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ABSTRACT 

Existing model transformation languages, which range from 

purely imperative to fully declarative approaches, have the 

advantage of either explicitly providing statefulness and the 

ability to define control flow, or offering a raised level of 

abstraction through automatic rule ordering and application. 

Existing approaches trying to combine the strengths of both 

paradigms do so on the language level, only, without considering 

the benefits of integrating imperative and declarative paradigms in 

the underlying execution model. Hence, this paper proposes a 

transformation execution model based on colored Petri-nets, 

which allows to combine the statefulness of imperative 

approaches as well the raised level of abstraction from declarative 

approaches. Furthermore, we show how a Petri-net based 

execution model lends itself naturally to the integration of an 

aspect-oriented style of transformation definition, as 

transformation rules can be triggered not only upon the input 

model, but on the state of the transformation execution itself.   

1. INTRODUCTION 
As model transformations play a key role in model driven 

development, several dedicated languages have emerged that 

allow to define and execute transformations between source and 

target metamodels. Compared to transformations implemented in 

a general purpose programming language or XSL transformations 

which operate on a models serialization, model transformation 

languages provide a layer of abstraction by allowing to manipulate 

models in terms of their abstract syntax given by its metamodel. 

Apart from this basic commonality, different kinds of model 

transformation languages exist. These approaches range from 

purely imperative styles allowing to define how an transformation 

is carried out, to fully declarative transformation definition styles 

focusing on what a transformation's output should be like, 

according to a certain input. 

 

Declarative approaches (i.e. graph transformations) are typically 

based on defining rules that are later on interpreted by an 

execution engine to produce the desired result. Hence, the actual 

transformation execution as well as the order of rule application 

generally need not be handled by the user, although approaches 

based on graph transformations like AGG, or VMTS [7] allow to 

specify precedence of certain rules. Declarative rules typically 

consist of a semantically corresponding source and target patterns, 

whereby for each match of the source pattern in the input model, a 

target pattern is instantiated in the output model. Additionally, 

Triple Graph Grammars (TGG) [5] maintain the state of a 

transformation by traces that link matched source and instantiated 

target model elements.  

Imperative approaches are similar in usage to traditional 

programming languages and allow the developer to explicitly 

manipulate transformation execution state and control flow. 

Although approaches such as the EOL [4], MTL or Kermeta [6] 

offer great flexibility and ease of use, the programming model 

does not support the intuitive alignment of concepts that is 

prevalent in metamodel or schema integration tasks, and one often 

needs to implement manually what a more succinct declarative 

description would achieve. However, what a declarative approach 

gains in abstraction, it loses in flexibility. Naturally, declarative 

specifications are convenient language constructs for recurring 

transformation tasks, but for “tricky” problems, a rule-based 

paradigm can become unwieldy.  

To alleviate these limitations, hybrid approaches like ATL [3] or 

Xtend [8][9] combine imperative and declarative styles of 

transformation definition. (We regard Xtend as hybrid due to its 

functional style and rule-like “create” extensions.) Thus, the 

imperative part of a hybrid language is available to accomplish 

tasks that cannot be adequately solved declaratively. However, 

allowing to intermix imperative and declarative statements 

requires a developer to be aware of how exactly the engine 

orchestrates transformation execution. For instance, when writing 

imperative program parts in ATL, one has to be aware that their 

execution is subject to the engine’s scheduling, and one may not 

assume that certain declarative rules have yet been dealt with, or 

that a certain internal state is reached. Hence, the imperative part 

is often necessary simply to work around the confines of the 

engine’s execution procedure, as opposed to enable algorithmic 

computations. As an example, a common work-around is to 

explicitly maintain and observe custom state information in global 

variables, for instance to be able to manually trigger rules at 

certain points during a transformation's execution, in case the state 

information (i.e. trace between source and target model) that is 

automatically maintained by the execution engine does not 

suffice.  

In general, existing declarative and hybrid approaches, are 

governed by an underlying execution procedure implemented in 
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the respective transformation engine. In our opinion, this 

rigidness is the main cause for trouble when attempting to solve 

tricky problems with declarative approaches, or when integrating 

them with imperative styles. As the actual transformation 

definitions can be seen as merely parameterizing an intrinsically 

rigid, pre-defined procedure, we view declarative approaches as 

data-oriented, in the sense that they specify how input data is 

mapped onto output data. This is reflected in the rationale, that 

models are seen as graphs, and therefore graph transformations 

are used to describe and implement model transformations. 

As opposed to declarative approaches, imperative approaches 

express transformations on a very fine-grained level, which is 

flexible but incurs explicit handling of control flow without 

support for the alignment of concepts as it is prevalent in schema 

integration tasks, for instance. Instead of specifying what input 

data is mapped onto what output data, imperative approaches 

follow a procedure-oriented paradigm and allow to 

algorithmically define a function that computes the output model 

from the input model. 

We propose to rethink the notion of models as input and output 

data which is subject to a transformation that is seen either as an 

explicit or implicit procedure, but understand a transformation as 

a process. In a process-oriented view, a transformation execution 

is carried out by interacting entities that control streams of 

information from source to target models. The flowing 

information stems from the models themselves, and the actual 

transformation logic is made up by the behavior of individual 

entities and their interaction which each other. 

 Consequently, we propose the transformation net formalism, 

which is based on conditional, colored Petri-nets, to represent 

transformation processes. Such an execution model provides the 

explicit statefulness of imperative approaches through markings 

contained in the net's places. The abstraction of control flow from 

declarative approaches is achieved as transitions can fire 

autonomously depending on their environment. To describe 

specific firing rules for transitions, we resort to pre/post rules 

known from graph transformations. 

The following section gives an overview of the transformation net 

formalism and describes how models and metamodels can be 

mapped onto transformation nets. The example in section three 

will describe how higher-level languages can be built on-top of 

transformation nets and how a process-oriented view favors the 

incorporation of aspect-oriented rules. Section four concludes 

with an outlook on future work. 

2. TRANSFORMATION NETS 
What sets transformation nets apart form existing approaches is 

their ability of making the transformation process explicit, as 

opposed to assuming a certain predefined execution rigor. Of 

course, the Petri-net based formalism needs an execution engine, 

too. But the Petri-net execution engine is generic and not tailored 

to a specific task unlike declarative model transformation engines. 

This makes the transformation net formalism a flexible execution 

environment to be targeted by generators of higher-level 

transformation languages, such that specific transformation and 

integration operators can be defined using the semantics offered 

by transformation nets.  

As symbolically displayed in Figure 1, the “compilation” step 

produces a transformation net in its initial state (i.e. ready for 

execution) that uniformly represents models, metamodels and 

transformation specifications. The static parts of a transformation 

net that correspond to the transformation process’ inputs and 

outputs, are generated from models and metamodels, whereas the 

part that corresponds to the process’ execution logic is created 

from the integration specification by a custom generator for a 

certain higher-level language.  
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The gap between the modeling and the transformation net 

technical space is bridged by the mapping described in the 

following. For reasons of brevity, we give a mapping only for the 

three main elements of metamodels, that are classes, references 

and attributes, and leave other constructs (e.g.: enumerations) 

aside. 

 

Classes, references and attributes of metamodels are mapped to 

places of a transformation net. 

Objects, as instances of classes are mapped to one-colored tokens 

within a place that corresponds to the object’s class. The token’s 

color represents an object’s unique ID. 

Links between objects conforming to a certain reference are 

mapped onto two-colored tokens within a place that corresponds 

to the link’s reference. The two colors represent a link’s source 

(ring color) and target (center color) and stand for the ID of the 

linked objects. 

Values of attributes are mapped onto two-colored tokens within a 

place that corresponds to the values’ attribute. The two colors 

represent an object’s unique ID and the denoted value. 

 

To complete the transformation net and to provide the actual 

process logic, a system of transitions and places has to be 

established that is capable of streaming tokens from the places 

corresponding to the input metamodels to places corresponding to 

the output metamodel. Thereby, the transitions represent 

interacting entities that control the token streams by firing and 

removing tokens from their input places and adding tokens to 

their output places accordingly. During execution, state 

information is explicitly provided by the markings of places, 

which makes it possible, to trigger transitions according to a 

certain runtime state, as opposed to only act upon data comprising 

Figure 1. Overall transformation procedure. 

 



the input model. The notion of triggering transitions according to 

runtime events or states is similar to the notion of point-cuts 

determining the execution of advice in aspect-oriented 

programming. Hence, transformation nets naturally cater for the 

use of aspect-oriented techniques on the runtime level. How to 

incorporate a weaving mechanism on the language level will be 

discussed as part of next section’s example which introduces a 

high-level integration language and demonstrates transformation 

net generation and execution. 

3. EXAMPLE 
The example in this chapter deals with the specification of a 

transformation between two metamodels, which is compiled into a 

net that finally executes the transformation process. Figure 2 

shows the source and target metamodels, as well as the input 

model and the desired output model. As shown, a transformation 

between these two metamodels has to transform array input 

models into linked-list output models. 

The transformation specification in-between the metamodels is 

given in an example language, which comprises several operators 

whose exact transformation net semantics will be given in the 

following section when describing the runtime level. On the 

language level, every operator stands for a certain processing 

entity, which has inputs and outputs by which individual 

operators can be assembled in a component-based way. For 

instance, the C2C (Class2Class) component takes objects from the 

“Element” class as input, and outputs them into the “Node” class. 

Analogously the R2R (Reference2Reference) component streams 

links from “contains” to “head”. The C2C component offers 

another output port “history”, of which all this components yet 

handled tokens can be accessed. The 2-Buf component connected 

to C2C’s “history” sequentially fills an internal buffer of size two, 

which is again provided as output port. A Linker component takes 

the two objects in the buffer, and produces a link between them 

which is streamed into the “next” place. A back-link is produced 

by the Inverter component that produces back-links from the 

“next” place and streams them into the “prev” place.  

Additionally to these “manually” assembled components, certain 

operators can cross-cut a transformation specification: Because 

the target metamodel classes do not have ID attributes, these 

should be stored within an annotation for eventual round-tripping. 

This can be accomplished by the Att2Annot component, which 

henceforth crosscuts the transformation of every object and is 

therefore woven with every C2C component. The transformation 

specification is itself a model, and due to the component-like 

assembly, existing model weavers can be used to merge the aspect 

operator into the base transformation specification. The top of 

Figure 2 shows the aspect’s definition in a notation inspired from 

XWeave [2]. The query in the aspect selects all C2Cs, with three 

additional sub-queries “in.id”, “history” and “out”, relative to the 

current C2C operator.  The results of “in.id” and “history” are 

bound to the “values” and “objects” ports of the Att2Annot 

operator, which for every transformed object instantiates a new 

Annotation object (“class” port) which is linked up (“ref” port) 

with the according Node object and sets its text attribute (“att” 

port) to the value of the source objects “id” attribute. 

Additionally, the “Annotation” class is woven into the target 

metamodel, as indicated through the dotted lines in Figure 2. 

Thereby, the result of the “out” query determines the classes to 

which an “annot” reference will be added.  
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After the weaving process is carried out on the language level, 

generation takes place to produce a transformation net out of an 

integration specification. Thereby Petri-net patterns are 

instantiated according to the transformation net semantics of the 

operators and assembled according to the overall integration 

specification. Every such pattern declares input and output arcs 

which represent the component ports of the respective language 

operators. The top of Figure 3 shows a transformation net 

resulting from the above integration specification. The transitions’ 

firing rules are defined with a visual notation that uses pattern-

filled tokens that can match for certain input tokens and produce 

output tokens whose color is either different, the same, or a 

combination (two-colored tokens) of the matched input colors. 

Places marked as “ordered” index contained tokens and provide 

them in a sorted fashion. For instance, the R2R component’s 

transition matches “ArrE1” – the “first” input token. Furthermore, 

according to the multiplicity of a reference, a place (e.g. “head”) 

can have a capacity, which constrains the amount of tokens a 

place can hold. Places holding two-colored tokens (references and 

attributes) have a double-lined border for easier differentiation. 

For simplicity reasons, the example assumes only a single array 

object, and since there is only a single ordered reference, the 

Element place is compiled into an ordered place as well, as not to 

unnecessarily complicate the example. 

 

 

Figure 2. Integration specification between metamodels 

with example models. 



    

Figure 3. Transformation net execution. 
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The middle and the bottom of Figure 3 show the transformation 

net during execution and in its finished configuration. For 

instance, one can see how the tokens streamed through the C2C 

component are stored in its “history” place. (The history place is 

duplicated in the lower C2C, as both the Att2Annot and the 2-Buf 

components are bound to it.) The 2-Buf component takes in these 

tokens and fills its two-place buffer. Once the buffer is full (both 

places have a capacity of just one token), the Linker component’s 

transition can fire and empty the buffer, producing a two-colored 

token which is streamed into the “next” place. Thereby it is to 

note, that the creation of two-colored tokens for the “next” link is 

based on a certain state of the execution, rather than on the input 

model alone.  

Furthermore, one can see how the previously weaved operators 

form Petri-net patterns that become active after an Array or 

Element token was streamed. As an example, in the “running” net, 

the lower Att2Annot pattern has already created an annotation 

with the according value for the “E1” object, and is currently 

enabled to do the same for “E2” and ”E3”, as both have already 

been handled by a C2C component. Analogously, the rest of the 

patterns stream tokens from source to target places, possibly 

depending on other patterns in turn. The actual firing order, 

however, is handled by the underlying Petri-net engine. Once the 

transformation process has finished, the final net configuration is 

used to instantiate a model that conforms to the target metamodel, 

as shown in the bottom-right corner of Figure 2. 

4. CONCLUSION AND FUTURE WORK 
In this paper we have presented a new execution model for model 

transformations based on colored Petri-nets. Such a process-

oriented execution model embodies the strengths of imperative 

and declarative paradigms and is able to explicitly represent a 

transformation’s execution state, which furthermore allows for the 

natural integration of aspect-oriented transformation rules. 

Furthermore, although transformation nets are intended as a low-

level execution model, transformation tasks like establishing the 

correct links in the above linked-list example can be expressed 

elegantly and encapsulated in reusable components. 

 

Currently we have developed the TROPIC prototype 

(TRansformations on Petri-nets In Color) which can transform 

integration specifications established with the CARMEN mapping 

framework [10] into colored Petri-nets that can be executed using 

the ExSpecT [1] tool. After execution, the resulting Petri-net is 

transformed into the actual target model.  The CARMEN 

framework builds upon an integration language that provides 

operators for bridging schematic heterogeneities between 

metamodels and ontologies. Future work will deal with extending 

the existing set of integration operators and generators. Due to the 

fact, that the transformation net approach is very generic, we will 

furthermore investigate in how well the approach is applicable to 

other model management tasks, such as model merging or 

incremental transformations.  

Another advantage of a process-oriented view is that a 

transformation net represents a single artifact which embodies 

metamodels, models and execution logic altogether. Therefore, we 

deem a Petri-net based execution model beneficial for debugging 

purposes and visualization of a transformation’s state.  

Consequently, besides developing generators for further 

integration languages (e.g.: model merging) or existing model 

transformation languages, our next steps will focus on developing 

dedicated tool support in the form of editors and debuggers for the 

transformation net formalism.  
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