration language that provides

operators for bridging schematic heterogeneities between

metamodels and ontologies. Future work will deal with extending

the existing set of integration operators and generators. Due to the

fact, that the transformation net approach is very generic, we will

furthermore investigate in how well the approach is applicable to

other model management tasks, such as model merging or

incremental transformations.

Another advantage of a process-oriented view is that a

transformation net represents a single artifact which embodies

metamodels, models and execution logic altogether. Therefore, we

deem a Petri-net based execution model beneficial for debugging

purposes and visualization of a transformation’s state.

Consequently, besides developing generators for further

integration languages (e.g.: model merging) or existing model

transformation languages, our next steps will focus on developing

dedicated tool support in the form of editors and debuggers for the

transformation net formalism.

5. REFERENCES
[1] ExSpecT – Executable Specification Tool.

http://www.exspect.com

[2] I. Groher and M. Völter. XWeave: models and aspects in

concert. Proceedings of the 10th international workshop on

Aspect-oriented modeling, (AOSD 2007),Canada,

Vancouver: 35-40.

[3] F. Jouault and I. Kurtev. Transforming Models with ATL. In

Proceedings of the Model Transformations in Practice

Workshop at MoDELS 2005, Montego Bay, Jamaica. 2005.

[4] D. S. Kolovos, R. F. Paige, and F. A.C. Polack. The Epsilon

Object Language (EOL). In Proc. of European Conference in

Model Driven Architecture (EC-MDA) Bilbao, Spain:128-

142, 2006.

[5] A. Königs. Model Transformation with Triple Graph

Grammars. Model Transformations in Practice, Satellite

Workshop of MODELS 2005, Montego Bay, Jamaica, 2005.

[6] P. –A. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet, F.

Fondement, P. Studer, and J.-M. Jézéquel. On executable

meta-languages applied to model transformations. In Model

Transformations In Practice Workshop, Montego Bay,

Jamaica, October 2005.

[7] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel,

T. Levendovsky, U. Prange, D. Varro, and S. Varro-Gyapay.

Model Transformation by Graph Transformation: A

Comparative Study. In Proc. Workshop Model

Transformation in Practice, Montego Bay, Jamaica, October

2005.

[8] M. Völter, B. Kolb, . Efftinge and A. Haase. Introduction to

openArchitectureare 4.1.x. MDD Tool Implementers Forum,

TOOLS Europe, 2007.

[9] M. Völter, B. Kolb, . Efftinge and A. Haase. From Front

End To Code - MDSD in Practice. Eclipse Corner Article,

June 2006. http://www.eclipse.org/articles/Article-

FromFrontendToCode-MDSDInPractice/article.html

[10] M. Wimmer, H. Kargl, M. Seidl, M. Strommer and T. Reiter.

Integrating Ontologies with CAR-Mappings. First

International Workshop on Semantic Technology Adoption

in Business (STAB'07), Vienna, Austria, May 2007.

