
cc>: A Tool for Checking Advanced Correspondence
Problems in Answer-Set Programming?

Johannes Oetsch1, Martina Seidl2, Hans Tompits1, and Stefan Woltran1

1 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,tompits,stefan}@kr.tuwien.ac.at
2 Institut für Softwaretechnik 188/3, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Abstract. In previous work, a general framework for specifying correspond-
ences between logic programs under the answer-set semantics has been defined.
The framework allows to define different notions of equivalence, including well-
known notions like strong equivalence as well as refined ones based on the projec-
tion of answer sets, where not all parts of an answer set are of relevance (like, e.g.,
removal of auxiliary letters). In the general case, deciding the correspondence of
two programs lies on the fourth level of the polynomial hierarchy and therefore
this task can (presumably) not be efficiently reduced to answer-set programming.
In this paper, we describe an implementation to verify program correspondences
in this general framework. The system, called cc>, relies on linear-time con-
structible reductions to quantified propositional logic using extant solvers for the
latter language as back-end inference engines. We provide some preliminary per-
formance evaluation which shed light on some crucial design issues.

1 Introduction

Nonmonotonic logic programs under the answer-set semantics [13], with which we are
dealing with in this paper, represent the canonical and, due to the availability of efficient
answer-set solvers, arguably most widely used approach to answer-set programming
(ASP). The latter paradigm is based on the idea that problems are encoded in terms
of theories such that the solutions of a given problem are determined by the models
(“answer sets”) of the corresponding theory. Logic programming under the answer-
set semantics has become an important host for solving many AI problems, including
planning, diagnosis, and inheritance reasoning (see [12] for an overview).

To support engineering tasks of ASP solutions, an important issue is to determine
the equivalence of different problem encodings. To this end, various notions of equiva-
lence between programs under the answer-set semantics have been studied in the liter-
ature, including the recently proposed framework by Eiter et al. [10], which subsumes
? This work was partially supported by the Austrian Science Fund (FWF) under grant P18019;

the second author was also supported by the Austrian Federal Ministry of Transport, Innova-
tion, and Technology (BMVIT) and the Austrian Research Promotion Agency (FFG) under
grant FIT-IT-810806.

most of the previously introduced notions. Within this framework, correspondence be-
tween two programs, P and Q, holds iff the answer sets of P ∪ R and Q ∪ R satisfy
certain criteria, for any programR in a specified class, called the context. We shall focus
here on correspondence problems where both the context and the comparison between
answer sets are determined in terms of alphabets. This kind of program correspondence
includes, as special instances, the well-known notions of strong equivalence [19], uni-
form equivalence [11], relativised variants thereof [26], as well as the practicably im-
portant case of program comparison under projected answer sets. In the last setting, not
a whole answer set of a program is of interest, but only its intersection on a subset of
all letters; this includes, in particular, removal of auxiliary letters.

For illustration, consider the following two programs which both express the selec-
tion of exactly one of the atoms a, b. An atom can only be selected if it can be derived
together with the context:

P = { sel(b)← b,not out(b); Q = { fail ← sel(a),not a,not fail ;
sel(a)← a,not out(a); fail ← sel(b),not b,not fail ;
out(a) ∨ out(b)← a, b }. sel(a) ∨ sel(b)← a;

sel(a) ∨ sel(b)← b }.

Both programs use “local” atoms, out(·) and fail , respectively, which are expected
not to appear in the context. In order to compare the programs, we could specify an
alphabet, A, for the context, for instance A = {a, b}, or, more generally, any set A
of atoms not containing the atoms sel(a), sel(b), out(a), out(b), and fail , and check
whether, for each addition of a context program over A, the answer sets correspond
when taking only atoms from B = {sel(a), sel(b)} into account.

In this paper, we report about an implementation of such correspondence problems
together with some initial experimental results. The overall approach of the system,
which we call cc> (“correspondence-checking tool”), is to reduce the problem of cor-
respondence checking to the satisfiability problem of quantified propositional logic, an
extension of classical propositional logic characterised by the condition that its sen-
tences, usually referred to as quantified Boolean formulas (QBFs), are permitted to
contain quantifications over atomic formulas.

The motivation to use such an approach is twofold. First, complexity results [10]
show that correspondence checking within this framework is hard, lying on the fourth
level of the polynomial hierarchy. This indicates that implementations of such checks
cannot be realised in a straightforward manner using ASP systems themselves. In turn,
it is well known that decision problems from the polynomial hierarchy can be effi-
ciently represented in terms of QBFs in such a way that determining the validity of
the resultant QBFs is not computationally harder than checking the original problem.
In previous work [24], such translations from correspondence checking to QBFs have
been developed; moreover, they are constructible in linear time. Second, various prac-
ticably efficient solvers for quantified propositional logic are currently available (see,
e.g., [17] for an overview). Hence, such tools are used as back-end inference engines
in our system to verify the correspondence problems under consideration. In fact, re-
duction methods to QBFs have already been successfully applied in diverse fields like
nonmonotonic reasoning [6, 5], paraconsistent reasoning [3, 1], and planning [23].

Previous systems implementing different forms of equivalence, being special cases
of correspondence notions in the framework of Eiter et al. [10], also based on a re-
duction approach, are SELP [4] and DLPEQ [21]. Concerning SELP, here the problem
of checking strong equivalence is reduced to propositional logic, making use of SAT
solvers as back-end inference engines. Our system generalises SELP in the sense that
cc> handles a correspondence problem which coincides with a test for strong equiva-
lence by the same reduction as used in SELP. The system DLPEQ, on the other hand,
is capable of comparing disjunctive logic programs under ordinary equivalence. Here,
the reduction of a correspondence problem results in further logic programs such that
the latter have no answer set iff the encoded problem holds. Hence, this system uses
answer-set solvers themselves in order to check for equivalence.

The methodologies of both of the above systems have in common that their range
of applicability is restricted to very special forms of program correspondences, while
cc> provides a wide range of more fine-grained equivalence notions, allowing practical
comparisons useful for debugging and modular programming.

The outline of the paper is as follows. We start with recapitulating the basic facts
about logic programs under the answer-set semantics and quantified propositional logic.
In describing how to implement correspondence problems, we first give a detailed re-
view of the encodings, followed by a discussion how these encodings (and thus the
present system) behave in the case the specified correspondence coincides with special
equivalence notions. Then, we address some technical questions which arise when ap-
plying the encodings to QBF solvers which require its input to be in a certain normal
form. Finally, we present the concrete system cc> and illustrate its usage. The penulti-
mate section is devoted to experimental evaluation and comparisons. We conclude with
some final remarks and pointers to future work.

2 Preliminaries

Throughout the paper, we use the following notation: For an interpretation I (i.e., a set
of atoms) and a set S of interpretations, we write S|I = {Y ∩ I | Y ∈ S}. For a
singleton set S = {Y }, we write Y |I instead of S|I , whenever convenient.

2.1 Logic Programs

We are concerned with propositional disjunctive logic programs (DLPs), which are
finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n≥m≥ l≥ 0, where all ai are propositional atoms from some fixed universe U and
not denotes default negation. If all atoms occurring in a program P are from a given
set A ⊆ U of atoms, we say that P is a program over A. The set of all programs over A
is denoted by PA.

Following Gelfond and Lifschitz [13], an interpretation I is an answer set of a
program P iff it is a minimal model of the reduct P I , resulting from P by (i) deleting

all rules containing some default negated atom not a such that a ∈ I , and (ii) deleting
all default negated atoms in the remaining rules. The collection of all answer sets of a
program P is denoted by AS(P).

In order to semantically compare programs, different notions of equivalence have
been introduced in the context of the answer-set semantics. Besides ordinary equiv-
alence between programs, which checks whether two programs have the same an-
swer sets, the more restrictive notions of strong equivalence [19] and uniform equiv-
alence [11] have been introduced. Two programs, P and Q, are strongly equivalent iff
AS(P ∪ R) = AS(Q ∪ R), for any program R, and they are uniformly equivalent iff
AS(P ∪ R) = AS(Q ∪ R), for any set R of facts, i.e., rules of form a ←, for some
atom a. Also, relativised equivalence notions, taking the alphabet of the extension set
R into account, have been defined [26].

In abstracting from these notions, Eiter et al. [10] introduced a general framework
for specifying differing notions of program correspondence. In this framework, one
parameterises, on the one hand, the context, i.e., the class of programs used to be added
to the programs under consideration, and, on the other hand, the relation that has to
hold between the collection of answer sets of the extended programs. More formally,
the following definition has been introduced:

Definition 1. A correspondence frame, F , is a triple (U , C, ρ), where U is a set of
atoms, called the universe of F , C ⊆ PU , called the context of F , and ρ ⊆ 22U

× 22U

.
Two programs P,Q ∈ PU are called F-corresponding, in symbols P 'F Q, iff, for

all R ∈ C, (AS(P ∪R),AS(Q ∪R)) ∈ ρ.

Clearly, the equivalence notions mentioned above are special cases of F-corres-
pondence. Indeed, for any universe U and any A ⊆ U , strong equivalence relative to
A coincides with (U ,PA,=)-correspondence, and ordinary equivalence coincides with
(U , {∅},=)-correspondence.

Following Eiter et al. [10], we are concerned with correspondence frames of form
(U ,PA,⊆B) and (U ,PA,=B), where A,B ⊆ U are sets of atoms and ⊆B and =B

are projections of the standard subset and set-equality relation, respectively, defined as
follows: for any set S,S ′ of interpretations, S ⊆B S

′ iff S|B ⊆ S ′|B , and S =B S
′ iff

S|B = S ′|B .
A correspondence problem, Π , (over U) is a quadruple (P,Q, C, ρ), where P,Q ∈

PU and (U , C, ρ) is a correspondence frame. We say that Π holds iff P '(U,C,ρ) Q
holds. For a correspondence problem Π = (P,Q, C, ρ) over U , we usually leave U
implicit, assuming that it consists of all atoms occurring in P , Q, and C. We call Π an
equivalence problem if ρ is given by =B , and an inclusion problem if ρ is given by⊆B ,
for some B ⊆ U . Note that (P,Q, C,=B) holds iff (P,Q, C,⊆B) and (Q,P, C,⊆B)
jointly hold.

The following proposition summarises the complexity landscape within this frame-
work [10, 22, 26].

Proposition 1. Given programs P and Q, sets of atoms A and B, and ρ ∈ {⊆B ,=B},
deciding whether a correspondence problem (P,Q,PA, ρ) holds is:

1. ΠP
4 -complete, in general;

2. ΠP
3 -complete, for A = ∅;

3. ΠP
2 -complete, for B = U; and

4. coNP-complete for A = U .

While Case 1 provides the result in the general setting, for the other cases we have the
following: Case 2 amounts to ordinary equivalence with projection, i.e., the answer sets
of two programs relative to a specified set B of atoms are compared; Case 3 amounts
to strong equivalence relative to A and includes, as a special case (viz. for A = ∅),
ordinary equivalence; finally, Case 4 includes strong equivalence (for B = U) as well
as strong equivalence with projection.

The ΠP
4 -hardness result shows that, in general, checking the correspondence of two

programs cannot (presumably) be efficiently encoded in terms of ASP, which has its
basic reasoning tasks located at the second level of the polynomial hierarchy (i.e., they
are contained in ΣP

2 or ΠP
2). However, correspondence checking can be efficiently en-

coded in terms of quantified propositional logic, whose basic concepts we recapitulate
next.

2.2 Quantified Propositional Logic

Quantified propositional logic is an extension of classical propositional logic in which
formulas are permitted to contain quantifications over propositional variables. In partic-
ular, this language contains, for any atom p, unary operators of form ∀p and ∃p, called
universal and existential quantifiers, respectively, where ∃p is defined as ¬∀p¬. Formu-
las of this language are also called quantified Boolean formulas (QBFs), and we denote
them by Greek upper-case letters.

Given a QBF QpΨ , for Q ∈ {∃,∀}, we call Ψ the scope of Qp. An occurrence of
an atom p is free in a QBF Φ if it does not occur in the scope of a quantifier Qp in
Φ. In what follows, we tacitly assume that every subformula QpΦ of a QBF contains
a free occurrence of p in Φ, and for two different subformulas QpΦ, Qq Ψ of a QBF,
we require p 6= q. Moreover, given a finite set P of atoms, QP Ψ stands for any QBF
Qp1Qp2 . . .QpnΨ such that the variables p1, . . . , pn are pairwise distinct and P =
{p1, . . . , pn}. Finally, for an atom p (resp., a set P of atoms) and a set I of atoms,Φ[p/I]
(resp., Φ[P/I]) denotes the QBF resulting from Φ by replacing each free occurrence of
p (resp., each p ∈ P) in Φ by > if p ∈ I and by ⊥ otherwise.

For an interpretation I and a QBF Φ, the relation I |= Φ is inductively defined as in
classical propositional logic, whereby universal quantifiers are evaluated as follows:

I |= ∀p Φ iff I |= Φ[p/{p}] and I |= Φ[p/∅].

A QBF Φ is true under I iff I |= Φ, otherwise Φ is false under I . A QBF is satisfi-
able iff it is true under at least one interpretation. A QBF is valid iff it is true under any
interpretation. Note that a closed QBF, i.e., a QBF without free variable occurrences, is
either true under any interpretation or false under any interpretation.

A QBF Φ is said to be in prenex normal form (PNF) iff it is closed and of the form

QnPn . . .Q1P1 φ, (2)

where n ≥ 0, φ is a propositional formula, Qi ∈ {∃,∀} such that Qi 6= Qi+1 for
1 ≤ i ≤ n − 1, (P1, . . . , Pn) is a partition of the propositional variables occurring in
φ, and Pi 6= ∅, for each 1 ≤ i ≤ n. We say that Φ is in prenex conjunctive normal
form (PCNF) iff Φ is of the form (2) and φ is in conjunctive normal form. Furthermore,
a QBF of form (2) is also referred to as an (n,Qn)-QBF. Any closed QBF Φ is easily
transformed into an equivalent QBF in prenex normal form such that each quantifier
occurrence from the original QBF corresponds to a quantifier occurrence in the prenex
normal form. Let us call such a QBF a prenex normal form of Φ. In general, there
are different ways to obtain an equivalent prenex QBF (cf. [7] for more details on this
issue). The following property is essential:

Proposition 2. For every k ≥ 0, deciding the truth of a given (k,∃)-QBF (resp., (k,∀)-
QBF) is ΣP

k -complete (resp., ΠP
k -complete).

Hence, any decision problem D in ΣP
k (resp., ΠP

k) can be mapped in polynomial
time to a (k,∃)-QBF (resp., (k,∀)-QBF) Φ such that D holds iff Φ is valid. In particu-
lar, any correspondence problem (P,Q,PA, ρ), for ρ ∈ {⊆B ,=B}, can be reduced in
polynomial time to a (4,∀)-QBF. Our implemented tool, described next, relies on two
such mappings, which are actually constructible in linear space and time.

3 Computing Correspondence Problems

We now describe the system cc>, which allows to verify the correspondence of two
programs. It relies on efficient reductions from correspondence problems to QBFs as
developed by Tompits and Woltran [24]. These encodings are presented in the first sub-
section. Then, we discuss how the encodings behave if the specified correspondence
problem coincides with special forms of inclusion or equivalence problems, viz. those
restricted cases discussed in Proposition 1. Afterwards, we give details concerning the
transformation of the resultant QBFs into PCNF, which is necessary because most ex-
tant QBF solvers rely on input of this form. Finally, we give some details concerning
the general syntax and invocation of the cc> tool.

3.1 Basic Encodings

Following Tompits and Woltran [24], we consider two different reductions from inclu-
sion problems to QBFs, S[·] and T[·], where T[·] can be seen as an explicit optimisation
of S[·]. Recall that equivalence problems can be decided by the composition of two
inclusion problems. Thus, a composed encoding for equivalence problems is easily ob-
tained via a conjunction of two particular instantiations of S[·] or T[·].

For our encodings, we use the following building blocks. The idea hereby is to use
sets of globally new atoms in order to refer to different assignments of the atoms from
the compared programs within a single formula. More formally, given an indexed set
V of atoms, we assume (pairwise) disjoint copies Vi = {vi | v ∈ V }, for every i ≥ 1.
Furthermore, we introduce the following abbreviations:

1. (Vi ≤ Vj) :=
∧

v∈V (vi → vj);

2. (Vi < Vj) := (Vi ≤ Vj) ∧ ¬(Vj ≤ Vi); and
3. (Vi = Vj) := (Vi ≤ Vj) ∧ (Vj ≤ Vi).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
Roughly speaking, these three “operators” allow us to compare different subsets

of atoms from a common set, V , under subset inclusion, proper-subset inclusion, and
equality, respectively. Note that the comparison tests are realised with respect to a
single interpretation. As an example, consider V = {v, w, u} and an interpretation
I = {v1, v2, w2}, implicitly representing sets X = {v} (via the relation I|V1

= {v1})
and Y = {v, w} (via the relation I|V2

= {v2, w2}). Then, we have that (V1 ≤ V2) as
well as (V1 < V2) are true under I which matches the observation that X is indeed a
proper subset of Y , while (V1 = V2) is false under I reflecting the fact that X 6= Y .

In accordance to this renaming of atoms, we use subscripts as a general renaming
schema for formulas and rules. That is, for each i ≥ 1, αi expresses the result of
replacing each occurrence of an atom p in α by pi, where α is any formula or rule.
Furthermore, for a rule r of form (1), we define H(r) = a1 ∨ · · · ∨ al, B+(r) =
al+1 ∧ · · · ∧ am, and B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty disjunctions
with ⊥ and empty conjunctions with >. Finally, for a program P , we define

Pi,j =
∧

r∈P

(

(B+(ri) ∧B
−(rj))→ H(ri)

)

.

Formally, we have the following relation: Let P be a program over atoms V , I an
interpretation, and X,Y ⊆ V such that, for some i, j, I|Vi

= Xi and I|Vj
= Yj . Then,

X |= P Y iff I |= Pi,j . Hence, we are able to characterise models of P (in case that
i = j) as well as models of certain reducts of P (in case that i 6= j).

Having defined these building blocks, we proceed with the first encoding.

Definition 2. Let P,Q be programs over V , let A,B ⊆ V , and let Π = (P, Q, PA,
⊆B) be an inclusion problem. Then,

S[Π] := ¬∃V1

(

P1,1 ∧ S1(P,A) ∧ ∀V3

(

S2(Q,A,B)→ S3(P,Q,A)
)

)

,where

S1(P,A) := ∀V2

(

((A2 = A1) ∧ (V2 < V1))→¬P2,1

)

,

S2(Q,A,B) :=
(

(A ∪B)3 = (A ∪B)1
)

∧Q3,3, and
S3(P,Q,A) := ∃V4

(

(V4 < V3) ∧Q4,3 ∧
(

(A4 < A1)→

∀V5(((A5 =A4)∧(V5 ≤ V1))→¬P5,1)
))

.

LetΦ be the scope of ∃V1. This formula encodes the conditions for deciding whether
a so-called partial spoiler [10] for the inclusion problem Π exists. Such spoilers test
certain relations on the reducts of the two programs involved, in order to avoid an ex-
plicit enumeration of all R ∈ PA for deciding whether Π holds. In fact, a spoiler for
Π exists iff Π does not hold. Accordingly, Φ is unsatisfiable iff Π holds, and thus the
closed QBF S[Π] = ¬∃V1Φ is valid iff Π holds.

In more detail, given a correspondence problemΠ and its encoding S[Π] = ¬∃V1Φ,
the general task of the QBF Φ is to test, for an answer-set candidate X of P , that no
Y with Y |B = X|B becomes an answer set of Q under some implicitly considered

extension (in fact, it is sufficient to check only potential candidates Y of the form
Y |A∪B = X|A∪B). Now, the subformula P1,1 ∧ S1(P,A) tests whether X is such
a candidate for P , with X being represented by V1. In the remaining part of the en-
coding, S2(Q,A,B) returns as its models those sets Y (represented by V3) which are
potential candidates for being answer sets of Q. These candidates are now checked to
be non-minimal and whether there is a further model (represented by V4) of the reduct
of Q with respect to Y surviving an extension of Q, for which X turns into an answer
set of the extension of P .

In what follows, we review a more compact encoding which, in particular, reduces
the number of universal quantifications. The idea is to save on the fixed assignments, as,
e.g., in S2(Q,A,B), where we have (A∪B)3 = (A∪B)1. That is, in S2(Q,A,B), we
implicitly ignore all assignments to V3 where atoms from A or B have different truth
values as the corresponding assignments to V1. Therefore, it makes sense to consider
only atoms from V3 \ (A3 ∪B3) and using A1 ∪B1 instead of A3 ∪B3 in Q3,3.

This calls for a more subtle renaming schema for programs, however. Let V be a set
of indexed atoms, and let r be a rule. Then, rVi,k results from r by replacing each atom
x in r by xi, providing xi ∈ V , and by xk otherwise. For a program P , we define

PV
i,j,k :=

∧

r∈P

(

(B+(rVi,k) ∧B−(rVj,k))→ H(rVi,k)
)

.

Moreover, for every i ≥ 1, every set V of atoms, and every set C, V C
i := (V \ C)i.

Definition 3. Let P,Q be programs over V and A,B ⊆ V . Furthermore, let Π =
(P,Q,PA,⊆B) be an inclusion problem and V = V1 ∪ V

A
2 ∪ V

A∪B
3 ∪ V4 ∪ V

A
5 . Then,

T[Π] := ¬∃V1

(

P1,1 ∧ T1(P,A,V) ∧ ∀V A∪B
3

(

QV
3,3,1 → T3(P,Q,A,V)

)

)

,where

T1(P,A,V) := ∀V A
2

(

(V A
2 < V A

1)→ ¬PV
2,1,1

)

and
T3(P,Q,A,V) := ∃V4

((

V4 < ((A∪B)1 ∪ V
A∪B
3)

)

∧QV
4,3,1 ∧

(

(A4 < A1)→

∀V A
5 ((V A

5 ≤ V
A
1)→ ¬PV

5,1,4)
))

.

Note that the subformula V4 < ((A∪B)1 ∪ V
A∪B
3) in T3(P,Q, A,V) denotes

((

(A ∪B)4 ≤ (A ∪B)1
)

∧ (V A∪B
4 ≤ V A∪B

3)
)

∧

¬
((

(A ∪B)1 ≤ (A ∪B)4
)

∧ (V A∪B
3 ≤ V A∪B

4)
)

.

Also note that, compared to our first encoding S[Π], we do not have a pendant to sub-
formula S2 here, which reduces simply to QV

3,3,1 due to the new renaming schema.

Proposition 3 ([24]). For any inclusion problemΠ , the following statements are equiv-
alent: (i) Π holds; (ii) S[Π] is valid; and (iii) T[Π] is valid.

In what follows, let, for every equivalence problem Π = (P, Q, PA, =B), Π ′ and
Π ′′ denote the associated inclusion problems (P, Q, PA, ⊆B) and (Q, P, PA, ⊆B),
respectively.

Corollary 1. Let Π be an equivalence problem. The following statements are equiva-
lent: (i) Π holds; (ii) S[Π ′]∧ S[Π ′′] is valid; and (iii) T[Π ′]∧ T[Π ′′] is valid.

3.2 Special Cases

We now analyse how our encodings behave in certain instances of the equivalence
framework which are located at lower levels of the polynomial hierarchy (cf. Propo-
sition 1). We point out that the following simplifications are correspondingly imple-
mented within our system.

In the case of strong equivalence [19], i.e., problems of form Π = (P, Q, PA,
=A) with A = U , the encodings T[Π ′] and T[Π ′′] can be drastically simplified, since
V A

2 = V A
3 = V A

5 = ∅. In particular, T[Π ′] is equivalent to

¬∃V1

(

P1,1 ∧
(

Q1,1 → ∃V4

(

(V4 < V1) ∧Q4,1 ∧ ¬P4,1

))

)

.

Now, the composed encoding for strong equivalence, i.e., the QBF T[Π ′] ∧ T[Π ′′],
amounts to a single propositional unsatisfiability test, witnessing the coNP-complete-
ness complexity for checking strong equivalence [22, 20]. This holds also for problems
of the form (P,Q,PU ,=B) with arbitrary B. One can show that similar reductions
given by Pearce et al. [22] and Lin [20] for testing strong equivalence in terms of propo-
sitional logic are simple variants thereof. Indeed, the methodology of the tool SELP [4]
is basically mirrored in our approach, in case the parameterisation of the given problem
corresponds to a test for strong equivalence.

Strong equivalence relative to a set A of atoms [26], i.e., problems of form (P,
Q, PA, =B) with B = U , also yields simplifications within T[Π ′] and T[Π ′′], since
V A∪B

3 = ∅. In fact, T[Π ′] can be rewritten to

¬∃V1

(

P1,1 ∧ ∀V
A
2

(

(V A
2 < V A

1)→ ¬PV
2,1,1

)

∧
(

Q1,1 → ∃V4

((

V4 < V1

)

∧Q4,1∧
(

(A4 < A1)→ ∀V
A
5 ((V A

5 ≤ V
A
1)→ ¬PV

5,1,4)
))))

.

When putting this QBF into prenex normal form (see below), it turns out that the result-
ing QBF amounts to a (2,∀)-QBF, again reflecting the complexity of the encoded task.
Note that for equivalence problems (P,Q,PA,=B) with A∪B = U we also have that
V A∪B

3 = ∅. Thus, the same simplifications also apply for this special case.
The case of ordinary equivalence, i.e., considering problems of form Π = (P, Q,

PA, =) with A = ∅, is, indeed, a special case of relativised strong equivalence. As an
additional optimisation we can drop the subformula

(A4 < A1)→ ∀V
A
5

(

(V A
5 ≤ V

A
1)→ ¬PV

5,1,4

)

(3)

from part T3 of T[Π ′]. This is because A = ∅, and therefore

(A4 < A1) =
∧

a∈A

(

a4 → a1

)

∧ ¬
∧

a∈A

(

a1 → a4

)

reduces to > ∧ ¬>, and thus to ⊥. Hence, the validity of the implication (3) follows.
However, this does not affect the number of quantifier alternations compared to the case
of relativised strong equivalence. Indeed, this is in accord with the ΠP

2 -completeness
for ordinary equivalence. Putting things together, and observing that for A = ∅ we have
V A

2 = V2, the encoding T[Π ′] results for ordinary equivalence in

¬∃V1

(

P1,1 ∧ ∀V2((V2 < V1)→ ¬P2,1) ∧ (Q1,1 → ∃V4((V4 < V1) ∧Q4,1))
)

.

This encoding is related to encodings for computing answer sets via QBFs, as discussed
by Egly et al. [6]. Indeed, taking the two main conjuncts from T[Π ′], viz. φ = P1,1 ∧
∀V2((V2 < V1) → ¬P2,1) and ψ = Q1,1 → ∃V4((V4 < V1) ∧ Q4,1), we get, for any
assignment Y1 ⊆ V1, that Y1 is a model of φ iff Y is an answer set of P , and Y1 is a
model of ψ only if Y is not an answer set of Q.

Finally, we discuss the case of ordinary equivalence with projection, i.e., problems
of form (P,Q,PA,=B) with A = ∅. Problems of this form are ΠP

3 -complete, and thus
we expect that our reductions can be simplified (after transformation to prenex form) to
(3,∀)-QBFs. Indeed, the only simplification is to get rid off the subformula (3). We can
do this for the same reason as above, viz. since A = ∅. The simplifications are then as
follows (once again using the fact that V A

2 = V2 as well as V A∪B
3 = V B

3):

¬∃V1

(

P1,1 ∧ ∀V2

(

(V2 < V1)→ ¬P2,1

)

∧

∀V B
3

(

QV
3,3,1 → ∃V4

((

V4 < (B1 ∪ V
B
3)

)

∧QV
4,3,1

)))

.

Compared to the case of relativised equivalence, as discussed above, this time we have
V A∪B

3 6= ∅ and thus an additional quantifier alternation “survives” the simplification.
After bringing the encoding into its prenex form, we therefore get a (3,∀)-QBF, once
again reflecting the intrinsic complexity of the encoded problem.

For the encoding T[·], the structure of the resulting QBF always reflects the com-
plexity of the correspondence problem according to Proposition 1. This does not hold
for formulas stemming from S[·], however. In any case, our tool implements both en-
codings in order to provide interesting benchmarks for QBF solvers with respect to their
capability to find implicit optimisations for equivalent QBFs.

3.3 Transformations into Normal Forms

Most available QBF solvers require its input formula to be in a certain normal form, viz.
in prenex conjunctive normal form (PCNF). Hence, in order to employ these solvers for
our tool, the translations described above have to be transformed by a further two-
phased normalisation step:

1. translating the given QBF into prenex normal form (PNF); and
2. translating the propositional part of the resulting formula in PNF into CNF.

Both steps require to address different design issues. In what follows, we describe
the fundamental problems, and then briefly provide our solutions in some detail.

First, the step of prenexing is not deterministic. As discussed by Egly et al. [7], there
are numerous so-called prenexing strategies. The concrete selection of such a strategy
(also depending on the specific solver used) crucially influences the running times (see
also our results below). In prenexing a QBF, certain dependencies between quantifiers
have to be respected when combining the quantifiers of different subformulas to one
linear prefix. For our encodings, these dependencies are rather simple and analogous
for both encodings S[·] and T[·]. First, observe, however, that both encodings have a
negation as their main connective which has to be shifted into the formula by applying
suitable equivalence preserving transformations which are similar to ones well-known

from first-order logic. In what follows, we implicitly assume that this step has already
been performed. This allows us to consider the quantifier dependencies cleansed with
respect to their polarities. The dependencies for the encoding S[·] can then be illustrated
as follows:

∀V1

∃V2 ∃V3

∀V4

∃V5

Here, the left branch results from the subformula S1 and the right one results from the
subformula ∀V3(S

2(Q,A,B)→ S3(P,Q,A)).
Inspecting these quantifier dependencies, we can group ∃V2 either together with ∃V3

or with ∃V5. This yields the following two basic ways for prenexing our encodings:

↑: ∀V1∃(V2 ∪ V3)∀V4∃V5; and ↓: ∀V1∃V3∀V4∃(V5 ∪ V2).

Together with the two encodings S[·] and T[·], we thus get four different alternatives
to represent an inclusion problem in terms of a prenex QBF; we will denote them by
S↑[·], S↓[·], T↑[·], and T↓[·], respectively. Our experiments below show their different
performance behaviour (relative to the employed QBF solver and the benchmarks).

Concerning the transformation of the propositional part of a prenex QBF into CNF,
we apply a method following Tseitin [25] in which new atoms, so-called labels, are
introduced abbreviating subformula occurrences and which has the property that the re-
sultant CNFs are always polynomial in the size of the input formula. Recall that a stan-
dard translation of a propositional formula into CNF based on distributivity laws yields
formulas of exponential size in the worst case. However, the normal form translation
into CNF using labels is not validity preserving like the one based on distributivity laws
but only satisfiability equivalent. In the case of closed QBFs, the following result holds:

Proposition 4. Let Φ = QnPn . . .Q1P1φ, for Qi ∈ {∃,∀} and n > 0, be either an
(n,∀)-QBF with n being even or an (n,∃)-QBF with n being odd. Furthermore let φ′

be the CNF resulting from the propositional part φ of Φ by introducing new labels fol-
lowing Tseitin [25]. Then, Φ and QnPn . . . Q1P1∃V φ

′ are logically equivalent, where
V are the new labels introduced by the CNF transformation.

Note that for Φ as in the above proposition, we have that Q1 = ∃. Hence, in
this case, QnPn . . .Q1P1∃V φ

′ is the desired PCNF, equivalent to Φ, used as input
for QBF solvers requiring PCNF format for evaluating Φ. In order to transform a QBF
Ψ = QnPn . . .Q1P1ψ which is an (n,∀)-QBF with n being odd or an (n,∃)-QBF with
n being even, we just apply the above proposition to QnPn . . .Q1P1¬ψ, where Qi = ∃
if Qi = ∀ and Qi = ∀ otherwise, which is equivalent to ¬Ψ . That is, in order to evalu-
ate Ψ by means of a QBF solver requiring PCNF input, we compute QnPn . . .Q1P1¬ψ
and “reverse“ the output. This is accommodated in cc> that either the original corre-
spondence problem or the complementary problem is encoded whenever an input yields
a QBF like Ψ .

Fig. 1. Running times (in seconds) for true (left chart) and false (right chart) instances subdivided
by solvers and encodings.

For the entire normal-form transformation, one can use the quantifier-shifting tool
qst [27]. It accepts arbitrary QBFs in boole format (see below) as input and returns
an equivalent PCNF QBF in qdimacs format, which is nowadays a de-facto standard
for PCNF-QBF solvers. The tool qst implements 14 different strategies (among them
↑ and ↓ we use here) to obtain a PCNF and uses the mentioned structure-preserving
normal-form transformation for the transformation to CNF.

3.4 The Implemented Tool

The system cc> implements the reductions from inclusion problems (P, Q, PA, ⊆B)
and equivalence problems (P, Q, PA, =B) to corresponding QBFs, together with the
potential simplifications discussed above. It takes as input two programs, P and Q, and
two sets of atoms, A and B, where A specifies the alphabet of the context and B the
set of atoms for projection on the correspondence relation. The reduction (S[·] or T[·])
and the type of correspondence problem (⊆B or =B) are specified via command-line
arguments: -S, -T to select the kind of reduction, and -i, -e to check for inclusion or
equivalence between the two programs.

In general, the syntax to specify the programs in cc> corresponds to the basic DLV
syntax.3 Propositional DLV programs can be passed to cc> and programs processible
for cc> can be handled by DLV.

We developed cc> entirely in ANSI C; hence, it is highly portable. The parser for
the input data was written using LEX and YACC. The complete package in its current
version consists of more than 2000 lines of code. Further information about cc> and
how to use it, as well as information about the benchmarks below, can be found at

http://www.kr.tuwien.ac.at/research/ccT/.

4 Experimental Results

Our experiments were conducted to determine the behaviour of different QBF solvers in
combination with the encodings S[·] and T[·] for inclusion checking, or, if the employed

3 See http://www.dlvsystem.com/ for more information about DLV.

Fig. 2. Whisker-box plots corresponding to Figure 1 for true (upper chart) and false (lower chart)
instances.

QBF solver requires the input in prenex form, with S↑[·], S↓[·], T↑[·], and T↓[·]. To this
end, we implemented a generator of inclusion problems which emanate from the proof
of the ΠP

4 -hardness of inclusion checking [10], and thus provides us with benchmark
problems capturing the intrinsic complexity of this task.

The strategy to generate such instances is as follows:

1. generate a (4,∀)-QBF Φ in PCNF by random;
2. reduce Φ to a problem Π = (P,Q,PA,⊆B) such that Π holds iff Φ is valid;
3. apply cc> to derive the corresponding encoding Ψ for Π .

0.01

0.10

1.00

10.00

100.00

 10 12 14 16 18 20 22 24

se
co

nd
s

qpro
qube-bj

semprop
skizzo

DLPEQ

Fig. 3. Comparing cc> against DLPEQ subdivided by solvers.

Incidentally, this procedure also yields a simple method for verifying the correctness
of the overall implementation by simply checking whether Ψ is equivalent to Φ. We use
here a parameterisation for the generation of random QBFs such that the benchmark set
yields a nearly 50% distribution between the true and false instances. Therefore, the set
is neither over- nor underconstrained and thus presumably located in a hard region.

We have set up a test series comprising 1000 instances of inclusion problems gen-
erated that way (465 of them evaluating to true). The first program P has 620 rules, and
the second program Q has 280 rules, using a total of 40 atoms. The sets A and B of
atoms are chosen to contain 16 atoms. After employing cc>, the resulting QBFs pos-
sess, in case of translation S[·], 200 atoms and, in case of translation T[·], 152 atoms.
The additional prenexing step (together with the translation of the propositional part
into CNF) yields, in case of S[·], QBFs with 6575 clauses over 2851 atoms and, in case
of T[·], QBFs with 6216 clauses over 2555 atoms.

We compared four state-of-the-art QBF solvers: qube-bj [15], semprop [18],
skizzo [2], and qpro [8]. The former three require QBFs in PCNF as input (thus, we
tested them using encodings S↑[·], S↓[·], T↑[·], and T↓[·]), while qpro admits arbitrary
QBFs as input (we tested it with the non-prenex encodings S[·] and T[·]).

The (arithmetically) average running times are depicted in Figure 1. The y-axis
shows the running time (time-out was 100 seconds) for each solver with respect to
the chosen translation and prenexing strategy. As expected, for all solvers, the more
compact encodings of form T[·] were evaluated faster than the QBFs stemming from
encodings of form S[·]. The performance of the prenex-form solvers qube-bj, sem-
prop, and skizzo is highly dependent on the chosen prenexing strategy. However,
the shifting strategy ↓ dominates strategy ↑. A more thorough analysis of the data with
respect to their distribution is given in Figure 2. By means of whisker-box plots, we
depict, for each measuring point, median (horizontal line inside the box), 25%- and
75%-quantile (lower and upper border of the boxes, respectively), and the 5%- and
95%-quantile (lower and upper horizontal bar at the end of the vertical lines, the so-

called whiskers, respectively). Due to the chosen time-out of 100 seconds, the whisker-
box plots are slightly distorted near the 100 seconds border.

For the special case of ordinary equivalence, we compared our approach against the
system DLPEQ [21] which is based on a reduction to disjunctive logic programs, using
gnt [16] as underlying answer-set solver. The benchmarks rely on randomly generated
(2,∃)-QBFs using Model A [14]. Each QBF is reduced to a program such that the latter
possesses an answer set iff the original QBF is valid [9]. The idea of the benchmarks is
to compare each such program with one in which one randomly selected rule is dropped,
simulating a “sloppy” programmer, in terms of ordinary equivalence.

The average running times are shown in Figure 3. The number n of variables in
the original QBF varies from 10 to 24, and, for each n, 100 such program compar-
isons are generated for which the portion of cases where equivalence holds is between
40% and 50% (for details about the benchmarks, cf. [21]). For DLPEQ, we considered
the slightly faster two-phased mode only. We set a time-out of 120 seconds. For cc>,
we compared the same back-end solvers as above, using encoding T[·]. Recall that,
for ordinary equivalence, cc> provides (2,∀)-QBFs; thus, we can refrain from the dis-
tinction between prenexing strategies. The dedicated DLPEQ approach turns out to be
faster, but, interestingly, among the tested QBF solvers, qpro is the most competitive
one, while the PCNF-QBF solvers perform bad even for small instances. Moreover, the
entire QBF approach behaves worse on true instances, compared to false ones.

5 Conclusion

In this paper, we discussed an implementation for advanced program comparison in
answer-set programming via encodings into quantified propositional logic. This ap-
proach was motivated by the high computational complexity one has to face for corre-
spondence checking, making a direct realisation via ASP hard to accomplish. Since cur-
rently practicably efficient solvers for quantified propositional logic are available, they
can be employed as back-end inference engines to verify the correspondence problems
under consideration using the proposed encodings. Moreover, since such problems are
one of the few natural ones lying above the second level of the polynomial hierarchy,
yet still part of the polynomial hierarchy, we believe that our encodings also provide
valuable benchmarks for evaluating QBF solvers, for which there is currently a lack of
structured problems with more than one quantifier alternation (cf. [17]).

References

1. O. Arieli and M. Denecker. Reducing Preferential Paraconsistent Reasoning to Classical
Entailment. Journal of Logic and Computation, 13(4):557–580, 2003.

2. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. In Proc. CADE’05, volume
3632 of LNCS, pages 369–376. Springer, 2005.

3. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Representing Paraconsistent Reasoning
via Quantified Propositional Logic. In Inconsistency Tolerance, volume 3300 of LNCS, pages
84–118. Springer, 2005.

4. Y. Chen, F. Lin, and L. Li. SELP - A System for Studying Strong Equivalence Between Logic
Programs. In Proc. LPNMR’05, volume 3552 of LNAI, pages 442–446. Springer, 2005.

5. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On Computing Solutions to Belief
Change Scenarios. Journal of Logic and Computation, 14(6):801–826, 2004.

6. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks using
Quantified Boolean Formulas. In Proc. AAAI’00, pages 417–422. AAAI Press, 2000.

7. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenex-
ing Strategies for Quantified Boolean Formulas. In Proc. SAT’03. Selected Revised Papers,
volume 2919 of LNCS, pages 214–228. Springer, 2004.

8. U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex Form. In Proc. ECAI’06,
2006.

9. T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Programming:
Propositional Case. Annals of Mathematics and Artificial Intelligence, 15(3/4):289–323,
1995.

10. T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer Set Program-
ming. In Proc. IJCAI’05, pages 97–102, 2005.

11. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. In Proc. ICLP’03, volume 2916 of LNCS, pages 224–238. Springer, 2003.

12. M. Gelfond and N. Leone. Logic Programming and Knowledge Representation - The A-
Prolog Perspective. Artificial Intelligence, 138(1-2):3–38, 2002.

13. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

14. I. Gent and T. Walsh. Beyond NP: The QSAT Phase Transition. In Proc. AAAI’99, pages
648–653. AAAI Press, 1999.

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic
Satisfiability. Artificial Intelligence, 145:99–120, 2003.

16. T. Janhunen, I. Niemelä, D. Seipel, and P. Simons. Unfolding Partiality and Disjunctions in
Stable Model Semantics. ACM Transactions on Computational Logic, 7(1):1–37, 2006.

17. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Compar-
ative Evaluation. In Proc. SAT’04. Revised Selected Papers, volume 3542 of LNCS, pages
376–392. Springer, 2005.

18. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formu-
las. In Proc. TABLEAUX’02, volume 2381 of LNCS, pages 160–175. Springer, 2002.

19. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

20. F. Lin. Reducing Strong Equivalence of Logic Programs to Entailment in Classical Proposi-
tional Logic. In Proc. KR’02, pages 170–176. Morgan Kaufmann, 2002.

21. E. Oikarinen and T. Janhunen. Verifying the Equivalence of Logic Programs in the Disjunc-
tive Case. In Proc. LPNMR’04, volume 2923 of LNCS, pages 180–193. Springer, 2004.

22. D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and Logic Pro-
grams with Nested Expressions. In Proc. EPIA’01, volume 2258 of LNCS, pages 306–320.
Springer, 2001.

23. J. Rintanen. Constructing Conditional Plans by a Theorem Prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

24. H. Tompits and S. Woltran. Towards Implementations for Advanced Equivalence Checking
in Answer-Set Programming. In Proc. ICLP’05, volume 3668 of LNCS, pages 189–203.
Springer, 2005.

25. G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In Studies in
Constructive Mathematics and Mathematical Logic, Part II, pages 234–259, 1968.

26. S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer Set Pro-
gramming. In Proc. JELIA’04, volume 3229 of LNCS, pages 161–173. Springer, 2004.

27. M. Zolda. Comparing Different Prenexing Strategies for Quantified Boolean Formulas. Mas-
ter’s Thesis, Technische Universität Wien, Institut für Informationssysteme, 2004.

