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Abstract. Various problems in AI can be solved by translating them
into a quantified boolean formula (QBF) and evaluating the resulting
encoding. In this approach, a QBF solver is used as a black box in
a rapid implementation of a more general reasoning system. Most of
the current solvers for QBFs require formulas in prenex conjunctive
normal form as input, which makes a further translation necessary,
since the encodings are usually not in a specific normal form. This
additional step increases the number of variables in the formula or
disrupts the formula’s structure. Moreover, the most important part
of this transformation, prenexing, is not deterministic. In this paper,
we focus on an alternative way to process QBFs without these draw-
backs and implement a solver, qpro, which is able to handle arbitrary
formulas. To this end, we extend algorithms for QBFs to the non-
normal form case and compare qpro with the leading normal-form
provers on problems from the area of AI.

1 Introduction

Formal frameworks are often suitable for the representation of ap-
plication problems (like planning, scheduling, etc.) which can then
be solved by automated reasoning tools. Many important problems
in artificial intelligence (AI) (like problems in knowledge represen-
tation) can be encoded efficiently using quantified boolean formu-
las (QBFs), which are an extension of classical propositional formu-
las, permitting existential and universal quantifications over propo-
sitional atoms. QBFs have been proven to be a powerful framework
for the rapid implementation of reasoning tasks from these areas (see,
e.g., [6, 13, 24]), mainly because there has been made a significant
progress in the development of QBF solvers in the last few years [19].
Almost all of these solvers expect the input formula to be in a certain
prenex conjunctive normal form (PCNF), requiring all quantifiers to
be in front of a purely propositional formula, which has to be in con-
junctive normal form (CNF). However, natural encodings of prob-
lems from AI do not yield QBFs in such a normal form, and thus
the particular instances have to be transformed. The transformation
is performed in two steps, namely prenexing and transformation of
the resulting purely propositional matrix into CNF. The drawbacks
of this transformation are an increase in both formula size and vari-
able number, or, even worse, the formula’s structure is disrupted.

In this paper, we present a prover, qpro, which works on arbitrary
QBFs. Its basic procedure is a generalized DPLL algorithm with en-
hanced dependency-directed backtracking techniques. The space re-
quirements for qpro are modest; it runs in polynomial space (wrt the
length of the input formula). The motivation to circumvent formulas
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in PCNF and to work with arbitrary QBFs is the problem to generate
“good” normal forms in this logic. The main problem here is the han-
dling of quantifiers at the places where they occur. This is in contrast
to first-order logic. We explain in the following aspects of normal-
ization for different logics and discuss why QBFs are problematic.

It is well known how a propositional (or first-order formula) can
be translated into a satisfiability-equivalent CNF, such that the struc-
tural information is retained by new atoms [23, 10, 8]. Together with
their definition, such new atoms can mimic the effect of the analytic
cut rule in full calculi like Gentzen systems resulting in drastically
shorter proofs [3, 11]. Moreover, as experiments showed [14, 21],
such structure-preserving translations are not only beneficial from a
theoretical point of view, but can also speed-up automated theorem
provers for practical problems. In the last few years, similar results
have been obtained for the case of prenex QBFs and an optimized
handling of the newly introduced atoms has been proposed [1].

We consider the problem to construct a prenex form of a QBF. The
prenexing transformation cannot be carried out deterministically; the
chosen normalization strategy crucially influences the runtimes (also
depending on the concrete solver used), see e.g., [15, 26]. In fact,
this phenomenon mirrors a similar observation from classical theo-
rem proving in first-order logic, where classes of formulas exist for
which different quantifier shifting strategies (resulting in different
prenex forms) yield a non-elementary difference of proof size (and
search-space size) [4, 12]. Clearly, the impact of the prenex forms
is less drastic for QBFs because of the simpler underlying logic, but
there are indications that prenexing impacts the runtime of highly
optimized state-of-the art solvers [18].

In first-order logic, skolemization can be used to encode the prop-
erties of (usually) existential quantifiers by Skolem functions. In a
nutshell, skolemization gets rid of existential quantifiers “in place”.
The introduced Skolem functions encode two properties of quanti-
fier rules in full first-order calculi: (i) the eigenvariable condition
and (ii) non-permutabilities between quantifier rules. Condition (i)
is satisfied by the requirement to introduce a globally new function
symbol, and condition (ii) is handled by the occur check in the unifi-
cation algorithm. Due to the weaker syntax of QBFs, the introduction
of Skolem functions is not possible and therefore this conceptually
simple tool is not directly applicable in the context of QBFs.

The outline of the paper is as follows: Section 2 introduces nec-
essary definitions and notations. Sections 3 and 4 are devoted to the
formal underpinnings of the prover. Section 5 provides experiments
and comparisons. Finally, we discuss the results as well as related
and future work in Section 6.

2 Background

We introduce the language LP of QBFs as an extension of the lan-
guage of propositional logic. The alphabet of LP consists of paren-
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Figure 1. The branching tree of the example QBF φ.

theses, the truth constants � and ⊥, a countable set of variables P ,
the unary connective ¬ (negation), the binary connectives ∨ (disjunc-
tion) and ∧ (conjunction), and the quantifier symbols ∀ (universal)
and ∃ (existential). A literal is a variable or a negated variable.

We define the language of quantified propositional logic over a set
of variables P as the smallest set, LP , satisfying the conditions:

1. If x ∈ P ∪ {�,⊥}, then x ∈ LP and (¬x) ∈ LP ;
2. if φ, ψ ∈ LP , then (φ ◦ ψ) ∈ LP , where ◦ ∈ {∨,∧};
3. if φ∈LP , x∈P , and Qx does not occur in φ, then (Qx φ)∈LP ,

where Q∈{∀,∃}.

Any element of LP is called a quantified boolean formula (QBF). If
no ambiguities arise, we omit parentheses when convenient. More-
over, for a set X = {x1, . . . , xn} of variables, and Q ∈ {∀,∃}, we
write QXφ or Qx1 . . . xnφ as a short-hand for Qx1 · · ·Qxnφ.

Note that we allow negation only in front of a variable or a truth
constant. Formulas which obey this restriction are said to be in nega-
tion normal form (NNF). The NNF of any QBF can be obtained
by applying DeMorgan’s laws and the removal of double negation.
Since this transformation can be done deterministically and since the
increase of the formula size is negligible, we only consider QBFs in
NNF. From a technical point of view, QBFs in NNF have the advan-
tage that polarities of complex subformulas do not come into play.

The scope of a quantifier (occurrence) Qx in a QBF φ is defined
as ψ, where Qx ψ is the subformula corresponding to the occurrence
of Qx in φ. An occurrence of a variable x is called existential (resp.
universal) if it is located within the scope of a quantifier ∃x (resp.
∀x). Unless stated otherwise, we consider closed QBFs, i.e., each
occurrence of a variable x is located in the scope of a quantifier Qx.

We denote by φ[x/ψ] the result of substituting each occurrence of
a variable x in a QBF φ by a QBF ψ. The semantics of a QBF is then
given as follows: A QBF ∃x ψ is true iff ψ[x/⊥] or ψ[x/�] is true.
Dually, a QBF ∀x ψ is true iff ψ[x/⊥] and ψ[x/�] are true. The
other connectives are treated according to the standard evaluation
rules of propositional logic, providing the usual recursive definition
of the truth value of a QBF. Two closed QBFs are called equivalent
if they possess the same truth value.

The sequence of the variable assignments when evaluating a QBF
can be illustrated by a branching tree. The nodes contain the vari-
ables and the two subtrees of a node x correspond to the subprob-
lems, where x is replaced by ⊥ or �, as indicated by the labels of
the arcs. The leaves contain the resulting truth values. If x is existen-
tially (resp. universally) quantified and one subproblem evaluates to
true (resp. false), then the second subproblem can be omitted. As an
example, we show in Figure 1 the branching tree of the true formula

φ = ∀x1∃y1

`∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (x1 ∧ y1)
´
.

Definition 1 A QBF φ is given in prenex normal form (PNF) if φ is
of the form Q1X1 . . . QmXmψ, where Qi ∈ {∀,∃} and ψ is purely

BOOLEAN split(QBF φ in NNF) {
switch (simplify (φ)):
case �: return True;
case ⊥: return False;
case (φ1 ∨ φ2): return (split(φ1) ‖ split(φ2));
case (φ1 ∧ φ2): return (split(φ1) && split(φ2));
case (QXψ): select x ∈ X;
if Q = ∃ return (split(ψ[x/�]) ‖ split(ψ[x/⊥]));
if Q = ∀ return (split(ψ[x/�]) && split(ψ[x/⊥]));

}
Figure 2. The basic algorithm.

propositional. Moreover, if ψ is in conjunctive normal form, φ is said
to be in prenex conjunctive normal form (PCNF).

The PCNF format is required by most of the available QBF solvers.
Any QBF can be translated into an equivalent QBF in PNF, but

there are several ways to do this. The concept of different prenexing
strategies is discussed in [15, 26]. We give here only some intuition.

First, the dependencies between the quantifiers in a QBF are given
by common occurrences on paths in the formula tree. To avoid a
formal definition, consider the following example

ψ = ∃x
`
(∀y1 ∃z1 ∀u1 ∃v1 ψ1) ∧ (∀y2 ∃z2 ψ2) ∧ (∃y3 ∀z3 ψ3)

´
,

where the ψi’s are propositional formulas. Then, ∀y1 depends on ∃x,
∃z1 depends on ∀y1 as well as on ∃x, ∀y2 depends on ∃x, etc. but,
e.g., ∃z2 does not depend on ∀y1. We say that a QBF has depth m,
if the sequences of depending quantifiers provide at most m−1 al-
ternations. Observe that ψ has depth 5 as witnessed by the “path”
∃x∀y1∃z1∀u1∃v1. The aim of prenexing is to “linearize” quantifier
dependencies (which in fact form a partial order) without increas-
ing the depth of the QBF. We consider here four different prenexing
strategies, namely “↑”, “↓”, “∃↓∀↑”, and “∃↑∀↓”. Hereby, “↑” (resp.
“↓”) denotes that any quantifier is placed as outermost (resp. inner-
most) as possible in the prefix. “∃↓∀↑” and “∃↑∀↓” follow the same
concept but now the handling is depending on the particular quanti-
fier, i.e., whether it concerns an existential or a universal one. Thus,
for our example formula ψ, we derive different PNFs of ψ having the
same depth:

↑ : ∃xy3 ∀y1y2z3 ∃z1z2 ∀u1 ∃v1 (ψ1 ∧ ψ2 ∧ ψ3);

∃↑∀↓ : ∃xy3 ∀y1y2 ∃z1z2 ∀u1z3 ∃v1 (ψ1 ∧ ψ2 ∧ ψ3);

∃↓∀↑ : ∃x ∀y1y2 ∃z1y3 ∀u1z3 ∃v1z2 (ψ1 ∧ ψ2 ∧ ψ3);

↓ : ∃x ∀y1 ∃z1y3 ∀u1y2z3 ∃v1z2 (ψ1 ∧ ψ2 ∧ ψ3).

QBFs in PNF are prototypical problems for complexity classes in
the polynomial hierarchy. In fact, the evaluation problem of QBFs
∃X1∀X2 . . . QiXiφ is ΣP

i -complete with Qi = ∃ if i is odd and
Qi = ∀ if i is even. Dually, evaluating ∀X1∃X2 . . . QiXnφ is ΠP

i -
complete, with Qi = ∀ if i is odd, and Qi = ∃ if i is even.

3 A Generalization of the DPLL Procedure

In this section we present the most important formal underpinnings
of the presented solver qpro which relies on a generalized variant of
the decision procedure due to Davis, Putnam, Loveland, and Loge-
mann (DPLL for short). The DPLL procedure [9] represents one of
the most successful algorithms to decide the truth value of a propo-
sitional formula. This method has been adapted for QBFs (in PCNF
format) and it is used in many state-of-the-art solvers.

We generalize DPLL in such a way that it is applicable to arbitrary
formulas in LP , i.e., such that DPLL can be directly applied to QBFs



in NNF without additional transformations to PCNF. Figure 2 shows
a simplified version of the program code of our decision procedure.

Note that DPLL is a direct implementation of the semantics for
QBFs. The formula is split into subproblems, whose return values
are treated according to the connective, the variables are replaced
by truth constants, and simplifications are applied until a truth value
is obtained. The basic decision procedure is thus a simple search-
based backtracking algorithm which works in polynomial space with
respect to the size of the input formula.

The function simplify(φ) in Figure 2 returns a formula which
results from φ by applying numerous equivalence-preserving trans-
formations, including, e.g., the following ones:

(a) ¬� ⇒ ⊥; ¬⊥ ⇒ �;

(b) � ∧ φ ⇒ φ; ⊥ ∧ φ ⇒ ⊥; � ∨ φ ⇒ �; ⊥ ∨ φ ⇒ φ;

(c) (Qx φ) ⇒ φ, Q ∈ {∀,∃}, x does not occur in φ;

(d) ∀x(φ ∧ ψ) ⇒ (∀xφ) ∧ (∀xψ);

(e) ∀x(φ ∨ ψ) ⇒ (∀xφ) ∨ ψ, whenever x does not occur in ψ;

(f) ∃x(φ ∨ ψ) ⇒ (∃xφ) ∨ (∃xψ);

(g) ∃x(φ ∧ ψ) ⇒ (∃xφ) ∧ ψ, whenever x does not occur in ψ.

Rewritings (d)–(g) are known as miniscoping. Note that the appli-
cation of miniscoping is dynamic within the algorithm, due to the
repetitive substitution of variables and simplifications of subformu-
las. Further simplifications are derived from generalizations of other
well known concepts.

Definition 2 Let φ be a QBF, ψ a subformula of φ, Q ∈ {∀, ∃}, and
◦ ∈ {∨,∧}. A literal l ∈ {x,¬x} is called

• local unit (wrt ψ) in φ, if ψ is of the form (l ◦ ψ′);
• global unit (wrt ψ) in φ, if ψ is of the form Qx(l ◦ ψ′);
• pure (wrt ψ) in φ, if ψ is of the form Qxψ′, and l does not occur

in ψ′, where x = ¬x and ¬x = x.

Proposition 1 Let φ be a closed QBF and let l = x (resp. l = ¬x)
be a (i) local-unit (ii) global-unit (iii) pure literal wrt a subformula
ψ in φ, where ψ is given according to Definition 2. Then, φ is equiv-
alent to the QBF resulting from φ by replacing ψ in case of

(i) by

(
l ◦ ψ′[x/�] (resp. l ◦ ψ′[x/⊥]) if ◦ = ∧;

l ◦ ψ′[x/⊥] (resp. l ◦ ψ′[x/�]) if ◦ = ∨;

(ii) by

(
(l ◦ ψ′)[x/�] (resp. (l ◦ ψ′)[x/⊥]) if x is existential;

(l ◦ ψ′)[x/⊥] (resp. (l ◦ ψ′)[x/�]) if x is universal;

(iii) by

(
ψ′[x/�] (resp. ψ′[x/⊥]) if x is existential;

ψ′[x/⊥] (resp. ψ′[x/�]) if x is universal.

Note that (ii) and (iii) delete Qx in ψ by an implicit application of (c)
(since all occurrences of x in the scope of Qx have been replaced by
⊥ or �). Also observe the following difference between (i) and (ii).
In (i), the literal occurrence l in (l◦ψ) is not affected by the substitu-
tion of x, while in (ii) the substitution of x concerns also l in (l ◦ψ).
Note that (ii) yields—together with (a) and (b)—a replacement of the
entire subformula ψ = Qx(l ◦ ψ′) in φ by � (resp. ⊥), in the case
Q = ∃, ◦ = ∨ (resp. Q = ∀, ◦ = ∧). Finally, observe that (ii) also
applies to formulas of the form ψ = QxQ1X1 · · ·QnXn(l ◦ ψ′′)
since, by definition of QBFs, x /∈ Xi, and with (e) and (g), we can
transform ψ to be of form Qx(l ◦ ψ′).

The remaining part of the extended DPLL procedure in Figure 2 is
straightforward but we have to face three sources of indeterminism

within the switch statement: if simplify(φ) returns a QBF φ1∨
φ2 or φ1 ∧ φ2, we have to select (i) which subformula to evaluate
first; this part differs from PCNF solvers, where such a decision is
not necessary; if simplify(φ) returns QXψ, with Q ∈ {∀,∃}, we
have to select (ii) on which variable x ∈ X to branch, and (iii) which
subproblem (i.e., ψ[x/�] or ψ[x/⊥]) to consider first. Choice (ii)
is obviously restricted by the dependencies between the quantifiers,
since universal and existential quantifiers must not be permuted.

4 Dependency-Directed Backtracking

In this section we briefly describe an important technique called
dependency-directed backtracking (DDB), which is known to be cru-
cial for the efficiency of the DPLL procedure. In QBF solvers for
PCNF, this technique only works for false subproblems. Starting
from [20], we generalize this technique to arbitrary formulas, for
which it can be applied to true and false subproblems. DDB for false
subproblems applies to existential variables, whereas DDB for true
subproblems applies to universal variables.

When we inspect a branching tree, we may notice that some
branches (together with the corresponding subtrees) can be omitted
without influencing the (partial) evaluation result. In this case, the
result is independent from the assignments of some variables. If we
have set such a variable x to one truth value, we can safely omit the
assignment of x to the other truth value at this point in the branching
tree during backtracking. Consider Figure 1 as an example and ob-
serve that the tree is symmetric, i.e., the left and the right subtree of
x1 (with root y1) are identical. Suppose the prover has finished the
left half of the branching tree. Under the assignment ⊥ for x1, the
resulting simplified formula φ′ : ∀x2∃y2((x2 ∨¬y2)∧ (¬x2 ∨ y2))
evaluates to true. Since x1 is a universal variable, the next assign-
ment for it is �. A clever solver notices that x1 has no influence on
the truth value of φ′ with the consequence that φ′ is true under the
new assignment. So, no further assignments are performed because
we can utilize the result of the left subtree with root y1. What we have
described here is DDB on true subproblems (neglecting substitutions
of unit and pure literals, however, for the matter of presentation). The
more common DDB on false subproblems works as expected.

We have implemented two different sound and complete back-
tracking techniques, namely labeling and relevance sets. Since the
latter is superior to the former and since all experiments have been
performed using the latter, we only describe DDB by relevance sets
here. We present this technique only for true subproblems, but it
works dually for false ones.

Let Ry denote the relevance set for a node y. If the solver reaches
a leaf l in the branching tree, only those variables whose assignments
determine the truth value of the formula (i.e., the label of l) form Rl.
Assume we return from a subtree P1 with root x1 to the variable x
directly above x1 during backtracking and P1 is true. If x is existen-
tial, then Rx = Rx1 . If x is universal, then we check whether x is
contained in Rx1 . If x �∈ Rx1 holds, then the other subproblem P ′

1 is
true and Rx = Rx1 . Otherwise, the relevance set R′

x1 of P ′
1 has to

be considered. We construct Rx as follows. If x �∈ R′
x1 holds, then

Rx = R′
x1 . Otherwise, R is set to Rx1 ∪ R′

x1 .

5 Experimental Evaluation

In this section we compare the performance of our new solver qpro
against the established systems QuBE−BJ [17] (v1.2), sKizzo [5]
(v0.4), semprop [20] (rel. 24/02/02), and quantor [7] (rel. 25/01/04).
These solvers have been selected because they have shown to be
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Figure 3. Quantifier dependencies of the different benchmarks.

competitive in previous QBF evaluations and do not deliver wrong
results on our benchmarks. Moreover, QuBE−BJ and semprop im-
plement backtracking techniques, similar to the one used in qpro.
Finally, sKizzo and quantor try to extract original quantifier depen-
dencies from a PCNF, and thus may detect similar structural infor-
mation on the input formula as qpro has got a priori from the input
of the corresponding nonprenex formula.

All solvers except qpro require the input to be in PCNF. We thus
apply the following test strategy: Given a benchmark QBF φ not in
PCNF, we (i) provide φ as input to qpro; (ii) translate φ into PCNF
and provide the outcome as input to the other solvers. The exact way
we obtained the PCNFs is discussed below. We have chosen the fol-
lowing benchmark formulas (not in PCNF).4

1. Encodings for satisfiability in modal logic K.
2. Encodings for correspondence tests in answer-set programming.
3. Encodings of reasoning with nested counterfactuals.

In what follows, we briefly describe the benchmarks. For detailed
information, the reader is referred to the according references.

The first set of benchmarks contains instances which were also
used in the TANCS’98 comparison of provers for modal logics. Ap-
plying the encoding from [22] yields QBFs with a linear dependency
among the quantifiers. Hence, the translation to PNF is fully deter-
mined (there is just one way to shift the quantifiers in front of the
formula).

The benchmarks in the second set encode correspondence tests be-
tween propositional logic programs under the answer-set semantics,
where it is checked whether two programs provide equal projected
answer-sets under any program extension over a specified alphabet,
cf. [25]. For the benchmarks, we use two strategies, namely “↑” and
“↓” to obtain formulas in PCNF.

The benchmarks in the third set encode the problem of reasoning
over nested counterfactuals [15]. For this set of formulas, the quanti-
fier dependencies allow for several different translations into PCNF.
We have applied each strategy from [15] to the PCNF solvers. To be
fair, we show only the results for the best strategy of each solver.

The structural differences between these sets are best illustrated by
the quantifier dependencies of the formulas. We depict them for the
case of QBFs of depth 4 in Figure 3. Hence, the chosen benchmarks
provide an increasing complexity in their structure, and therefore,
an increasing disruption of the structure during the transformation
to PNF can be expected. In particular, for Benchmarks 1, we just
can investigate the effect of applying the transformation of one shift-
ing strategy, since the prefix is already determined by the encoding.
Benchmarks 2 allow to analyze the effect of prenexing if there is only
a small deviation from a linear quantifier dependency. In fact, using
either strategy “↑” or “↓”, one can place the group of existential quan-
tifiers from the right path either together with the upper or the lower
set of existential quantifiers from the left path. Finally, Benchmarks 3
provide formulas, for which different PNFs can be obtained.

4 PCNF versions are part of the QBFLIB, http://www.qbflib.org/.

number of timeouts average runtimes (in sec.)
qpro QuBE−BJ semprop sKizzo quantor qpro QuBE−BJ semprop sKizzo quantor

01-* 10 7 7 0 18 52.34 37.43 38.29 12.65 67.90
02-* 2 0 0 0 18 23.90 6.92 0.08 0.89 71.67
03-* 14 10 14 17 17 70.30 52.92 68.27 80.72 80.69
04-* 9 8 0 0 17 45.06 45.22 0.01 0.18 79.79
05-* 0 0 0 7 13 0.01 0.00 0.11 37.25 63.09
06-* 0 0 0 0 12 0.00 0.00 0.32 0.29 54.90
07-* 0 0 0 0 8 0.00 0.00 0.00 0.17 43.10
08-* 0 0 0 4 8 0.00 0.00 0.01 0.12 40.24
09-* 0 0 0 1 2 0.00 0.00 0.01 2.33 15.09
10-* 0 0 0 0 0 0.00 0.00 0.01 0.00 0.07
11-* 9 8 0 0 16 45.09 43.63 0.14 0.22 76.02
12-* 6 6 0 0 15 34.28 32.67 0.07 0.21 72.10
13-* 0 4 0 0 1 0.22 26.74 0.02 1.00 6.79
14-* 13 13 12 10 11 72.26 64.57 58.89 50.13 56.22
15-* 0 0 0 0 0 3.90 0.01 0.39 0.04 0.05
16-* 0 0 0 0 19 0.27 0.28 0.01 0.57 73.96
17-* 16 0 12 4 20 78.74 0.72 61.29 47.83 82.57
18-* 13 0 0 6 18 65.63 0.26 0.04 41.46 79.95

Table 1. Benchmarks 1: Modal Logic K.

number of timeouts average runtimes (in sec.)
qpro QuBE−BJ semprop sKizzo quantor qpro QuBE−BJ semprop sKizzo quantor

S↑ – 842 117 527 1000 – 87.34 81.82 74.67 100
S↓ – 90 6 0 1000 – 43.21 27.60 2.67 100
T↑ – 43 38 0 1000 – 20.85 54.86 2.97 100
T↓ – 0 0 0 1000 – 9.26 16.90 1.13 100
S 29 – – – – 33.37 – – – –
T 0 – – – – 17.87 – – – –

Table 2. Benchmarks 2: Answer Set Correspondence.

We ran our tests on an Intel Xeon 3 GHz with 4GB of RAM. All
solvers are used with their predefined standard options. For each in-
stance, we set a timeout of 100 seconds. We report both the number
of timeouts per set of benchmarks, as well as the average runtimes,
where formulas with timeout are considered to be solved in 100 sec-
onds. In what follows, we present our results on the benchmarks.5

Benchmarks 1: Modal Logic K. This set contains 378 formulas
arranged in 18 subsets, with 21 formulas each. Half of the formulas
evaluates to true. Depending on the modal depth of the original for-
mula, the depth of the encodings ranges from 5 to 133; the number
of variables ranges from less than 40 to more than 4300. Due to the
transformation into PCNF, the number of variables increases up to
more than 12800 in the worst case. The results are given in Table 1.

Benchmarks 2: Answer-Set Correspondence. Here, the test se-
ries comprise 1000 instances (465 are true and 535 are false). We
ran each problem on two different encodings, S and T, where T is
an explicit optimization of S (see [25] for details). The problem of
answer-set correspondence is ΠP

4 -complete, and thus all QBFs in
this set have depth 4. The quantifier dependencies, as depicted in
Figure 3, are the same for S and T and suggest to distinct between
two strategies for obtaining PCNFs, viz. ↑ and ↓. The QBFs possess,
in case of S, 200 variables and, in case of T, 152 variables. The ad-
ditional translation into PCNF yields, in case of S, QBFs over 2851
variables and, in case of T, QBFs over 2555 variables. The results
for each solver on each combination of the chosen translation and (in
the case of PCNF solvers) prenexing strategy are given in Table 2.

Benchmarks 3: Nested Counterfactuals. The final set of bench-
marks are encodings of nested counterfactual reasoning, separated

5 We highlight the best runtime for each test set (discrepancies due to mea-
surement inaccuracy are ignored).



by the depth of the resulting QBFs which ranges from 4 to 8. For
each depth, we created 50 instances, where the QBFs contain 183,
245, 309, 375, 443 variables. The transformation to PCNF increases
the number of variables to 464, 600, 786, 934, and 1132. In total, we
have about 60% true and 40% false instances. As mentioned above,
these encodings allow for several different prenexing strategies. For
space reasons, we do not present the results for each strategy here,
but Table 3 shows the results for the best strategy which has been de-
rived for each solver on the entire set of QBFs. Recall that for qpro
we do not need to apply any such strategy.

number of timeouts average runtimes (in sec.)
qpro QuBE−BJ semprop sKizzo quantor qpro QuBE−BJ semprop sKizzo quantor

∃↑∀↓ ↑ ∃↓∀↑ ∃↓∀↑ ∃↑∀↓ ↑ ∃↓∀↑ ∃↓∀↑
4 0 1 8 9 31 0.41 5.10 39.39 22.30 86.27
5 0 3 10 13 30 1.06 9.35 28.69 32.72 88.62
6 0 4 34 26 42 2.06 11.66 69.01 57.20 82.87
7 0 8 32 28 41 2.34 20.45 63.34 60.06 82.87
8 0 12 45 38 41 6.81 32.08 79.72 78.55 90.47

Table 3. Benchmarks 3: Nested Counterfactuals.

6 Discussion and Conclusion

We presented a new QBF solver, qpro, which significantly differs
from previous approaches by its ability to process arbitrary QBFs in-
stead of QBFs in PCNF. We sketched generalizations of the DPLL
procedure necessary to handle arbitrary QBFs and briefly discussed
implemented performance-improving techniques like different forms
of dependency-directed backtracking. Future work calls for an anal-
ysis how the different pruning techniques influence performance.

In practical applications, QBF solvers can be used as a black box
in reasoning systems to solve encodings of the problems considered.
Usually such encodings are not in PCNF and, as we have shown in
our experiments, avoiding the additional translation into PCNF may
result in much better performance. In what follows, we briefly dis-
cuss two main observations from our experiments.
• The more information on quantifier dependencies is lost due to
prenexing, the more competitive qpro turns out to be. Table 3 con-
tains those benchmarks where this effect is most apparent. Although
we compare qpro here against the PCNF solvers together with their
best suited strategy, qpro significantly outperforms all other solvers.
• Table 2 presents results for two different encodings of the same
problem where T is an explicit optimization of S. These results show
that qpro is less depending on the chosen encoding, whereas the
performance of PCNF solvers differs much more. In fact, qpro per-
forms better on the unoptimized encoding S, in the case the “wrong”
prenexing strategy “↑” is used for the PCNF solvers.

Finally, we briefly discuss related systems.
• There are a few further solvers, namely QUBOS [2], boole6, and
zqsat [16], which also allow arbitrary QBFs as input, but rely on dif-
ferent techniques. QUBOS simplifies the QBF and then constructs an
equivalent propositional formula which is evaluated by SAT solvers,
whereas boole is based on binary decision diagrams (BDDs). Thus
both need exponential space in the worst case. We have included
boole in our pre-tests, but it was not competitive at the benchmarks.
We also neglected QUBOS, because it yielded wrong results on some
problems. Finally, zqsat implements DPLL using zero-compressed
BDDs. The comparison to zqsat is subject to future work.
• In [18], an extension to QuBE was suggested, where the input is
a QBF in PCNF together with information on quantifier dependen-
cies. Contrary to this approach, ours avoids the bounded renaming of

6 http://www.cs.cmu.edu/˜modelcheck/bdd.html.

variables during the prefix construction together with the necessity to
transform the matrix into CNF. This enables us to dynamically (i) ap-
ply miniscoping and (ii) recognize independent subproblems which
can be solved in parallel. Nonetheless, the results in [18] lead to ob-
servations in the same direction as ours. Future work will include a
detailed comparison of the two approaches, which will be done as
soon as the modified QuBE system is available.
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