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Abstract. Model transformations are playing a vital role in the field of
model engineering. However, for non-trivial transformation issues most
approaches require imperative definitions, which are cumbersome and
error-prone to create. Therefore, Model Transformation By Example
(MTBE) approaches have been proposed as user-friendly alternative that
simplifies the definition of model transformations. Up to now, MTBE ap-
proaches have been applied to structural models, only. In this work we
apply MTBE to the domain of business process modeling languages, i.e.,
Event-driven Process Chains and UML activity diagrams. Compared to
structural languages, business process modeling languages cover static
semantic constraints, which are not specified in the metamodel. As a
consequence, reasoning on the abstract syntax level is not sufficient. The
contribution of this paper is to extend existing MTBE approaches by
(1) new alignment operators on the user level and by (2) new reason-
ing algorithms operating on the concrete syntax level. Our extensions to
MTBE then allow for more expressiveness in the user mappings as well
as improved transformation code generation.
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1 Introduction

With the rise of model engineering, model transformations have been steadily
put in the limelight in the past five years. Growing tool support indicates, that
model transformations are not only attractive for researchers, but also for in-
dustrial parties accommodating to their customers needs. Model transformation
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scenarios include transformations between different refinement levels of models
(vertical transformations) as well as transformations between different modeling
languages which rely on the same abstraction level (horizontal transformations).
Languages used for defining model transformations are ATL [7], QVT [13], Triple
Graph Grammars, XSLT, and even general purpose languages such as Java [1].
Many model transformation languages are hybrid, meaning that besides a declar-
ative style, an imperative style is provided for problems that cannot be solved
by the provided declarative features. Nevertheless, the development of impera-
tive fragments is often a tedious and error-prone task. In contrast, declarative
solutions are compact descriptions but not always intuitive to find. Therefore,
approaches such as Model Transformation By-Example (MTBE) came up. Simi-
lar to other By-Example methodologies such as Query By-Example (QBE) [18],
probably the most prominent one, MTBE aims at generating most of the trans-
formation rules automatically, given that the user provides manually defined
mappings between example models covering the concepts of their individual
languages. A short overview of our MTBE approach will be given in the next
section.

Instead of focusing on the domain of structural modeling languages, what
has been done in previous investigations [17], [16], in this paper we concentrate
on behavioral modeling languages. More specifically, we apply MTBE on the
domain of business process modeling (BPM), which, up to our best knowledge,
has not yet been subject to the MTBE approach. The definition of requirements
for MTBE in the context of business process modeling and how they can be
met in terms of proper generation of transformation rules comprise the main
contribution of this paper. Therefore, we present main challenges encountered
in business process (BP) model transformations, and how these challenges can be
tackled by extending already proposed MTBE mapping operators and reasoning
algorithms in order to allow a more sophisticated model transformation code
generation. Furthermore, the proposed extensions are explained by a running
example in which two prominent BP modeling languages are used, namely the
UML Activity Diagram and Event Driven Process Chains.

The remainder of this paper is structured as follows. First we provide a short
introduction to MTBE in Section 2. Subsequently, we describe in Section 3 why
we focus on BP models and present two common BP modeling languages which
are later used in a running example. Model transformation problems encountered
in BPM and how these can be solved is explained in Section 4. In Section 5 we
discuss mapping and transformation issues in the area of BPM in a by-example
manner and how MTBE might help to eradicate those problems. In Section 6 we
discuss related approaches, and finally, in Section 7 we provide conclusion and
future work.

2 Overview of MTBE for structural Modeling

In this section we give a brief outline of our MTBE approach we introduced
in [17]. We have recognized two main issues in conjunction with the task of



defining model transformations. The first one is about the gap between the
way a person thinks about models and the way a computer represents those
models internally. And the second issue is about the way concepts are represented
in the metamodel (MM), i.e., whether one needs to have expert knowledge to
identify those concepts or not. We call the phenomenon of hidden concepts in a
metamodel concept hiding [8]. Having those issues in mind one can easily accept
the fact, that the task of creating model transformation rules is not a user-
friendly one. This is why we have come up with the idea of MTBE, that can be
seen as a semi-automatic approach for the generation of model transformation
rules. One of the main benefits of MTBE is the shift in abstraction. Mostly
all of the proposed model transformation approaches operate on the abstract
syntax (AS), although modelers might not be familiar with the abstract syntax.
Therefore, we intend to make the transformation task more concrete and operate
on a level the modelers or designers are familiar with, i.e, on the concrete syntax
(CS). To make this semi-automatic methodology work, four conceptual steps
have to be performed:

Definition of Model Mappings. The user has to manually define one-to-one
correspondences between two sample models on the concrete syntax layer.
These two models serve as examples and consequently, should cover as much
language concepts as possible. This step is to be supported by a graphical
mapping editor.

Derivation of Metamodel Mappings. The model mappings serve as input
to derive appropriate mappings between the metamodel elements. These
metamodel mappings are either full equivalence or conditional equivalence
mappings. With the term conditional mapping we mean a mapping that in-
volves a constraint specified in Object Constraint Language (OCL). These
OCL constraints actually stem from the notation, i.e., the conceptual map-
ping between a concrete syntax and an abstract syntax element. The notation
is defined as

Triple :=< as E, cs E, const(as E)? > (1)

where as E is some abstract syntax, e.g. Class object, and cs E some con-
crete syntax element, e.g. a rectangle figure with a label. The metamodel
mappings are derived via reasoning algorithms which take the models, the
model mappings (cf. Step 1), as well as the metamodels as input.

Model Transformation Generation. The mappings between the metamodel
elements are used to generate model transformation code. Note that we do
not stick to one specific transformation language, although we decided to use
ATL for demonstration purposes and early prototyping. The ATL transfor-
mations are produced from a code generation component, which takes the
metamodel mappings of Step 2 as input.

User Refinements. The last step concerns testing of the generated transfor-
mation rules and their refinement. This is due to the fact, that some transfor-
mations are not derivable by MTBE so far and must be completed manually.
Furthermore, we believe that MTBE represents a typical iterative approach,
because the example models used for defining the model mappings (cf. Step



1) can be reused for test purposes to gain feedback for adapting the model
mappings accordingly.

3 Models for Business Processes

Business process models are in use for quite a long time and continue to gain
importance as support from the software engineering field is improving signifi-
cantly. Particularly model engineering fosters research in the area of BPM. There
exist several metamodels for existing languages in order to raise there acceptance
and tool interoperability. Due to this growing interest in BPM and proper tool
support, we believe MTBE can be advantageous for specifying model transfor-
mations between BP models. Usually BP models cover various perspectives as
e.g. described in [3]. The following two BP modeling languages we choose to
use in our case study presented in Section 5, however, cover only the behavioral
perspectives of BPM.

3.1 UML 2.1 Activity Diagram

The UML 2.1 Activity Diagram (UML AD) [14] is a specification of the Object
Management Group. The metamodel in the left part of Figure 1 depicts an
excerpt of the UML AD language, namely the basic control flow elements which
are used for modeling BP models, as well as the concrete syntax. The central

Activity

name:string
i i

1references

Activity Node Activity Edge

version:string

outgoing source

1 0..*

0..*0..*

11

1references

g
incoming target
1 0..

1 0..*

Call Behaviour Action Opaque Action Control Node Control Flow

guard:stringguard:string

Merge NodeFork Node Join Node Initial Node Decision NodeFinal Node

Activity Final Node Flow Final Node 

OpaqueAction Activity Final Initial Node Flow FinalDecision/
Merge Node

Join/
Fork Node

CallBehaviour
Action

EPC Business Process

name:string
version:string

outgoing source
0..*0..*

11

1references

Process Flow Objects Control Flow
incoming

outgoing

target

source

*..01

*..01

lE tFunction Logical OperatorEvent

Basic FunctionComplex Function XOR OR AND

Basic FunctionEvent AND OR XORComplex 
Function

XORAND OR

C
S

A
S

UML Activity Diagram EPC
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element is the Opaque Action, which is used to model the activities within a
process. The Call Behavior Action represents the concept of a sub process call.
Control Nodes are used to structure the process. More specifically, a Fork Node
and a Join Node express a concurrent flow as well as a Decision Node and a
Merge Node to express an alternative flow. The Initial Node marks the begin of



a process model. The UML AD differs between two final nodes, the Flow Final
Node (FFN ) and the Activity Final Node (AFN ). The FFN is used to mark the
final of a distinct flow, that means if it is reached the remaining tokens in the
process will proceed. Whereas the AFN marks the end of the whole process which
means if it is reached the remaining tokens in the process are killed immediately.
The only kind of Activity Edge we consider in this work is the Control Flow,
which is used to connect the Activity Nodes to form the flow of control of a
process.

3.2 Event-driven Process Chains

Event-driven Process Chains (EPCs) [9] have been introduced by Keller et al
in 1992 as a formalism to model processes. In this paper we focus on the main
elements, which are used to model the control flow aspect of a BP model. The
metamodel and concrete syntax of EPCs are illustrated in Figure 1 on the right.

The Function represents an activity. It creates and changes information ob-
jects within a certain time. The Event represents a BP state and is related to
a point in time, it could be seen as passive element compared to the Function
as an active element [11]. To model a sub process call the Complex Function is
used. The Logical Operators elements are used to structure the proceed of the
BP model.

When dealing with EPCs some special modeling restrictions must be consid-
ered which are not directly represented in the metamodel. EPCs do not provide
a specific element to indicate the begin and the end of a BP model, instead the
Event is used. Event elements are not allowed to be in front of an OR and XOR
element. Function and Event elements must alternate in the proceed of the BP
model and are connected via the Control Flow. This feature of the EPC language
is in fact a static semantic constraint, which is not specified in the metamodel
illustrated in Figure 1. Another restriction in EPCs is that parallel branches as
well as alternative branches must be split and merged with the same kind of Lo-
gial Operator. Again we have to face a static semantic constraint in the context
of Logical Operators, when it comes to specifying model transformations.

4 Mapping Operators for MTBE in the Light of BPM

During our investigation of BP models we discovered, that there are consider-
able differences compared to structural models concerning the requirements for
MTBE. To transform structural models, one has to be familiar with the nota-
tion and hidden concepts in the metamodels, especially when dealing with UML
diagrams. Resulting ambiguities on the metamodel layer have to be solved either
by reasoning algorithms or user input, as we described in detail in our previous
work. Now, with the task of transforming BP models we have to deal with quite
different issues, in order to apply our MTBE approach. A lot of interesting as-
pects concerning the heterogeneity of BP models have been identified in [12].
One of the special requirements coming along with BP models has its root in
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Fig. 2. Overview of BP models heterogeneities

the mapping from concrete to abstract syntax layer (notation) and the number
of modeling elements involved on each layer. As we now allow for zero or more
elements on each layer in the CS-AS mapping, the notation shown in equation
1 becomes to

Triple :=< as E∗, cs E∗, const(as E)? > (2)

In UML AD we have for example the notation:

< {MergeNode, ControlF low, DecisionNode} , {DecisionMergeFigure} , {} >

as is illustrated in Figure 2 (c) for the CS modeling element on the very top.
Note that the used modeling construct is here just an abbreviation on the CS
layer and could be equivalently expressed by the following pattern of notation
triples:

< {DecisionNode} , {DecisionFigure} , {} >

< {ControlF low} , {ConnectionFigure} , {} >

< {MergeNode} , {MergeFigure} , {} >

We also observed several heterogeneities between modeling languages, which
pose further requirements for MTBE. Figure 2 gives four examples for the pecu-
liarities we found in the two BP modeling languages we introduced in Section 3.
Examples a and b in Figure 2 depict the case of so called CS overloading in UML
AD and EPC. In example a we encounter no problems because with the help of
the notation we can distinguish between the two concepts join and fork despite
the CS overloading. In example b CS overloading represents a real challenge for
MTBE as two equal CS elements, but in fact featuring two different meanings,
are mapped to the same AS element.

When we have to deal with alternative representations in the CS, see Figure
2 c, we can use the notation in MTBE to find them. The challenge arises not
until we have to map two languages, where one consists of such variation points
in the CS. Example d in Figure 2 shows the possibility in UML AD to merge
parallel flows implicitly by omitting a merge/join node, i.e., we have no mapping
from the AS to the CS.
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Fig. 3. Overview of MTBE Mapping Operators

In the following we present new mapping operators and transformation heuris-
tics which resolve heterogeneities, as expressed in the examples a,b, and c, in
Figure 2 are faced. Unfortunately, up to now we are not able to cope in MTBE
with implicit elements as shown in example d. The problem here is twofold. First
we have to address the question how to map these implicit elements on the con-
crete syntax layer. And second we have to adjust the code generation process
accordingly.

So far our MTBE approach as presented in [17] has only dealt with simple
1:1 mappings on the concrete syntax, see Figure 3 a. In case of BP model trans-
formations it is necessary to introduce new kinds of mapping operators. Based
on the specialties and problems stated above we developed new operators. In
the following we describe the semantics of these new operators to provide a no-
tion of how they can be used. However, we still have to develop some formal
specification for these operators.

The first new operator is the compound mapping operator (cf. Figure 3 b).
This mapping operator allows for n:m mappings on the CS layer. Although we
encountered only 1:n mappings so far, we want the user to have the feature of
n:m mappings. With this mapping operator we intended to support the mapping
of common work flow patterns, such as the one we show in the corresponding
example for this operator.

Along with the compound mapping operator comes a string manipulation
operator, that works in the context of compound mappings but is not restricted



to them. A first notation approach is shown in Figure 3 c together with an exam-
ple. Note, that this operator is used for Attributes specified in the metamodel,
which are represented as labels in the model. This operator consists of two main
components, i.e., a body and an expression part, each separated into left and
right hand side. The two body parts consist of a list containing references to At-
tributes, that are going to be mapped. Furthermore each Attribute of the body
manages a list containing the unidirectional mappings from itself to some other
Attributes. During the transformation rule generation from one language to the
other only one list of mappings is of interest. In the expression part one can use
some simple string operations or regular expression. In the example given in the
Figure above we apply a toLowerCase operation on the first mapping of the first
Attribute on the right hand side.

For the XOR operator depicted in Figure 3 d there are two ways to use it, i.e.,
in an explicit way or in an implicit way. In Figure 3 we only illustrated the explicit
use of this operator. In general an XOR mapping shall indicate that only one
element should be created although one CS element in one language is mapped to
more than one element in the other language. Omitting the XOR in the example
in Figure 3 d would lead to the creation of an Initial and an Activity Final Node
for every Event that is matched by the corresponding transformation rule. When
using the XOR operator in an implicit way the whole issue is hidden from the
user. Instead all XOR mappings are derived automatically in the metamodel as
will be shown in Section 5. The drawback of this approach is that one looses the
possibility of multiple object creations as mentioned before.

At last we introduce the anchor operator. The notation and an example
are given in Figure 3 e. The anchor operator marks the element, which the
transformation rule shall use as single source pattern element. It is thus always
used in conjunction with the compound mapping operator, which usually leads
to the creation of multiple source pattern elements in the rules. This operator
proved very useful in the derivation of ATL rules for our heuristics.

5 Case Study - MTBE with UML AD and EPC

Our MTBE approach for the domain of Business Process modeling can be best
explained in a by-example manner. Therefore, we use the two BP languages
EPC and UML AD described in Section 3. For demonstration purposes we show
what the generated code would look like in ATL. Although the example given
in Figure 4 is rather simple, it still covers a lot of interesting aspects for MTBE.

For the case study we assume that on the concrete syntax layer in EPC’s
Events and Basic Functions to always occur pairwise connected through a Con-
trol Flow edge. Furthermore, in UML AD modeling it could be possible to omit
a Join node and therefore model joins implicitly. However, in our first MTBE
approach for BPM we do not jet cope with implicit joins or merges.
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5.1 Model and Metamodel mappings

As a first step one has to define manual mappings between two languages, which
the transformation model shall be derived from. In the example in Figure 4 we
specified six mappings that capture all concepts being used in the two sample
models. Mappings a,b,c,d,f, and g are of type simple mapping.

Mapping e is of type compound mapping with multiplicity 1:3. Consequently,
whenever the pattern Event, Control Flow, Basic Function is matched this cor-
responds to a single Opaque Action. We also marked the Basic Function C in
our compound mapping as anchor element, which has implications specific to
transformation code generation. In our case the ATL code generator would use
this Basic Functions metamodel element as single source pattern element instead
of using multiple source pattern elements. During our implementation attempts
we realized, that an anchor feature can be desirable in some transformation
scenarios.

Mapping h in our example takes care of the labels used in Events, Basic
Functions and Opaque Actions. To maintain usability this string manipulation
operator is used in a separate modeling element and references the involved la-
bels. To define string equivalences one can use only unidirectional mappings,
which will be applied transforming from one set of labels to another. An op-
tional expression allows us for example in mapping h to apply a toLowerCase()
operation on the first mapping of the right hand side set of labels.



In EPC’s there are no distinct metamodel elements nor distinct concrete
syntax elements for start and end nodes, although these concepts are used in the
modeling language implicitly. In UML AD we do have explicit concepts for start
and end nodes both, in the model and the metamodel. If a transformation from
EPC2UML AD has to be performed the transformation model must know how
to distinguish between start and end nodes even without having these concepts
specified in EPC. We will elaborate on this issue in 5.3.

To keep our illustration in Figure 4 transparent and clear we omitted the
mappings between CS and AS. Also these mappings are quite straightforward
to define, as there are no constraints specified in the notation.

At last the mappings between the two metamodels can be derived from the
user mappings and the notation. To highlight the existence of a compound map-
ping in the metamodel we marked the three involved mappings with an and
operator. On the metamodel mapping level we now make use of our new XOR
operator we introduced in Section 4. To keep the mapping task user-friendly the
XOR between mappings can be reasoned automatically based on information in
the metamodels. Whenever a meta class contains at least two outgoing mapping
edges, an XOR relation can be set in an implicit way.

5.2 How to make Mappings executable

As the automatic generation of transformation rules is a difficult task, we do not
claim to support fully automatic rule generation. Instead we believe in a semi-
automatic approach. To face the new domain of business process models we im-
plemented a methodology, which can be best compared to Architecture-Centric
MDSD [15]. First of all we have implemented correct ATL transformation code,
which acts as reference implementation. Thereby we have avoided imperative
code sections and concentrate on coding in a declarative fashion.

In the next step we have developed the mapping operators described in Sec-
tion 4. During this step we have turned our attention to the user-friendliness.

Next we have looked at the example models, the user mappings and the
metamodels and tried to deduce the reference implementation. Code segments
that could not be deduced automatically then lead to further refinement of the
underlying heuristics. After refinement we tried again to deduce the reference
implementation. This process can be seen as an iterative way to deduce heuristics
on how to generate ATL transformation rules from a given set of models, meta-
models and user mappings. The aim of this process is to optimize the relation
between user-friendly mapping operators and the ability to generate executable
transformation rules.

5.3 ATL Code generation

Due to space limitations we will not expand on every aspect of the ATL code gen-
eration for the example in Figure 4. Instead we focus on the most interesting and
challenging parts, only. The three ATL code snippets presented in the following
paragraphs transform from EPC models to UML ADs. However, the example



mappings provided by the user, also allow for UML AD 2 EPC transformation
code generation.

Event2InitialNode and Event2FlowFinal. We already mentioned that we
somehow have to distinguish between Events, that can be either normal
Events, Start Events or End Events, to properly generate elements in UML
Activity models. In our previous work we tried to overcome mapping and
thus generation problems by means of reasoning on the metamodel layer.
For business process models it seams to be more appropriate to do reasoning
on the model layer.

Listing 1.1. Event2InitialNode and Event2FlowFinal
1 rule Star tEvent2 In i t i a lNode {
2 from
3 s : EPC! Event ( s . incoming−>s i z e ( ) = 0 )
4 to
5 i : Ac t i v i ty ! I n i t i a lNode ( . . . )
6 }
7

8 rule EndEvent2FlowFinal {
9 from

10 e : EPC! Event ( e . outgoing−>s i z e ( ) = 0 )
11 to
12 f : Ac t i v i ty ! FlowFinalNode ( . . . )
13 }

When the user maps two elements that are completely identical in the meta-
model in one language, but correspond to two different elements in the other
language, reasoning algorithms have to examine the graph structure in the
example model. In our Event example the algorithm would have to deter-
mine, that Start Events do not have any incoming Control Flows and that
End Events do not have any further outgoing Control Flows. Listing 1.1
shows the corresponding ATL rules with proper conditions in the source
pattern. This addresses mappings a and g in Figure 4.
In ATL it is not possible to match an element more than once, i.e., to have
more than one rule applied. Therefore, whenever a metamodel element occurs
in at least two source patterns, we have to make sure that only one rule is
matched. In the example above this would only be possible, if the user would
model an Event without any Control Flow connected to it. Of course this
would already violate some validity constraint. However, the OCL constraint
to check for multiple matching would look like in ATL as follows:

EPC!Event.allInstances()− > select(e|e.incoming− > size() = 0)− > asSet()

− > intersection(EPC!Event.allInstances()− > select(e|e.outgoing− > size() = 0))

− > size() = 0

(3)

EventControlFlowFunction2OpaqueAction. Now we want to cope with
the user mapping e of Figure 4. From the model itself and especially the
metamodel we know, that in EPC there are three distinct concepts involved
whereas in UML Activity diagrams only one concept is affected. For this
reason we use a new feature coming along with ATL 2006, i.e., the matching



of multiple source pattern elements, see Listing 1.2. Note that the returned
set of elements from matched multiple source pattern elements corresponds
to the cartesian product.

Listing 1.2. EventControlFlowFunction2OpaqueAction
1 rule EventControlFlowFunction2OpaqueAction {
2 from
3 ev : EPC! Event ,
4 c : EPC! ControlFlow ,
5 f : EPC! BasicFunct ion (
6 c . t a r g e t = f and c . source = ev and
7 ev . incoming−>s i z e ( ) <> 0 and
8 ev . outgoing−>s i z e ( ) <> 0
9 )

10 to
11 o : Act i v i ty ! OpaqueAction (
12 name <− f . name ,
13 parent <− f . parent ,
14 incomming <− ev . incoming
15 )
16 }

This is why we have to give a guard clause (c.target = f and c.source = ev)
to select only those elements we are interested in. This is similar to a join
in SQL. To generate this ”join” condition automatically we have to assume
that elements in a compound mapping are always connected through proper
link elements. A reasoning algorithm can check for the existence of links and
build conditions that must hold for the pattern to match.
There are two more conditions given in Listing 1.2 that must evaluate to true
if this rule shall be executed. This condition originates from the XOR con-
straint we face in the metamodel between the mappings Event InitialNode,
Event ActivityFinalNode and Event OpaqueAction, which is actually part
of a compound mapping indicated by an and. To avoid matching a rule
twice we can just take the conditions we have deduced in the previous
two ATL rules and insert their negation, i.e. ev.incoming− > size() <>
0 and ev.outgoing− > size() <> 0. The idea of inserting the negation of
already existing conditions in other rules can be seen as general heuristic.

And2Fork and And2Join. In Figure 2 b we referred to the problem of con-
cept overloading in the CS, which we face in the transformation from an
EPC to a UML AD model. We know, that the simple mappings d and f are
actually in an XOR relationship, which is determined from the deduced map-
pings between the metamodel elements. This transformation difficulty was
also the reason why we introduced the XOR operator. The user mappings
together with the derived XOR constraint are not yet sufficient to provide for
a heuristic capable of generating valid transformation code. What we need
in this special case of concept overloading is an algorithm performing ”local
reasoning” on a specific node and compare the results with the ones from
another one. The differences in the properties found between these nodes are
then used to distinguish between them. In our example we determined for
the class And mapped to class Fork Node there has to be only one incoming
Control Flow and at least two outgoing Control Flows on the CS layer if
the rule And2Fork shall be applied. For the class And mapped to class Join



Node the opposite has to be true if the rule And2Join is supposed to match.
Both rules are given in Listing 1.3

Listing 1.3. And2Fork and And2Join
1 rule And2Fork {
2 from
3 an : EPC!AND (
4 an . incoming−>s i z e ( ) = 1 and
5 an . outgoing−>s i z e ( ) > 1
6 )
7 to
8 fn : Ac t i v i ty ! ForkNode ( . . . )
9 }

10

11 rule And2Join {
12 from
13 an : EPC!AND (
14 an . incoming−>s i z e ( ) > 1 and
15 an . outgoing−>s i z e ( ) = 1
16 )
17 to
18 jn : Ac t i v i ty ! JoinNode ( . . . )
19 }

5.4 Critical Discussion

The code for the examples above is generated in a heuristic way and we believe
that in many cases and languages there is no great effort for code refinement
necessary. However, there are limitations of MTBE we want to briefly discuss.
In our language definition of EPC we assumed, that every Basic Function is
directly preceded by an Event. But it may be possible in our example to place
the Events b and c as one Event in front of the And split. This is another static
semantic constraint one can only capture in a natural language description of
EPC. As an example we refer to Figure 5 a.

Due this alternative way of positioning concrete syntax elements our rule
defined in Listing 1.2 would no longer match any of the elements in such small
models. To solve this problem MTBE could again be applied on this new EPC
example model and map the concepts of interest again. For the example given in
Figure 5 a we would have to map the Basic Function located between the two
And elements to an Opaque Action in our EPC 2 UML AD mapping scenario.
Because of the XOR constraints later derived in the metamodels a heuristic
could be applied to prevent multiple rule matching and select the rules properly.
The mapping of the Event a remains however an open issue.

In Section 4 we presented the heterogeneity of alternative representations in
CS. In UML AD we could model a join followed by a fork the way shown in Figure
5 b1. This representation is just an abbreviation, which we want to map in our
example to EPC, where this form of abbreviation is not possible. From the users
point of view it is sufficient to simply draw the compound mapping a. For both
modeling constructs we have again drawn the corresponding metamodel elements
and also their mapping to the CS (notation). As one can easily see it is not
possible to determine from these notations and the compound mapping a how
the elements in the metamodel shall be mapped from one language to the other.
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Again we can apply local reasoning algorithms operating on the model expressed
in AS to find out what elements possibly go together. The UML AD example
model given in Figure 5 b1 is also illustrated in AS (see Figure 5 b2 ), modeled in
UML object diagram concrete syntax. We can now reason on this representation
of the model and try to find out how the single metamodel elements have to
be mapped to the elements in EPC. For example we learn from this graph that
Fork and Join Nodes have a single outgoing and incoming edge, respectively.
The heuristic is similar to the one that copes with mappings d and f in the first
example, cf. Figure 4.

6 Related Work

To our best knowledge, there exists no approach for finding semantic correspon-
dences between business process models so far. However, there exists general
approaches that allow the definition of semantic correspondences between two
(meta)models, which have been applied in the area of structural models. The
first approach is a model-based approach from Varró, while the second approach
from Fabro et al is metamodel-based which allows automatically finding corre-
spondences directly between metamodels.

Model-based : Parallel to our MTBE approach [17] Varró proposed in [16] a
similar approach. The overall aim of Varró’s approach is comparable to ours,
but the concrete realizations differ from each other. Our approach allows the
definition of semantic correspondences on the concrete syntax, from which ATL
rules can then be derived. In contrast, Varró’s approach uses the abstract syntax
to define the mappings between source and target models, only. The definition
of the mapping is done with reference nodes leading to a mapping graph. To
transform one model into the other, graph transformation formalisms [5],[6] are



used. Furthermore, there is no publication on applying Varro’s approach on
business process models which is the general aim of this paper.

Metamodel-based : Orthogonal to MTBE there exists the approach of using
matching transformations combined with weaving models [4] in order to generate
an ATL transformation model. Matching transformations are defined such that
they use common matching algorithms or modifications, e.g., similarity flooding
[10], and then create a weaving model from the calculated similarity values.
Afterwards these weaving models are taken as input for another transformation,
called higher order transformation (HOT), to produce the desired ATL model
describing the transformation rules between two metamodels. Because there will
be always some mappings that can not be matched fully automatically, this
approach is also to be considered semi-automatic. The model transformation
generation process described in [4] currently focuses on using mappings between
metamodels and is therefore based on the abstract syntax, while our approach
aims at generating model transformation code from M1 mappings. Hence, we
have shifted the definition of the mappings from the abstract syntax to the
concrete syntax and from the metamodel layer to the model layer.

7 Conclusion and Future Work

In this work we have proposed an MTBE approach for the area of business
process modeling languages. Therefore, we extended already existing MTBE
techniques in two directions. First, special mapping operators are introduced
giving the user more expressivity for defining the model mappings. Second, we
introduced reasoning algorithms for each new mapping operator to extend the
model transformation code generation.

Concerning future work, we particularly strive for first, the refinement of
the proposed MTBE approach and second, its application to the domain of web
modeling languages. Concerning the last mentioned direction, we want to apply
our current MTBE approach to hypertext models, such as WebML [2], which
represent navigation and data flow between hypertext nodes via links and link
parameters. We hope that the area of web modeling languages offers new example
mapping problems and allows the evaluation of our current insights of MTBE
in more detail. Concerning the refinement of the proposed MTBE approach, we
want to experiment with different versions of mapping models which possess
different levels of granularity, size and modeling patterns. In particular we want
to evaluate how much a model can be altered compared to the original model
which is mapped by-example, and can still be transformed properly. Therefore,
we want to map two models A and B, generate the transformations, and then
alter the models two A’ and B’ and test the generated transformations with the
new versions of the models.
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