
cc>: A Correspondence-Checking Tool for Logic
Programs under the Answer-Set Semantics

Johannes Oetsch1, Martina Seidl2, Hans Tompits1, and Stefan Woltran1

1 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,tompits,stefan}@kr.tuwien.ac.at
2 Institut für Softwaretechnik 188/3, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Abstract. In recent work, a general framework for specifying correspondences
between logic programs under the answer-set semantics has been defined. The
framework captures different notions of equivalence, including well-known ones
like ordinary, strong, and uniform equivalence, as well as refined ones based on
the projection of answer sets where not all parts of an answer set are of relevance.
In this paper, we describe an implementation to verify program correspondences
in this general framework. The system, called cc>, relies on linear-time con-
structible reductions to quantified propositional logic and uses extant solvers for
the latter language as back-end inference engines.

1 General Information

To support engineering tasks in answer-set programming (ASP) [4], an important is-
sue is to determine the equivalence of different problem encodings, given by two logic
programs. Various notions of equivalence between programs have been studied in the
literature [7, 2, 11] including the recently proposed framework by Eiter et al. [3], which
subsumes most of the previously introduced notions. Within this framework, correspon-
dence between two programs, P and Q, holds iff the answer sets of P ∪ R and Q ∪ R
satisfy certain specified criteria, for any program R in a specified class, called the con-
text. This kind of program correspondence includes the well-known notions of ordinary
equivalence, strong equivalence [7], uniform equivalence [2], relativised variants of the
latter two [11], as well as the practicably important case of program comparison under
projected answer sets as special instances. In the latter setting, not a whole answer set of
a program is of interest, but only its intersection on a subset of all letters, corresponding
to a removal of auxiliary letters in computation.

In this paper, we briefly describe the main features of the system cc> (short for
“correspondence-checking tool”), which implements correspondence problems in the
framework of Eiter et al. [3]. Compared to similar tools which are restricted to the
notions of strong and ordinary equivalence [1, 9], cc> supports the user with more fine-
grained equivalence notions, allowing practical comparisons useful for debugging and
modular programming. Further information about cc> is also available on the Web at

http://www.kr.tuwien.ac.at/research/ccT/.

2 System Specifics

Theoretical Background. We are concerned here with disjunctive logic programs with
default negation over a universe U of propositional atoms under the answer-set seman-
tics [5]. Given a program P , we denote by AS(P) the collection of its answer sets;
moreover, PA denotes the class of all programs given over a set A ⊆ U of atoms.
Two programs, P and Q, are ordinarily equivalent iff AS(P) = AS(Q). P and Q
are strongly equivalent [7] iff, for any program R, AS(P ∪ R) = AS(Q ∪ R). In
abstracting from these equivalence notions, Eiter et al. [3] introduced the notion of a
correspondence problem which allows to specify, on the one hand, a context, i.e., a
class of programs used to be added to the programs under consideration and, on the
other hand, the relation that has to hold between the collections of answer sets of the
extended programs. Following Eiter et al. [3], we focus here on correspondence prob-
lems where the context is parametrised in terms of alphabets and the comparison re-
lation is a projection of the standard subset or set-equality relation. In formal terms,
a correspondence problem, Π , (over U) is a quadruple of form (P,Q,PA, ρB), where
P,Q ∈ PU , A,B ⊆ U are sets of atoms, and ρB is either ⊆B or =B , which are
defined as follows: for any sets S, S′, S ⊆B S′ iff S|B ⊆ S′|B , and S =B S′ iff
S|B = S′|B , where S|B = {I ∩ B | I ∈ S}. We say that Π holds iff, for all R ∈ PA,
(AS(P ∪ R),AS(Q ∪ R)) ∈ ρB . We call Π an equivalence problem if ρB is given
by =B , and an inclusion problem if ρB is given by ⊆B , for some B ⊆ U . Note that
(P,Q,PA,=B) holds iff (P,Q,PA,⊆B) and (Q,P,PA,⊆B) jointly hold.

Example 1. Consider the following two programs which both express the selection of
exactly one of the atoms a, b (an atom can only be selected if it can be derived together
with the context):

P = { sel(b)← b,not out(b); Q = { fail ← sel(a),not a,not fail ;
sel(a)← a,not out(a); fail ← sel(b),not b,not fail ;
out(a) ∨ out(b)← a, b }. sel(a) ∨ sel(b)← a;

sel(a) ∨ sel(b)← b }.

Both programs use “local” atoms, out(·) and fail , respectively, which are expected
not to appear in the context. We thus may consider Π = (P,Q,PA,=B) as a suit-
able equivalence problem, specifying A = {a, b} (or, more generally, taking A as
any set of atoms not containing sel(a), sel(b), out(a), out(b), and fail) and B =
{sel(a), sel(b)}. It is a straightforward matter to check that Π , defined in this way,
holds. ut

Implementation Methodology. The overall approach of cc> is (i) to reduce correspon-
dence problems, as introduced above, to the satisfiability problem of quantified propo-
sitional logic, an extension of classical propositional logic characterised by the condi-
tion that its sentences, usually referred to as quantified Boolean formulas (QBFs), are
permitted to contain quantifications over atomic formulas, and (ii) to use extant QBF
solvers as back-end inference engines for evaluating the resulting QBFs. The theoreti-
cal basis of this approach has been developed in previous work [10], where reductions
constructible in linear time and space are provided. The motivation for adopting such a

reduction approach is due to the fact that correspondence checking is hard [3], lying on
the fourth level of the polynomial hierarchy (thus, QBFs are a suitable target formal-
ism), and since several practicably efficient QBF solvers are available (see, e.g., [6] for
an overview about different QBF solvers).

Concerning the translation step, cc> implements the necessary reductions [10] (to-
gether with some simplifications, see [8] for details) from a given inclusion or equiv-
alence problem Π to a corresponding QBF Φ such that Φ is valid iff Π holds. The
reductions are designed along so-called spoilers [3]: The existence of a spoiler for a
given inclusion problem Π indicates that Π does not hold; equivalence tests are en-
coded by two inclusion tests. In general, the complexity of correspondence checking
is ΠP

4 -complete, leading to QBFs matching this intrinsic complexity, i.e., they possess
up to three quantifier alternations. However, if the specified problem falls into an easier
class, cc> provides an encoding in terms of QBFs which are less involving.

For the evaluation of the resultant QBFs, the user has to employ an off-the-shelf
QBF solver. Several such tools are nowadays available [6], but most of them require
the input to be in a specific normal form. In such a case, the generated QBFs have to
be processed according to the input syntax of the considered solver. Details about the
normal-form translation employed by cc> can be found elsewhere [8].

Applying the System. The system takes as input two programs, P and Q, and two sets
of atoms, A and B, where A specifies the alphabet of the context and B specifies the
set of atoms used for the projection in the chosen correspondence relation. The user
can select (via command-line options) between two kinds of reductions (see [10] for
details), a more naive one or an optimised one, which is also the default option. As
well, it can be selected whether the programs are compared with respect to an inclusion
or an equivalence problem. The syntax of the programs is the basic DLV syntax.1

Let us consider the two programs P and Q from Example 1, and suppose they
are stored in files P.dl and Q.dl, respectively. If we want to use cc> for checking
whether P is equivalent to Q with respect to the projection to the output predicate sel(·),
and restricting the context to programs over {a, b}, then we need to specify

– the context set, stored in file A, containing the string “(a, b)”, and
– the projection set stored in file B, containing the string “(sel(a), sel(b))”.

By default, cc>writes the resulting QBF to the standard-output device. The QBF can
then be processed further by QBF solvers. The output can also be piped, e.g., directly
to the BDD-based QBF solver boole.2 Choosing the latter way, invoking cc> on our
example thus looks as follows:

ccT -e P.dl Q.dl A B | boole.

In this case, the output (from boole) is 0 or 1 as answer for the input correspondence
problem. In our example, the correspondence holds and the output is therefore 1.

We developed cc> entirely in ANSI C; hence, it is highly portable. The parser for
the input data was written using LEX and YACC. The complete package in its current
version consists of more than 2000 lines of code.

1 See http://www.dlvsystem.com/ for details about DLV.
2 See http://www.cs.cmu.edu/∼modelcheck/bdd.html.

3 Discussion

In this paper, we presented an implementation for advanced program comparisons in
answer-set programming via encodings into quantified propositional logic. In other
work [8], we reported about initial experimental evaluations of our tool, also contain-
ing a comparison between cc> and the system DLPEQ [9], which computes ordinary
equivalence by means of ASP solvers. We furthermore note that, for the special case of
checking strong equivalence, our system uses reductions to SAT, i.e., to the satisfiabil-
ity problem of (ordinary) propositional logic. This is basically done in the same way as
in the special-purpose strong-equivalence checker SELP [1]. Thus, our system can be
understood as a generalisation of that approach. Compared to these other systems, cc>,
however, processes a much broader range of correspondence problems, which are also
computationally more involving.

We consider our system as a starting point for a tool box to support modular pro-
gramming and offline program simplification. Future work includes an extension of
the system to other classes of logic programs (like, e.g., nested logic programs) and to
further correspondence notions (in particular, ones based on uniform equivalence [2]).

Acknowledgements. This work was partially supported by the Austrian Science Fund
(FWF) under grant P18019; the second author was also supported by the Austrian Fed-
eral Ministry of Transport, Innovation, and Technology (BMVIT) and by the Austrian
Research Promotion Agency (FFG) under grant FIT-IT-810806.

References

1. Y. Chen, F. Lin, and L. Li. SELP - A System for Studying Strong Equivalence between Logic
Programs. In Proc. LPNMR’05, volume 3662 of LNCS, pages 442–446. Springer, 2005.

2. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. In Proc. ICLP’03, number 2916 in LNCS, pages 224–238. Springer, 2003.

3. T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer-Set Program-
ming. In Proc. IJCAI’05, pages 97–102, 2005.

4. M. Gelfond and N. Leone. Logic Programming and Knowledge Representation - The A-
Prolog Perspective. Artificial Intelligence, 138(1-2):3–38, 2002.

5. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

6. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Compar-
ative Evaluation. In Proc. SAT’04, volume 3542 of LNCS, pages 376–392. Springer, 2005.

7. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

8. J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. A Tool for Advanced Correspondence
Checking in Answer-Set Programming. In Proc. NMR’06, pages 20–29, 2006.

9. E. Oikarinen and T. Janhunen. Verifying the Equivalence of Logic Programs in the Disjunc-
tive Case. In Proc. LPNMR’04, volume 2923 of LNCS, pages 180–193. Springer, 2004.

10. H. Tompits and S. Woltran. Towards Implementations for Advanced Equivalence Checking
in Answer-Set Programming. In Proc. ICLP’05, volume 3668 of LNCS, pages 189–203.
Springer, 2005.

11. S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer-Set Pro-
gramming. In Proc. JELIA’04, volume 3229 of LNCS, pages 161–173. Springer, 2004.

