
On the Integration of Web Modeling Languages:
Preliminary Results and Future Challenges

Manuel Wimmer1,‡, Andrea Schauerhuber2,∗, Wieland Schwinger3,‡, Horst Kargl1,‡

1Business Informatics Group
Vienna University of Technology

{wimmer, kargl}@big.tuwien.ac.at
2Women’s Postgraduate College for Internet Technologies

Vienna University of Technology
schauerhuber@wit.tuwien.ac.at
3Department of Telecooperation
Johannes Kepler University Linz

wieland.schwinger@jku.ac.at

Abstract. The Unified Modeling Language (UML) is considered as the lingua
franca in software engineering. Despite various web modeling languages having
emerged in the past decade, in the field of web engineering a pendant to UML
cannot be found yet. In the light of this “method war” the question arises if a
unification of the existing web modeling languages can be successfully applied
in the style of UML’s development and thus promote Model-driven Web
Engineering (MDWE). In such a unification effort we defer the task of
designing a “Unified Web Modeling Language”. Instead, we first aim at
integrating three prominent representatives of the web modeling field, namely
WebML, UWE, and OO-H, in order to gain a detailed understanding of their
commonalities and differences as well as to identify the common concepts used
in web modeling. This integration is based on specifying transformation rules
allowing the transformation of WebML, UWE, and OO-H models into any
other of the three languages, respectively. To this end, a major contribution of
this work is the languages’ definitions made explicit in terms of metamodels, a
prerequisite for model-driven web engineering for each approach. Furthermore,
the transformation rules defined between these metamodels - besides
representing a step towards unification - also enable model exchange.

Keywords: Web Modeling, Model Integration, Common Metamodel for Web
Modeling, Model-Driven Web Engineering

‡ This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation

and Technology (BMVIT) and FFG under grant FIT-IT-810806.
∗ This work has been partly funded by the Austrian Federal Ministry for Education, Science,

and Culture, and the European Social Fund (ESF) under grant 31.963/46-VII/9/2002.

1 Introduction

In the past decade various modeling approaches have emerged in the research field
of web engineering including WebML [7], UWE [13], W2000 [1], OOHDM [26],
OO-H [10], WSDM [8], and OOWS [25]. Each of those approaches follows the
similar goal of counteracting a technology-driven and ad hoc development of web
applications. Beyond this, we notice similar and simultaneous extensions to the
individual web modeling approaches, e.g., for supporting context-aware web
applications [2, 6, 9], business process modeling [4, 14], and lately model-driven web
engineering [15, 18]. The current situation somewhat resembles the object-oriented
modeling “method war” of the 90ies. A situation from which after a unification
process the UML [24] eventually has become the lingua franca in software
engineering. In the light of the current “method war” in the research field of web
engineering (cf. Figure 1) the question arises if a unification of the existing web
modeling approaches can be successfully applied as it was achieved for the UML and
thus promote MDWE in academia as well as in practice.

Underlying
Modeling
Language

HDM1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

RMM

OOHDM

WSDM

WebML
UWEW2000

2003
OO-H

OOWS

HDM-lite

2004 WebSA

Hera WAE2

2005

ER OMT

2006

Data-oriented
Hypertext-oriented
Object-oriented
Software-oriented
MDE-oriented

Webile Midas Netsilon

UML

WAE

Underlying
Modeling
Language

HDM1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

RMM

OOHDM

WSDM

WebML
UWEW2000

2003
OO-H

OOWS

HDM-lite

2004 WebSA

Hera WAE2

2005

ER OMT

2006

Data-oriented
Hypertext-oriented
Object-oriented
Software-oriented
MDE-oriented

Webile Midas Netsilon

UML

WAE

Figure 1:Web Modeling Languages History, based on [28]

As a prerequisite for unification a common agreement on the most important web
modeling concepts is essential. This agreement can only be gained when investigating
the concepts used in existing web modeling languages and fully understanding the
languages’ commonalities and differences. In the MDWEnet initiative [16], we
therefore defer the task of designing a “Unified Web Modeling Language”. Instead,
we first aim at integrating three prominent representatives of the web modeling field,
namely WebML, UWE, and OO-H, since they are well elaborated and documented as
well as supported by modeling tools. This integration is based on specifying and
implementing transformation rules allowing the transformation of WebML, UWE,
and OO-H models into any other of the three languages, respectively. This way a
detailed understanding of the common concepts used in web modeling can be
obtained as well as their different realizations in the three selected languages. On the

basis of this integration task the definition of a common metamodel for web modeling
can be achieved in the future.

Consequently, the major contribution of this work is a step towards identifying the
common concepts in web modeling by first defining transformations between different
modeling languages. We present the general integration approach as well as first
results on the integration of WebML and OO-H.

Besides representing an important step towards unification, the transformation
rules also enable model exchange between the three different languages. For defining
the transformation rules, the languages’ definitions had to be made explicit in terms of
metamodels, which in turn represent a prerequisite for enabling model-driven web
engineering for each individual approach. On the basis of tool adapters the models’
representation within the approaches’ tools could be translated into instances of these
metamodels and vice versa thus also insuring interoperability. Furthermore, it will be
possible to exploit the different strengths of each web modeling approach, e.g., code
generation facilities for different platforms such as J2EE in WebML’s WebRatio1 tool
and PHP in OO-H’s tool VisualWade2.

In the remainder of the paper, we discuss our methodology for integrating existing
web modeling languages in Section 2. We elaborate on preliminary results of the
integration task with respect to WebML and OO-H in Section 3 and provide our
lessons learned in Section 4. Finally the paper is concluded with a discussion on
future challenges in integrating as well as unifying web modeling languages.

2 Integration Methodology used in MDWEnet

In this section we discuss the general methodology used for the integration of
WebML, OO-H, and UWE. We first explain why integration on the basis of already
existing language artifacts is not possible. Second, we outline a model-based
integration framework, and third, we discuss how to obtain the most important
prerequisite for integration – the metamodels for the three web modeling languages.

Why is the integration on the basis of existing language artifacts not possible?

In Table 1 we present an overview of the formalisms used for defining WebML,
OO-H, and UWE as well as the approaches’ model storage formats. When looking at
the languages’ definitions, one can easily identify that each language is specified in a
different formalism, even in different technological spaces [17], which a-priori
prevents the comparability of the languages as well as model exchange.

For the integration of modeling languages in general and for web modeling
languages in particular, the first requirement is that the languages are defined with the
same meta-language. This enables to overcome syntactical heterogeneities and to
compare the language concepts in the same formalism. Furthermore, defining
languages with the same formalism also allows expressing their model instances in
the same formalism which further fosters comparability of the languages’ concepts

1 www.webratio.com
2 www.visualwade.com

and beyond allows the uniform processing of the models, e.g., their visualization or
transformation.

Table 1. Differences concerning Language Definition and Model Storage.

 Language Definition Model Storage
WebML WebRatio, DTD3 XML documents
OO-H VisualWade, Rational Rose Model Proprietary format
UWE ArgoUWE, UML Profile XMI

Consequently, it seems necessary to split up the integration process in order to

tackle two distinct integration concerns, namely syntactical integration and
semantical integration: In the first step, i.e. the syntactic integration, the different
formats used by WebML, UWE and OO-H are aligned towards one common
integration format. For example, a WebML model represented in terms of an XML
document has to be translated into this common integration format. The second step,
i.e. the semantical integration step, covers the transformation of a model from one
language into another one, e.g. from WebML to OO-H, while preserving the
semantics of the input model within the output model. This transformation is based on
transformation rules which require the input models to be available in the common
integration format.

How to use model-based techniques for integration purposes?

We decided to apply a model-based approach and use techniques and technologies
which have emerged with the rise of Model Driven Engineering (MDE) [3]. MDE
mainly propagates two techniques which are relevant for integration purposes: (1)
metamodels for defining the concepts of modeling languages, and (2) model
transformations. Model transformations in the context of MDE can be divided into
vertical model transformations and horizontal model transformations [19]. While the
first kind concerns transformations between different abstraction levels, e.g.,
transforming platform-independent models into platform-specific models, the latter is
used for transformations at the same level of abstraction, e.g., for model refactoring.
Consequently, in this work we rely on horizontal model transformations.

In Figure 2, we present our model-based integration framework, which is based on
the tool integration pattern of Karsai et al. [12]. The framework is built upon open-
source technologies for MDE, which have been developed under the hood of the
Eclipse project. In particular, we are using the Eclipse Modeling Framework (EMF)
[5], as a model repository for a common syntactic integration format and EMF’s
Ecore, i.e. an implementation of the Meta Object Facility (MOF) standard [21], as the
meta-language for defining the metamodels for WebML, OO-H, and UWE.
Furthermore, we employ ATL [11] as model transformation language to implement
the transformation rules and finally, the ATL engine for actually executing the
transformation. In Figure 2, we also sketch the model-based integration process of

3 Recently, two different proposals for a WebML metamodel have been published in parallel

[20, 27].

WebML (WebRatio), OO-H (VisualWade), and UWE (ArgoUWE), which is
described more detailed in the following:

1) Syntactic Integration. On the basis of tool adapters for bridging the native
model storage formats of the approaches’ tools towards the EMF models can be
integrated syntactically. Thus, realizing import functionality the tool adapters
have to parse the models in their native format and generate an XMI [22]
version for the EMF. In addition, the tool adapters also must be capable of
exporting the models by transforming them into the tools’ native format.

2) Semantic Integration. After the syntactic integration, the user can focus on the
correspondences between modeling concepts of different languages. This is
done by relating the metamodel elements and implementing the integration
knowledge in terms of ATL model transformation rules.

3) Execution of the Transformations. The model transformation rules then can
be executed in a model transformation engine. More specifically, the ATL
engine reads an input model, e.g. a WebML model, and generates an output
model, e.g. an OO-H model, according to the transformation rules.
Subsequently, the generated models can be exported via the specific tool
adapter to the proprietary tool.

4) Definition of a Common Metamodel for Web Modeling. The top of Figure 2,
illustrates the goal of MDWEnet, i.e., a unification of existing web modeling
languages in terms of a common metamodel for web modeling. By defining the
metamodels for WebML, OO-H, and UWE, as well as working out the
integration knowledge in a first step, we hope that the creation of such a
common metamodel is easier to achieve afterwards. For the future, the common
metamodel for web modeling can serve as a pivot model and thus lowering the
integration effort drastically.

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Class

Transformation
Definition

(ATL)

OO-H
Models

Class

ClassClassClass

Class
Class Class

Class

ClassClassClass

Class
Class Class

Class

ClassClassClass

Class
Class Class

Class

ClassClassClass

Class
Class Class

OO-H
(VisualWade)

WebML
(WebRatio)

UWE
(ArgoUWE)

UWE
Models

WebML
Models

Tool-Adapter

To
ol

-A
da

pt
er

WebML
Metamodel

(Ecore) OO-H
Metamodel
(Ecore)

UWE
Metamodel

(Ecore)

Common
Metamodel for
Web Modeling

M2

M1
Transformation

Execution
(ATL Engine)

Eclipse
Modeling
Framework

1

1

1

2

3

4

To
ol

-A
da

pt
er

Figure 2: Model-based Integration Framework

What’s missing for a model-based integration and how to close the gap?
As a key-prerequisite for a model-based integration, the metamodels for WebML,

OO-H, and UWE must be available, which currently, however, is not the case. Within
the MDWEnet initiative, we have decided to use a top-down approach for building
the individual metamodels by starting with a focused set of requirements which are
specific to the web modeling domain [30]. This approach has the advantage that we
can concentrate on the core modeling constructs of the web modeling domain
supported by the addressed approaches instead of focusing on a huge amount of
concepts available in the individual approaches and implemented in their tools.
Following this top-down approach, a set of modeling requirements for the core of web
modeling were defined each focusing on a specific modeling problem. In the
following, these requirements are briefly explained and categorized into requirements
for content modeling, hypertext modeling, and content management modeling.

Layer 0 – Content Modeling. This layer is required to express domain objects and
their properties on which the web application is built upon.
Example: Class Student with attribute name, age, and a relationship to the class
Professor.

Layer 1 – Hypertext Modeling. This layer covers the requirements for web
applications that allow navigation among the hypertext nodes and publish within a
node the content extracted from domain objects (cf. Layer 0), possibly based on input
provided by the user. The following four cases are subsumed by Layer 1:

• Global Navigation: This case requires a starting point in the web application, i.e.
a home page, and subsequently, a navigation mechanism for moving to another
page of the hypertext.

• Content Publication: This case requires a page, which publishes a list of domain
objects and displays for each object a set of attribute values.

• Parametric Content Publication: This case requires a page, which publishes a
list of domain objects each having attached a navigation mechanism, e.g., a
button, an anchor. This mechanism shall allow the user to navigate to the details
of the object.

• Parametric Content Publication with Explicit Parameter Mapping: This case
requires one page, which contains an input form with various input fields. The
user inputs are used for computing a set of domain objects. Thereby, the attribute
values of the objects need to satisfy a logical condition including as terms the
input provided by the user.

Layer 2 – Content Management Modeling. This layer covers the requirements
for web applications that allow the user to trigger operations for updating the domain
objects and their relationships (cf. Layer 0).
Example: Create a new instance of type Student. Update the age value of the instance
of type Student where name=’Michael Smith’.

The definition of metamodels is of course an art on its on and can be approached in
different ways. For the purpose of this work it was decided to employ an example-
based approach by a process of obtaining a metamodel from the aforementioned
requirements as follows [16]: One or more concrete modeling examples were derived
from the requirements specification and modeled in the respective modeling language
within each approach’s accompanying tool. The code generation facilities of each tool
were then used to find out if the examples modeled were semantically identical, i.e.,

the generated applications should work in the same way. From these models the
language concepts which have been used were identified, as well as how these
concepts were related to each other. Consequently, this information is then defined in
a corresponding metamodel. These metamodels should allow expressing the same
models as within the approaches’ tools, meaning the same information must be
expressible in the models.

3 Preliminary Results

In this section we present our preliminary results. First, we briefly discuss the
modeling examples realizing the MDWEnet’s modeling requirements for web
modeling and provide the resulting metamodels in Section 3.1. In order to illustrate
how, on basis of those metamodels, the integration is realized with ATL in Section
3.2 we then present excerpts of the set of ATL transformation rules that have been
defined for the metamodels.

3.1 Derived Metamodels

Our first task after the MDWEnet’s modeling requirements for web modeling have
been agreed on has been the derivation of concrete modeling examples realizing these
requirements specifications. Inspired by previous examples in the web modeling
domain, we are using excerpts of the often referred to album store running example
[6], which covers all the aforementioned requirements. After defining the modeling
examples, each of them was modeled within the approaches’ tools, i.e., WebRatio,
VisualWade, and ArgoUWE, respectively. Furthermore, we used the code generation
facilities to compare the behavior of the models by executing the generated web
applications.

On the basis of the modeling examples, each expressed in WebML, OO-H, and
UWE, we identified the language concepts used in the individual examples and
obtained first versions of the metamodels for WebML as well as for OO-H. The
metamodel for UWE is currently under preparation. Beyond, we have grouped the
metamodels’ elements into packages which directly correspond to the layers of the
modeling requirements presented in Section 2. In the following, the class structures of
the metamodels for WebML and OO-H are presented and briefly explained. For more
detailed versions of the metamodels the reader is referred to [30].

WebML Metamodel. In Figure 3, we present the resulting WebML metamodel,
i.e., its packages, classes and their interrelationships. While the Structure package and
ContentManagement package correspond to the Layer 0 and Layer 2 of the modeling
requirements, respectively, for Layer 1 two packages have been defined, namely
Hypertext and HypertextOrganization.

The Content package contains modeling concepts that allow modeling the content
layer of a web application. Since WebML’s content model is based on the ER-model,
it supports ER modeling concepts: An Entity represents a description of common
features, i.e., Attributes, of a set of objects. Entities that are associated with each other

are connected by Relationships. Unlike UML class diagrams, ER diagrams model
structural features, only.

The ContentManagement package contains modeling concepts that allow the
modification of data from the content layer. The specific ContentManagementUnits
are able to create, modify, and delete Entities (cf. EntityManagementUnit) as well as
establish or delete Relationships between Entities from the content layer (cf.
RelationshipManagementUnit).

*

Content

minCard:EInt
maxCard:EInt

Entity

Relationship
Domain

superentity0..1

inverse
1

attribute
*

* domainValue

relationship*

1 to

DomainValue

Attribute
type:WebMLTypes

userType0..1

{xor}

• String
• Text
• Password
• Number
• Integer
• Float
• Date
• Time
• TimeStamp
• Boolean
• URL
• BLOB
• OID

«enumeration»
WebMLTypes

HypertextOrganization

Page

Hypertext::
ContentUnit

Hypertext::
LinkableElement

SiteView

ContentManagement::
OperationUnit

homepage

*
0..1

*

ContentManagement

1 relationship1entity

selector
0..1

0..1
0..1

0..1
targetselector

sourceselector
selector

to

to

* *

*

* okLink

koLink
OperationUnit

ContentManagementUnit

EntityManagementUnit RelationshipManagementUnit

ConnectUnit DisconnectUnit

Content::Relationship

CreateUnitModifyUnitDeleteUnit

Content::Entity

Hypertext::
Selector

OKLink
KOLink

Hypertext::
LinkableElement

*
to 1

*

*

0..1

0..1

0..1

*
0..1 1..*

LinkableElement

ContentUnit

Link LinkParameter

EntryUnitDisplayUnit

Content::Entity

DataUnitIndexUnitMultiDataUnit
Selector

Content::
Attribute

Content::
Relationship

SelectorConditionField

Hypertext

type:LinkType

WebML

Navigation::
NavigationModel

WebMLModel

1

Structure::
ContentModel

1

ContentModel

LinkParameter
Source

LinkParameter
Target

NavigationModel

*

• normal
• transport
• automatic

«enumeration»
LinkType

0..1 0..1

*
{xor}

Figure 3: The WebML Metamodel

In contrast, the hypertext layer represents a view on the content layer of a web
application, only. The Hypertext package summarizes ContentUnits, used, for
example, to display information from the content layer which may be connected by
Links in a certain way.

The HypertextOrganization package defines the Page modeling concept which is
used to organize and structure information from the content layer, e.g., ContentUnits
from the Hypertext package, SiteViews group Pages as well as operations on data
from the content layer, e.g., OperationUnits from the ContentManagement package.
More specifically, SiteViews represent groups of pages devoted to fulfilling the
requirements of one or more user groups.

OO-H Metamodel. The class structure of the resulting OO-H metamodel is
presented in Figure 4. Similar to the WebML metamodel, the Layer 0 and Layer 2
modeling requirements are realized by corresponding packages in the OO-H
metamodel, i.e., the Content package and Service package, respectively. Concerning
Layer 1, two packages have been defined, however, namely the Navigation and
Presentation packages.

In the Content package, OO-H’s content model is based on the UML class
diagram: A Class represents a description of common structural and behavioral
features, e.g., Attributes and Operations, respectively. Classes can be connected with
each other via Associations.

The Service package contains the modeling concept ServiceNode that allows the
execution of arbitrary operations defined at the content layer. The modeling concept
ServiceLink is needed to connect NavigationalNodes with ServiceNodes, and in
addition, to transport information in terms of arguments from NavigationalNodes to
Operations.

Content

o:OperationType

Class

Operation

superClass 0..1

*

*

StructuralFeature

• String
• Integer
• Boolean
• File
• Time
• Undefined
• URI

«enumeration»
PrimitiveType

Presentation
PagePresentationModel

NavigationalNode

ClassNodeCollectionNode

Navigation

• Index
• guidedTour
• showAll
• indexGuidedTour

«enumeration»
AccessType

RoleAttribute

Association Argument

OCLExpression

Frame
*

Link

NavigationalLink
navigationalPattern :

AccessType

exp : String

NavigationalModel

ContentModel

OO-H

NavigationalModelOO-HModel 1..*

ContentModel

1..* PresentationModel

1

Service

ServiceLink

Navigation::Link

ServiceNode

Navigation::
NavigationalNode

endType

*
• Constructor
• Destructor
• Modifier
• Relationer
• Unrelationer
• Custom

«enumeration»
OperationType

*

*

TraversalLink

filter

precondition

0..1

0..1

entryPoint0..1
origin

target

1

2

Content::Class Content::Attribute
Content::Role

*

*

1

1

*
*

1 1 *

1

*

p:PrimitiveType

objectType

1

0..1

0..1

p:PrimitiveType

0..1 returnType

Figure 4: The OO-H Metamodel

The Navigation package represents a view on the content layer of a web
application. In the Navigation package two types of NavigationalNodes can be
distinguished, namely ClassNodes displaying information from the content layer, and
Collections providing additional information such as navigation menus. Both types
have in common that they may be connected by Links. OCLExpressions attached to
Links either filter certain objects which should be displayed at the target
NavigationalNode or are used as preconditions that must be assured to access the
target NavigationalNode.

The Presentation package defines the Page modeling concept which is used to
organize and structure the NavigationalNodes of the navigation layer.

3.2 Model Transformations Using ATL

Following we discuss one representative example for the commonalities between
WebML and OO-H, in order to exemplify how integration is achieved on the basis of
metamodels and model transformation.

As already mentioned, ATL was used as model transformation language, which is
a uni-directional, rule-based transformation language. For a full integration,
consequently, transformation rules have to be specified for both directions, e.g. from
WebML to OO-H and vice versa. An ATL rule consists of a query part (from
keyword), which collects the relevant source model elements, and a generation part
(to keyword) creating the target model elements.

In Figure 5 (a) we illustrate the semantic correspondences between WebML and
OO-H metamodel elements and present two ATL rules implementing the
transformation from WebML to OO-H in Figure 5 (b).

1. Rule Entity_2_Class is responsible for transforming each Entity of the
WebML model into a Class in OO-H.

2. Rule DisplayUnit_2_ClassNode is responsible for transforming each instance
of the concrete subclasses of DisplayUnit into ClassNodes.

3. This minimal example already shows some advantages of using ATL in
contrast to using a general-purpose programming language. When executing
ATL rules, a “trace model” is created transparently, which saves how
instances are transformed. In our example the ATL engine traces which Class
instance is generated for an Entity instance. Therefore, it is possible to retrieve
the Class instance for the referenced Entity, which allows for the simple
statement cN.displayedClass <- dU.displayedEntity.

1. rule Entity_2_Class{
2. from e: WebML!Entity
3. to c: OOH!Class{
4. c.name <- e.name,
5. …
6. }
7. }
8.
9. rule DisplayUnit_2_ClassNode{

10. from dU: WebML!DisplayUnit
11. to cN: OOH!ClassNode{
12. cN.name <- dU.name,
13. cN.displayedClass <-
14. dU.displayedEntity
15. }
16. }

WebML

name: String

Entity DisplayUnit

1
displayedEntityname : String

…

DataUnitIndexUnitMultiDataUnit

OO-H

name: String

Class ClassNode

1
displayedClassname : String

…

31 2

1

2

3

(b) Transformation Rules(a) Metamodel Correspondences
Figure 5: Metamodel Correspondences and Transformation Rules Excerpt

4 Lessons Learned

Following, we summarize our lessons learned concerning the integration of
WebML and OO-H. In general, the integration of WebML and OO-H has turned out
to be straight-forward for the most part. At least for the core concepts of web
modeling, which have been the focus of the MDWEnet initiative, there exist many
commonalities between the two languages. Since the chosen modeling examples

could be realized in each language the languages can be considered to have “equal”
expressivity with respect to the defined core requirements. Nevertheless, we also
faced differences between the languages, which aggravated the integration. When
integrating languages based on their metamodels, further information, which often are
not covered by the metamodels, must be incorporated into the transformation rules.
This kind of information is on the one hand incorporated into the code generator and
on the other hand defined by the frameworks for which code is generated. Some of
these differences and the complexity they introduced during integration are explained
following the structure of the modeling requirements layers. Nevertheless, from our
current experiences we are able to conclude that the differences can be eliminated
within the transformations rules. Due to space restrictions and readability reasons we
explain the transformation rules textually and refer the reader to [30] for detailed
information on the ATL code.

4.1 Content Modeling (Layer 0)

As can be seen in Figure 1, WebML and OO-H have different origins. WebML is
based on the ER-model, which is typically used in the context of modeling database
schemas. In contrast, OO-H has emerged from an object-oriented background.
Consequently, in WebML each Entity has a set of operations which are “implicitly”
available and need not be defined by the modeler, i.e., WebML’s
ContentManagementUnits actually represent a data manipulation language (DML).
These operations include typical create, update, and delete operations as well as
operations for linking Entities (cf. Table 2). In contrast, in OO-H there are some
predefined operation types available, which have to be explicitly defined for each
Class by the modeler (cf. Table 2). Thus, when transforming WebML Entities in OO-
H Classes, the default operations must be created for each corresponding Class, in
order to ensure that OO-H’s ServiceNodes can execute them.

Table 2:.Comparison of Object Operations between WebML and OO-H.

WebML
Content Management Units

OO-H
Operations

CreateUnit Constructor()
ModifyUnit Modifier()
DeleteUnit Destructor()
ConnectUnit Relationer()
DisconnectUnit Unrelationer()

Example: Figure 6 (a) shows an excerpt of the content model of the album store

example. In Figure 6 (b) we depict the corresponding OO-H content model that needs
to be generated by the transformation rules. For each Entity in the content model of
WebML an OO-H Class is generated. Besides transforming the Entities’ Attributes, in
OO-H the Constructor(), Destructor(), and Modifier() operations must be defined for
the Class as well. Likewise for each Relationship of an Entity the Relationer() and
Unrelationer() operations have to be generated for the corresponding Class in the OO-
H content model.

ContentModel

Album
oid: Integer
title: String
year: Integer

ContentModel

Album
oid: Integer
title: String
year: Integer

«Constructor» new()
«Destructor»destroy()
…

CMM
ServiceModel

Album
Delete Album

DeleteAlbum

(a) WebML model (b) OO-H model
Figure 6: Content Modeling and Hypertext Modeling in WebML and OO-H

4.2 Hypertext Modeling (Layer 1)

Generally speaking, one could say that WebML is the more explicit language
compared to OO-H, i.e., in the way that there are much more language concepts used.
In particular, this is the case for hypertext modeling where OO-H uses a minimal set
of concepts, which are refined with OCLExpressions, i.e., preconditions and filters,
for Links. In contrast to WebML, where various types of ContentUnits are available,
OO-H uses the concepts ClassNode and Collection, only. The actual content and
behavior of ClassNodes is defined by their incoming Links. Furthermore, for
parameter passing WebML offers LinkParameters with explicit source and target
parameter bindings, while in OO-H this is again expressed by OCLExpressions.

Besides the difference in the number of explicit concepts, WebML and OO-H both
use their own selector language for computing the content to be displayed. While in
OO-H the Object Constraint Language (OCL) [23] has been reused and extended,
WebML’s selector language is defined within the metamodel as well as based on the
concepts of Selector and SelectorCondition [30]. However, in the current version of
the OO-H metamodel, the modified grammar for the OCL is not yet covered as it is
done for the WebML selector language in the WebML metamodel. Thus, currently
the OCL statements are hard-coded in the transformations rules as ordinary Strings.
Incorporating the OCL grammar into the OO-H metamodel and the refinement of the
model transformations in order to define the OCL statements as model elements is
subject to future work. In the following, an example illustrating these differences
between WebML and OO-H is given.

Example: A search scenario is given, where in the first page the user provides
input, i.e., a certain year, for searching the set of albums. Figure 7 (a) shows the
example modeled with WebML4, where the EntryUnit AlbumSearch with a Field
named ‘from’ represents the input form. The Link to the IndexUnit AlbumResults
carries the user input in terms of a parameter. Therefore, a LinkParameter is assigned
to the Link, which has as LinkParameterSource the input Field and as
LinkParameterTarget the SelectorCondition of the AlbumResults IndexUnit. This
SelectorCondition computes the subset of all albums where the input value of the user
equals the value of the year attribute. In Figure 7 (b), the same information is modeled
with OO-H, where a separate concept for the information that is transported via Links
is not available. More specifically, the search scenario can be modeled with a
Collection AlbumSearch and a Link to the ClassNode AlbumResults. The Link

4 Please note that ellipse-shaped legends are not part of WebML’s notation.

contains a filter OCLExpression dst.year = ?, with the question mark standing
for the user’s input value and dst.year meaning the ‘year’ Attribute of the Album
Class.

AlbumResults:
Album

title
year

AlbumSearch [filter: dst.year = ?]
AlbumResults

(a) WebMLmodel (b) OO-H model

Linkparameter
from

Field from

AlbumSearch

source target

SelectorCondition
from eq Album.year

Figure 7: WebML Unit Types vs. OO-H Filter Conditions

This example illustrates the need to integrate the various WebML ContentUnits
with OO-H Collections and ClassNodes as well as WebML LinkParameter and
SelectorConditions with OO-H filter OCLExpressions.

4.3 Content Management Modeling (Layer 2)

Due to the differences at the content modeling layer, the modeling concepts for
content management modeling are also differently defined in WebML and OO-H. For
each operation on Entities of the content modeling layer WebML offers an explicit
modeling concept, e.g., CreateUnit, DeleteUnit, and ConnectUnit. In contrast, OO-
H’s Service package encompasses two concepts only, namely ServiceNode and
ServiceLink. This means that OO-H does not differentiate between the typical create,
update, and delete operations by defining sub-concepts of ServiceNode. Instead a
ServiceNode has a reference to the Operation which should be executed when the
ServiceNodes is entered.

Example: The given scenario describes the deletion of a specific album by an
authorized user. In Figure 6 (a) a DeleteUnit DeleteAlbum is shown which might be
accessed, e.g., through an IndexUnit AlbumSearch (cf. Figure 7 (a)). Likewise,
concerning OO-H a ServiceNode DeleteAlbum might be accessed, e.g., through a
ClassNode (cf. Figure 7 (b)). For the given scenario we assume that the Selectors and
SelectorConditions are translated according to the transformation rules defined for the
hypertext modeling layer. Beyond, each OperationUnit from the WebML model
needs to be translated into a ServiceNode in the OO-H model. Thereby, the reference
identifying the corresponding operation type (cf. Table 2) must be set for the
ServiceNode.

5 Conclusions and Future Challenges

In this paper we have presented our methodology of integrating three of the most
prominent web modeling approaches, namely WebML, OO-H, and UWE, on the basis
of a set of core web modeling requirements. As a proof of concept, we have defined
the core languages in Ecore-based metamodels and subsequently, have implemented
the integration in ATL model transformations rules. From our preliminary results and
lessons learned from the integration of WebML and OO-H sofar, we conclude that the

core of the three languages can be integrated without loosing information.
Nevertheless, the presented results are only a first step in the direction of a full
integration of the languages and to the definition of a common metamodel for web
modeling.

Future challenges concerning the integration of WebML and OO-H include the
finalization of the integration for their core modeling concepts which requires the
OCL version used in OO-H to be incorporated in the metamodel. Therefore, we plan
to employ the EBNF_2_Ecore transformer [29], which is capable of generating the
corresponding metamodel elements from a textual EBNF grammar. On the basis of
this we intend to finalize the transformation rules from OO-H to WebML.

The UWE metamodel is currently under preparation. As soon as a first stable
version is available, we plan to integrate UWE with the two other modeling languages
as well. We expect that a third language would bring further insights for building the
common metamodel for web modeling and on these results a first unification of the
modeling concepts can be proposed for the core requirements.

Beyond the core requirements, the modeling requirements and modeling examples
need to be extended to other web modeling concerns such as presentation, context-
awareness, and business processes in the future to broaden the view on the unification
of the modeling concepts. Furthermore, a refinement of possible variants of modeling
requirements, in order to find further sub-concepts and alternative modeling styles
would be of interest.

Acknowledgments. We would like to thank the members of the MDWEnet initiative
that have contributed to this paper in terms of preliminary work, including Pierro
Fraternali (Politecnico di Milano) for setting up the set of modeling requirements and
Cristina Cachero, Jaime Gomez, Santiago Meliá, Irene Garrigós (Universidad de
Alicante) as well as Nora Koch (LMU München) for their work on the UWE
metamodel.

References

1. Baresi, L., Colazzo, S., Mainetti, L., and Morasca, S.: W2000: A Modeling Notation for
Complex Web Applications. In Mendes, E. and Mosley, N. (eds.) Web Engineering: Theory
and Practice of Metrics and Measurement for Web Development. Springer, 2006.

2. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with Aspects. Proc.
5th Int. Conf. on Web Engineering (ICWE05), Sidney, Australia, July 2005.

3. Bézivin, J.: On the Unification Power of Models, SoSyM, 4(2), 2005.
4. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in Web

applications. ACM Trans. Softw. Eng. Methodol. 15(4), 2006.
5. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and Grose, T.J.: Eclipse Modeling

Framework, Addison-Wesely, 2004.
6. Ceri, S., Daniel, F., Matera, M., Facca, and F.: Model-driven Development of Context-

Aware Web Applications, ACM TOIT, 7(2), 2007, to appear.
7. Ceri, S., Fraternali, P., Bangio, A., Brambilla, M., Comai, S., and Matera, M.: Designing

Data-Intensive Web Applications, Morgan-Kaufmann, 2003.
8. De Troyer, O., Casteleyn, S., and Plessers, P.: Using ORM to Model Web Systems, Proc.

Int. Workshop on Object-Role Modeling, Agia Napa, Cyprus, October 2005.

9. Garrigós, I., Casteleyn, S., Gómez, J.: A Structured Approach to Personalize Websites
using the OO-H Personalization Framework. Proc. of the 7th Asia-Pacific Web Conference
(APWeb 2005), Shangai, China, March 2005.

10. Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web
Applications. IEEE MultiMedia, 8(2), 2001

11. Jouault, F., Kurtev, I.: Transforming Models with ATL: Proceedings of the Model
Transformations. Proc. of the Model Transformations in Practice Workshop at MoDELS,
Montego Bay, Jamaica, October 2005.

12. Karsai, G., Lang, A., Neema, S.: Tool Integration Patterns. Workshop on Tool Integration
in System Developement, ESEC/FSE, Helsinki, Finland, September 2003.

13. Koch, N., Kraus, A.: Towards a Common Metamodel for the Development of Web
Applications. Proc. of the 3rd Int. Conf. on Web Engineering (ICWE 2003), July 2003.

14. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of Business Processes in Web
Application Models. J. Web Eng.,. 3(1), 2004.

15. Koch, N., Zhang, G., Escalona, M.: Model transformations from requirements to web
system design. Proc. of the 6th Int. Conf. on Web Engineering (ICWE 2006), 2006.

16. Koch et al. MDWEnet: A Practical Approach to achieve Interoperability of Model-Driven
Web Engineering Methods. In preparation, 2007.

17. Kurtev, I., Bézivin, J., and Aksit, M.: Technological spaces: An initial appraisal. Proc. Of
Int. Federated Conf. (DOA,ODBASE, CoopIS), Los Angeles, 2002.

18. Meliá, S., Gómez, J.: The WebSA Approach: Applying Model Driven Engineering to Web
Applications. J. Web Eng., 5(2), 2006.

19. Mens, T., Czarnecki, K., Van Gorp, P.: A Taxonomy of Model Transformations. Language
Engineering for Model-Driven Software Development - Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2005.

20. Moreno, N., Fraternali, P., Vallecillo, A.: WebML modeling in UML. IET Software
Journal, 2007, to appear.

21. Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core Specification
Version 2.0. http://www.omg.org/docs/ptc/04-10-15.pdf, October 2004.

22. Object Management Group (OMG), MOF 2.0/XMI Mapping Specification, v2.1,
http://www.omg.org/docs/formal/05-09-01.pdf, September 2005.

23. Object Management Group (OMG), OCL Specification Version 2.0,
http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.

24. Object Management Group (OMG). UML Specification: Superstructure Version 2.0.
http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.

25. Pastor, O., Fons, J., Pelechano, V., Abrahao, S.: Conceptual Modelling of Web
Applications: The OOWS Approach. In E. Mendes and N. Mosley (eds.) Web Engineering:
Theory and Practice of Metrics and Measurement for Web Development. Springer, 2006.

26. Rossi, G., Schwabe, D.: Model-Based Web Application Development. In E. Mendes and N.
Mosley (eds.) Web Engineering: Theory and Practice of Metrics and Measurement for Web
Development. Springer, 2006.

27. Schauerhuber, A., Wimmer, M., Kapsammer, E., Schwinger, W., and Retschitzegger, W.:
Bridging WebML to Model-Driven Engineering: From DTDs to MOF. IET Software
Journal, 2007, to appear.

28. Schwinger, W., Koch, N.,: Modelling Web Applications. In Kappel, G., Pröll, B., Reich, S.,
Retschitzegger, W. (eds.) Web Engineering - Systematic Development of Web
Applications, Wiley, June 2006.

29. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. Proc. of Satellite
Events at the MoDELS 2005 Conference, Montego Bay, Jamaica, October 2005.

30. http://www.big.tuwien.ac.at/projects/mdwenet/

