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Abstract. The use of different modeling languages in software development 

makes their integration a must. Most existing integration approaches are meta-

model-based with these metamodels representing both an abstract syntax of the 

corresponding modeling language and also a data structure for storing models. 

This implementation specific focus, however, does not make explicit certain 

language concepts, which can complicate integration tasks. Hence, we propose 

a process which semi-automatically lifts metamodels into ontologies by making 

implicit concepts in the metamodel explicit in the ontology. Thus, a shift of fo-

cus from the implementation of a certain modeling language towards the ex-

plicit reification of the concepts covered by this language is made. This allows 

matching on a solely conceptual level, which helps to achieve better results in 

terms of mappings that can in turn be a basis for deriving implementation spe-

cific transformation code. 

1   Introduction 

The shift from code-centric to model-centric software development places models as 

first-class entities in model-driven development processes. A rich variety of modeling 

languages and tools are available supporting development tasks in certain domains. 

Consequently, the exchange of models among different modeling tools and thus the 

integration of the respective modeling languages becomes an important prerequisite 

for effective software development processes. Due to a lack of interoperability, how-

ever, it is often difficult to use tools in combination, thus the potential of model-driven 

software development cannot be fully exploited.  

In collaboration with the Austrian Ministry of Defense and based on experiences 

gained in various integration scenarios [13], [19], [20], [28], [29], [31], [35] we are 
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currently realizing a system called ModelCVS which aims at enabling tool integration 

through transparent transformation of models between metamodels representing dif-

ferent tools’ modeling languages. However, metamodels typically serve as an abstract 

syntax of a modeling language and often also as an object-oriented data structure in 

which models are stored. A direct integration of different modeling languages by their 

metamodels is not a trivial task, and often leads to handcrafted solutions created in an 

error-prone process usually inducing high maintenance overheads. The integration can 

be made easier, when concentrating on the concepts described by a language, only, 

without needing to worry how the language implements these concepts. Geared to-

wards capturing knowledge in a certain domain, ontologies can help to explicitly rep-

resent the concepts of a language, and thus concentrate the integration task on a solely 

conceptual level. Furthermore, ontologies enable tasks like logical reasoning and 

instance classification that can yield additional benefits for semantic integration. 

In accordance with the general understanding of the term, we refer to the process of 

preparing a modeling language for such integration on a conceptual level as lifting, 

which allows to transform a metamodel (abstract syntax) into an ontology representing 

the concepts covered by the modeling language. The lifting procedure, however, can-

not be carried out straight-forwardly, as it has to achieve a shift in focus, which stems 

from the fact that although metamodeling and ontology engineering share a common 

ground in conceptual modeling in general, since ontologies and metamodels are de-

signed with different goals in mind. Metamodels prove to be more implementation-

oriented as they often bear design decisions that allow producing sound, object-

oriented implementations. Due to this, language concepts can be hidden in a meta-

model, which during the lifting procedure have to be made explicit in an ontology. 

The main contribution of this paper is to lay out the lifting procedure and discuss 

issues that have to be considered when lifting metamodels to ontologies. Hence, the 

remainder of this paper is structured as follows: The next section gives a conceptual 

overview of that lifting process and establishes a big picture in context with the 

ModelCVS project. Section 3 elaborates on the part of lifting, which deals with a 

formalism change concerning the way metamodels and ontologies are expressed. Sec-

tion 4 introduces a pattern catalogue that helps to explicate hidden language concepts 

and exemplifies its usage. Based on these examples, Section 5 finally shows how the 

lifting procedure can benefit typical integration tasks such as schema matching. Sec-

tion 7 discusses related work and Section 8 concludes with an outlook on future work.  

2   Lifting at a glance 

A key focus of the ModelCVS project is to provide a framework for semi-automatic 

generation of transformation programs. Although ModelCVS’ architecture allows for 

an immediate integration of metamodels via specific metamodel integration operators 

called bridgings, of which executable model transformations can be derived, our ap-

proach sees a conceptual integration of metamodels via the creation of ontologies 

from these metamodels as a prerequisite to enhance automation support. As the lifting 

process results in ontologies explicitly representing the concepts of a modeling lan-



guage, we propose that matching these ontologies can provide better results in terms 

of more concise mappings, which in turn can be derived into bridgings between the 

original metamodels. The left-hand side of Fig. 1 shows the general setup of 

ModelCVS’ architecture, whereas details on the right hand side especially depicting 

the lifting process will be given throughout the following paragraphs. For more details 

on ModelCVS we refer the reader to [17],[18]. 

When trying to lift metamodels to ontologies, the gap between the implementation 

oriented focus of metamodels and the knowledge representation focus of ontologies 

has to be closed. Our approach separates the lifting process into three steps. The first 

step, which we refer to as conversion, involves a change of formalism (1), meaning 

that a metamodel is transformed into an ontology. The transformation is given by a 

mapping between the model engineering space and the ontology engineering space, 

namely a mapping from a meta-metamodel (M3) to an ontology metamodel (M2). 

This transformation results in what we call a pseudo-ontology, as the structure of this 

ontology basically resembles the original metamodel and typically does not represent 

concepts as explicitly as ontology engineering principles would advice to do.  

Hence, in the subsequent refactoring step (2), patterns (cf. Section 4) are applied to 

the resulting pseudo-ontology, which aim at unfolding typically hidden concepts in 

metamodels that should better be represented as explicit concepts in an ontology. As 

to be shown in Section 4, however, the decision of which pattern should be applied 

where, incorporates new semantics into the model, that were previously retained as 

part of the user’s expert knowledge about the modeling language, only. 

Fig. 1. ModelCVS conceptual architecture 
 

Finally, ontologies being extracted from modeling languages’ metamodels can be 

enriched with axioms (3) and put in relation with other ontologies representing a 

shared vocabulary about a certain domain. Thus, semantic enrichment refers to incor-

porating additional information into ontologies for integration purposes.  

Instead of the original metamodels, the resulting ontologies are the driving artifacts 

that enable semantic integration of the associated modeling languages. In our case, we 
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use matching techniques that yield a mapping between two ontologies, which is then 

the basis for a code generation process that derives model transformations defined 

between the original metamodels. To be able to relate ontology mappings back to the 

original metamodels, traces linking metamodel and ontology constructs have to be 

established during the lifting process and maintained during the refactoring step. 

However, a discussion about how our prototype implements the tracing and the code 

generation mechanisms is considered out of scope of this paper, as is the not obliga-

tory enrichment step. But nevertheless these concepts are necessary to be mentioned to 

understand the lifting as a part of a meaningful whole and as a prerequisite for opera-

tionalizing the discovered mappings in the form of executable model transformations. 

3   Conversion - Mapping Ecore to ODM 

This section elaborates on a mapping from the model engineering to the ontology 

engineering technical space. In particular, we focus on describing a mapping from 

Ecore, which is the meta-metamodel used in the Eclipse Modeling Framework (EMF) 

[7] that also constitutes ModelCVS’ technological backbone, to the Ontology Defini-

tion Metamodel (ODM) [22]. This mapping constitutes the basis of our approach, as a 

transformation based on this mapping is the first step in our lifting process. However, 

this mapping is not yet introducing any kind of additional semantics into the meta-

model and solely provides a change of formalism. 

It is relatively easy to find semantic correspondences between Ecore and ODM, as 

both formalisms are per se fit for conceptual modeling. The goals aimed at when using 

either formalism, however, differ. Often the intentions behind using a certain construct 

overlap, like when defining a common superclass for two subclasses to denote that all 

instances of the subclasses are also instances of the superclass. This intention would 

be equally satisfied in both Ecore and ODM. However, in Ecore this also means that 

instances of either subclass can be instance of one of the subclasses only, whereas 

individuals in OWL could actually belong to both subclasses. These subtle semantic 

nuances have to be considered when committing to a mapping. Although the definition 

of a standard metamodel for ontology definition is still under way, the given mapping 

description refers to terminology used in the latest submission to the ODM RFP [14]. 

This mapping is similar to a mapping proposition of UML to OWL [14] that can give 

more details on the partly mechanic part of mapping modeling language constructs to 

ontology constructs. The next two sub-sections focus on the caveats and the imple-

mentation of the Ecore to ODM mapping. 

3.1   Caveats of Mapping 

The conversion step can ignore meta-classes that do not represent concepts of the 

modeling language and therefore, should not be lifted into an ontology. In case of 

Ecore, the classes EFactory, EOperations, and EParameter fall into this category, 

because these meta-constructs are necessary when generating Java implementation 

classes from the metamodel, only. Furthermore, the Ecore metamodel contains ab-

stract classes which do not directly take part in the mapping as well, but their concrete 



subclasses. Table 1 gives an overview of relevant meta-classes and a catalogue with 

the appropriate mapping definitions towards the ODM metamodel. 

Table 1. Overview of ECore to ODM mapping. 

Ecore Concept OWL Concept Possible Caveat 

EFactory, EOperation, 

EParameter 

no mapping ignored 

EPackage OWLOntology inverse hierarchy 

EClass OWLClass non-exclusive instanceof  

EAttribute OWLDatatypeProperty name clash / qualification 

EReference OWLObjectProperty name clash / qualification  

EDatatype RDFSDatatype straight-forward 

EEnum & EENumLiteral OWLDataRange & RDFSLiteral straight-forward 

EAnnotation RDFSLiteral straight-forward 

 

EPackage to OWLOntology. Being both containers for other metaclasses, at first 

sight, the constructs EPackage and OWLOntology seem like a straight-forward match. 

EPackage can be compared to traditional packaging mechanisms as known from other 

modeling languages, that serves to group and compartmentalize modeling elements or 

source code. Similarly an OWLOntology consists of a collection of ontology elements 

like cases, properties, axioms and the like. However, the notion of the eSubpackage 

reference cannot be straight-forwardly translated into the OWLimports property: An 

ontology imports another ontology to make use of all the concepts defined in the im-

port. Thus, the top-level ontology has visibility over all imported concepts. Packages 

on the other hand can have sub-packages, which have visibility over all their super-

packages. Hence, the semantics of subPackage and OWLimports oppose each other. 

Furthermore, the grouping of model elements in sub-packages lies in the hands of the 

modeler and basically allows for arbitrary grouping to keep large models comprehen-

sible. The import structure of ontologies is rather based on enabling efficient reason-

ing and creating a meaningful whole out of certain domain concepts. 

Albeit the above mentioned issue, from a pragmatic point of view in most cases it is 

reasonable to map packages directly to ontologies. Analogously, matching the sub-

Package reference to the OWLimports property generally works well, too, when being 

aware that the result can be an ‘up-side down’ class hierarchy.  

EClass to OWLClass. The metaclasses EClass and OWLClass map straight-

forwardly to an OWLClass, except that an OWLClass is used to cluster a number of 

individuals, which can also be individuals of other classes, whereas instances of an 

EClass cannot. This issue, however, does not pose a problem when mapping from 

Ecore to ODM or when instances are not considered in the lifting process. 

The lifting of abstract classes or interfaces depends on whether they represent se-

mantics of the modeling language which should also be represented as concepts in the 

ontology, or whether they serve solely implementation specific purposes. Our ap-

proach follows a strategy of lifting all abstract classes and interfaces, as unnecessarily 

lifted concepts can usually be better filtered out in the subsequent refactoring step.  

EAttribute to OWLDatatypeProperty. In difference to an EAttribute belonging 

to an EClass, a property in an ontology is independent of a certain OWLClass. Thus, 



the straight-forward mapping from EAttribute to OWLDatatypeProperty can be prob-

lematic, because seemingly identical attributes in different classes can carry different 

semantics, which would then be unified in a single ontology property.  

To avoid this problem, one can incorporate additional information like the owning 

class’ name into the name of the newly created property. In doing so, no information 

gets lost and redundant properties can be joined in the subsequent refactoring step. 

EReference to OWLObjectProperty. Similar to the previous mapping descrip-

tion, an EReference can be mapped onto an OWLObjectProperty when the mentioned 

name clash problem is dealt with accordingly and the associated loss of semantics is 

avoided. Apart from this, the eReferenceType reference can be mapped to the 

RDFSDomain reference and the eContainingClass reference to the RDFSRange refer-

ence. Just like the former mapping, cardinalities do not pose a problem, as the Ecore 

references in question have single cardinality which maps straight onto the multiple 

cardinality of the equivalent references in the ODM. 

 

Summarizing the above remarks, it has to be pointed out that the most important point 

when defining a mapping from metamodels to ontologies is, that one has to be 

aware how the resulting ontology is affected by the mapping decisions taken. 

3.2   Creating Transformation Code for the Conversion Step 

This sub-section describes the method that is used for creating executable model trans-

formation code facilitating the conversion step. Thereby, a mapping specification 

between Ecore and ODM serves as input for a code generator, which produces execu-

table QVT-like model transformation code. The mapping specification is created with 

the Atlas Model Weaver (AMW) [8] which is an Eclipse plug-in allowing to weave 

links between metamodels or models, resulting in a so called weaving model. 

In the context of ModelCVS, which builds on AMW’s weaving mechanism, we 

more specifically refer to a weaving model as a bridging, as it constitutes a mapping 

specification according to a certain integration scenario [17] of which executable 

model transformation code can be generated. For defining the mapping between Ecore 

and ODM we employ a bridging language that denotes a translation of Ecore models 

into ODM models in a semantics preserving way. This language is defined analo-

gously to a weaving metamodel for the AMW. The semantics of this bridging lan-

guage is then operationally specified in an adjacent code generator, which produces 

ATL [16] code that finally performs the actual conversion step. 

Since the detailed semantics of the bridging language and the inner works of the 

code generation mechanism are out of scope of this paper and we remain with a gen-

eral description of the method. In the following paragraphs a rationale for implement-

ing a custom version of the ODM is given. 

Since the standardization process for the ODM is still ongoing, a decision was 

made to implement a custom version of ODM. Our decision was driven by the fact 

that on one hand, a working import/export functionality of XML serialized OWL 

onotologies was needed, and on the other hand, an implementation providing an API 

which reasoners and other ontological software infrastructure could readily use was 

required. Hence, a decision was made to employ the Jena [15] framework that could 

satisfy both requirements. To be able to bridge the Jena APIs into the model engineer-



ing technical space, an Ecore model was reengineered from the Jena API that in the 

following is referred to as the Jena ODM. Wrapping the Jena ODM directly onto the 

structure of the underlying API has the advantage, that the writing of an adapter pro-

gram calling the Jena API to instantiate a Java in-memory model from a Jena ODM 

model and vice versa boils down to a trivial task. Nevertheless, once a standard is 

finalized, the described approach can be modified with reasonable effort by defining a 

transformation from the adopted ODM to the Jena ODM. In MDA terminology, this 

approach could be compared to a PIM to PSM transformation introducing a new layer 

of abstraction that helps to keep the adapter program free of transformation logic. For 

reasons of brevity, we will not further elaborate on implementation details of the con-

version step. The output of this first step is a pseudo-ontology, which is the input for 

the refactoring step whose associated patterns will be focused on next. 

4   Refactoring Patterns for Pseudo-Ontologies 

The aim of metamodeling lies primarily in defining modeling languages in an object-

oriented manner leading to efficient repository implementations. This means that in a 

metamodel not necessarily all modeling concepts are represented as first-class citi-

zens. Instead, the concepts are frequently hidden in attributes or in association ends. 

We call this phenomenon concept hiding. Consequently, also pseudo-ontologies, i.e., 

the output of the previous conversion step, lack the explicit representation of modeling 

concepts. In order to overcome this problem, we propose refactoring as a second step 

in the lifting process, which semi-automatically generates an additional and semanti-

cally enriched view of the conversion step’s output.  

As an example for concept hiding in metamodels consider Fig. 2 In the upper part it 

shows a simplified version of the UML metamodel kernel which is defined in the UML 

Infrastructure [23], represented as pseudo-ontology. As we see in Fig. 2 the pseudo-

ontology covers twelve modeling concepts but uses only four classes. Hence, most of 

the modeling concepts are implicitly defined, only.  

To tackle the concept hiding problem, we propose certain refactoring patterns for 

identifying where possible hiding places for concepts in metamodels are and also how 

these structures can be rearranged to explicit knowledge representations. The refactor-

ing patterns given in the following subsections are classified into four categories. The 

description of each pattern is based on [12] and consists of pattern name, problem 

description, solution mechanism, and finally, of an example based on the UML kernel. 

The kernel is shown in the upper part of Fig. 2 as a pseudo-ontology (before applying 

the patterns) and in the lower part of Fig. 2 as a refactored ontology (after applying the 

patterns). The numbers in the figure identify where a certain pattern can be applied 

and how that structure will be refactored, respectively. 
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Fig. 2: Part of the UML kernel as pseudo-ontology and as refactored-ontology 

4.1 Patterns for Reification of Concepts 

In this subsection, patterns are subsumed which introduce additional classes for hid-

den concepts that are not sub-concepts of already explicitly represented concepts. 

a) Association Class Introduction: A modeling concept might not be directly repre-

sented by object properties but rather hidden within an association. In particular, it 

might be represented by the combination of both properties representing the context in 

which these object properties occur.  

Refactoring: A new class is introduced in the ontology similar to an association class 

in UML to explicitly describe the hidden concept. Since there is no language construct 

for association classes in OWL, the association is split up into two parts which are 

linked by the introduced class. The cardinalities of the new association ends are fixed 

to one and the previously existing association ends remain unchanged.  

Example: The combination of the roles of the recursive relationship of Class, subclass 

and superclass, occurs in the context generalization. 

b) Concept Elicitation from Properties: In metamodels it is often sufficient to im-

plement modeling concepts as attributes of primitive data types, because the primary 

aim is to be able to represent models as data in repositories. This approach is in con-

tradiction with ontology engineering which focuses on knowledge representation and 

not on how concepts are representable as data. 



Refactoring: Datatype properties which actually represent concepts are extracted into 

separate classes. These classes are connected by an object property to the source class 

and the cardinality of that object property is set to the cardinality of the original 

datatype property. The introduced classes are extended by a datatype property for 

covering the value of the original datatype property. 

Example: The properties Property.lower and Property.upper represent the concept 

Multiplicity which is used for defining cardinality constraints on a Property. 

4.2 Patterns for Elimination of Abstract Concepts 

This subsection discusses one refactoring pattern for flattening inheritance hierarchies. 

c) Abstract Class Elimination: In metamodeling, generalization and abstract classes 

are used as a means to gain smart object-oriented language definitions. However, this 

benefit is traded against additional indirection layers and it is well-known that the use 

of inheritance does not solely entail advantages. Furthermore, in metamodels, the use 

of abstract classes which do not represent modeling concepts is quite common. In such 

cases generalization is applied for implementation inheritance and not for specializa-

tion inheritance. However, one consequence of this procedure is a fragmentation of 

knowledge about the concrete modeling concepts. 

Refactoring: In order to defragment the knowledge of modeling constructs, the 

datatype properties and object properties of abstract classes are moved downwards to 

their concrete subclasses. This refactoring pattern yields to multiple definitions of 

properties and might be seen as an anti-pattern of object-oriented modeling practice. 

However, the properties can be redefined with more expressive names (e.g. hypo-

nyms) in their subclasses. 

Example: The property NamedElement.name is used for class name, attribute name, 

association name and role name. 

4.3 Patterns for Explicit Specialization of Concepts 

In this subsection patterns are subsumed which introduce additional subclasses for 

hidden sub-concepts. 

d) Datatype Property Elimination: In metamodeling it is convenient to represent 

similar modeling concepts with a single class and use attribute values to identify the 

particular concept represented by an instance of that class. This metamodeling prac-

tice keeps the number of classes in metamodels low by hiding multiple concepts in a 

single class. These concepts are equal in terms of owned attributes and associations 

but differ in their intended semantic meaning. For this purpose, attributes of arbitrary 

data types can be utilized but in particular two widespread refinement patterns are 

through booleans and enumerations.    

d1) Refactoring for Boolean Elimination: Concepts hidden in boolean attribute are 

unfolded by introducing two new subclasses of the class owning the boolean, and 

defining the subclasses as disjoint due to the duality of the boolean data type range. 

The subclasses might be named in an x and non-x manner but descriptive names 

should be introduced into the ontology by the user.  



Example: Class.isAbstract is either true or false, representing an abstract or a concrete 

class, respectively. 

d2) Refactoring for Enumeration Elimination: Implicit concepts hidden in an enu-

meration of literals are unfolded by introducing a separate class for each literal. The 

introduced classes are subclasses of the class owning the attribute of type enumeration 

and are defined as disjoint, if the cardinality of the datatype property is one, or over-

lapping if the cardinality is not restricted.        

Examples: Property.aggregation is either none, shared, or composite, representing a 

nonCompositionProperty, a sharedCompositionProperty or a CompositionProperty.  

e) Zero-or-one Object Property Differentiation: In a metamodel the reification of a 

concept is often determined by the occurrence of a certain relationship on the instance 

layer. In such cases, the association end in the metamodel has a multiplicity of zero-

or-one which implicitly contains a concept refinement. 

Refactoring:  Two subclasses of the class owning the object property with cardinality 

of zero-or-one are introduced. The subclass which represents the concept that realizes 

the relationship on the instance layer receives the object property from its superclass 

while the other subclass does not receive the object property under consideration. 

Furthermore, the object property of the original class is deleted and the cardinality of 

the shifted object property is restricted to exactly one. 

Example: Property.association has a multiplicity of zero-or-one, distinguishing be-

tween a role and a nonRole, respectively. 

f) Xor-Association Differentiation: Xor-constraints between n associations (we call 

such associations xor-associations) with association ends of multiplicity zero-or-one 

restrict models such that only one of the n possible links is allowed to occur on the 

instance layer. This pattern can be used to refine concepts with n sub-concepts in a 

similar way like enumeration attributes are used to distinguish between n sub-

concepts. Thus, xor-associations bind a lot of implicit semantics, namely n mutually 

excluding sub-concepts which should be explicitly expressed in ontologies.   

Refactoring: This pattern is resolvable similar to the enumeration pattern by introduc-

ing n new subclasses, but in addition the subclasses are responsible for taking care of 

the xor-constraint. This means each class receives one out of the n object properties, 

thus each subclass represents exactly one sub-concept. Hence, the cardinality of each 

object property is fixed from zero-to-one to exactly one.    

Example: Property.owningAssociation and Property.owingClass are both object 

properties with cardinality zero-or-one. At the instance layer it is determined if an 

instance of the class Property is representing an attribute (contained by a class) or a 

nonAttribute (contained by an association).  

4.4 Patterns for Exploring Combinations of refactored Concepts 

Refactorings that introduce additional subclasses, i.e., patterns from category Spe-

cialization of Concepts, must always adopt a class from the original ontology as start-

ing point since the basic assumption is that different concept specializations are inde-

pendent of each other. Hence, in the case of multiple refactorings of one particular 

class, subclasses introduced by different refactorings are overlapping. In Fig. 2 this is 

denoted using a separate generalization set for each refactoring. However, this ap-



proach requires an additional refactoring pattern for discovering possible relationships 

between combinations of sub-concepts. 

g) Concept Recombination: In order to identify concepts which are hidden in the 

ontology as mentioned above, the user has to extend the ontology by complex classes 

which describe the concepts resulting from possible sub-concept combinations. 

Refactoring: User interactions are required for identifying the concepts behind the 

combination of concepts by evaluating the combinations in a matrix where the dimen-

sions of the matrix are the overlapping generalization sets in consideration.  

Example: When studying the textual descriptions of the semantics of UML one finds 

out that some relationships between the different kinds of properties define additional 

concepts which are not explicitly represented in the ontology. In particular, the evalua-

tion of role/nonRole and attribute/nonAttribute combinations leads to the additional 

intersection classes depicted in the lower part of Fig. 2. 

Summarizing, the result of the refactoring step, an ontology which facilitates an im-

plementation neutral view of the metamodel, is characterized as follows: 

• Only datatype properties which represent semantics of the real world domain 

(ontological properties) are contained, e.g. Class.className, Multiplicity.upper. 

This means no datatype properties for the reification of modeling constructs (lin-

guistic properties) are part of the refactored ontology. 

• Most object properties have cardinalities different from zero-or-one, such that no 

concepts are hidden in object properties.  

• Excessive use of classes and is-a relations turns the ontology into a taxonomy. 

5   Evaluation of Matching Potential 

This section discusses the effects of the refactoring step as defined in the previous 

section on ontology matching, which is an important task in semantic integration. In 

particular, we first point out problems in matching pseudo-ontologies that negatively 

affect matching quality. Subsequently we show how the application of our refactoring 

patterns can alleviate matching problems and improve mapping quality. 

In our example we are using pseudo-ontologies and refactored ontologies originat-

ing from ER and UML metamodels, respectively. The UML ontologies have already 

been introduced in the previous section, the ER ontologies are depicted in Fig. 3. The 

ontologies are mapped with COMA++ [2], which allows matching OWL ontologies 

and produces mappings which represent suggested semantic correspondences. A map-

ping consists of triples of source element, target element, and a specific confidence 

rate ranging from zero to one. It is configurable, by associating weights with certain 

matching rules that can be modified to fit the user’s preferences. Hence, the use of 

COMA++ is naturally a semi-automatic task involving tweaking of the matching algo-

rithm and manual editing of the proposed mapping.  
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Fig. 3. ER pseudo-ontology (left) and refactored ontology (right) 

In the following we discuss four general problem classes that can be identified when 

defining mappings between pseudo-ontologies, and how they become obsolete by 

applying refactoring. The manifestation of the mapping problems in the UML to ER 

mapping and their solutions using refactored ontologies are shown in Fig. 4. The num-

bers in that figure refer to the following list of problems:  

(1) Ambiguous Concept Mappings: This problem originates from classes in a 

pseudo-ontology that represent multiple concepts. The example illustrated in Fig. 4 

(left) is the mapping from Property in UML to Role and Attribute in ER. This ambigu-

ity arises because the UML pseudo-ontology defines a general concept (Property) 

without explicitly stating the sub-concepts which in contrast are represented as explicit 

concepts in the ER pseudo-ontology. This kind of problem is solved by the patterns 

from the Specialization and the Combination categories, which introduce the hidden 

concepts as subclasses and complex classes, respectively, thus avoiding ambiguous 

mappings. In Fig. 4 (right) one can see that the classes introduced from class Property 

allow semantically unambiguous mappings for roles, and attributes in the sense of 

UML IntrinsicAttribute. 

(2) Ambiguous Property Mappings: The use of abstract classes in a metamodel 

is a design decision. Hence, when mapping properties that are defined in abstract 

classes, they may be fragmented over different inheritance layers. This problem is 

depicted in Fig. 4 (left) by mapping the datatype property NamedElement.name to 

multiple targets. After applying patterns from the Elimination category, the inheritance 

layers become flattened and the properties are shifted to the subclasses of the abstract 

classes, thus enabling unambiguous one-to-one mappings. E.g., in Fig. 4 (right) the 

datatype property name of the class NamedElement is flatted into the subclasses which 

lead to unambiguous mappings for the datatype property name. 

(3) No Counterparts: Pseudo-ontologies might differ in their granularity of mod-

eling concept definitions, although the same modeling concepts are useable by the 

modeler. Consequently, some mappings cannot be expressed, because explicit con-

cepts of some pseudo-ontology are missing as explicit concept representations in the 

other. In our mapping example shown in Fig. 4 (left) no corresponding concept in the 

UML pseudo-ontology exists for the Cardinality concept of the ER pseudo-ontology. 

Patterns from the Reification category tackle this problem by the reification of hidden 

concepts, allowing to define mappings that were not possible before the refactoring 

step. Concerning the missing counterpart for the Cardinality concept, after applying 



the patterns it is possible to map the Cardinality concept to the introduced Multiplicity 

concept as shown in Fig. 4 (right). 

(4) Linguistic-to-Ontology Property Mappings: Concerning invalid mappings, 

one source of defect is mapping linguistic properties to ontological properties. For 

instance, in our example shown in Fig. 4 (left) Class.isAbstract which represents a 

linguistic property was automatically mapped by COMA++ to Entity.name which 

represents an ontological property. Patterns from the Specialization category trans-

form linguistic properties to concepts, thus tackling this problem, because only onto-

logical properties remain in the refactored ontology. In Fig. 4 (right) one can see that 

no mappings between linguistic and ontological properties are possible. 
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Fig. 4. COMA++ mapping between pseudo-ontologies and refactored ontologies 

When considering the effect of the refactoring step on the mapping process, one can 

see a higher potential for manually fine-tuning the mapping due to the finer granularity 

of a refactored ontology. The improvement in mapping potential, however, comes at 

the cost of performing the refactoring step and of dealing with a higher number of 

classes. The alternative would be to use a more sophisticated mapping language to 

describe unambiguous mappings. In contrast, our approach of using refactoring pat-

terns offers a way to solve the discussed mapping problems through simple semantic 

correspondences, only. Consequently, the overall complexity of the mapping process 

is decreased due to its splitting into a refactoring part, which brings the pseudo-

ontologies to a common granularity and a mapping part, which relies on simple equal-

ity mappings that can be generated semi-automatically. 

6   Related Work 

In terms of the applied technologies and the overall goals of the ModelCVS project, 

our work is generally related to the areas of model engineering [3], semantic integra-

tion [27] and tool integration [34]. More specifically, the proposed lifting procedure is 



related to approaches concerned with metadata lifting, refactoring and ontology engi-

neering, which we will focus on in the following paragraphs. 

Our work is to a good deal influenced by efforts which try to close the gap between 

the model engineering technical space and the ontology engineering technical space. 

Among these are, e.g. Bezivin et al. [4] who argue for a unified M3 infrastructure and 

Atkinson [1] who showed that there are plenty similarities between the two technical 

spaces and that differences are mostly community-based or of historic nature. Natu-

rally, an M3 unified infrastructure could possibly ease the proposed lifting procedure. 

Concrete efforts aiming to provide an adequate bridge encompass [9], specifying a 

mapping from UML to DAML-OIL, and most prominently the submissions [14] to the 

OMG’s ODM RFP [22] also suggesting a mapping from UML to OWL. Although 

these efforts influenced the mapping proposed in our conversion step, our focus is not 

on making a rich language like UML fit for ontology modeling, but on extracting 

meaningful ontologies from metamodels defining modeling languages.  

Many other efforts aiming at semantic integration of data also use a procedure that 

lifts metadata to ontologies. These efforts use XML Schemata [33],[6],[11],[30] 

which are mapped to RDFS or to OWL [10], respectively. [24] carries out an addi-

tional normalization step after lifting, but focuses on ameliorating lexical and simple 

structural heterogeneities, only. All of these approaches are not immediately reusable 

in our metamodel-centric context, however, and none of the above approaches relies 

on refactoring patterns that would allow to make hidden concepts explicit. As an ex-

ample, [26] lifts XML schemata and states that the resulting ontologies “will be ad-

hoc”. Our refactoring approach of pseudo-ontologies tries to deal with this problem. 

Furthermore, the refactored OWL ontologies can be matched without the need for a 

complex mapping or query language, which addresses the problem identified in [21] 

that calls for an OWL query language. There is few related work in terms of refactor-

ing ontologies that were created from an underlying metadata representation aiming at 

a shift in focus as we do. [25] tries to find implicit semantics through linguistic and 

structural analysis in labels of hierarchical structures on the Web, but seems not appli-

cable to find hidden concepts in modeling languages, nor does it provide means like to 

reify these. An interesting approach to ontology refactoring is discussed in [5], which, 

as opposed to our approach, has the goal of pruning an ontology and deriving a 

schema thereof, that is then refactored towards an implementation oriented focus.  

[32] identifies variability, which is the ability to express semantically equal con-

cepts differently, as the reason for different conceptual models being able to meet the 

same requirements. Our work can be seen as addressing the problems of heterogenei-

ties introduced due to variability, as the refactoring step can help to make concepts 

explicit in a uniform way, even though they are initially hidden in different ways. 

7   Conclusion 

In this paper we have introduced the lifting procedure, which allows to create ontolo-

gies from metamodels representing modeling languages. The application of refactor-

ing patterns on the resulting ontologies can make originally hidden concepts explicit 



and thus improve automation support for semantic integration tasks. Although it is not 

foreseeable that such tasks will ever be fully automated, we believe that support for 

the at least semi-automatic integration of modeling tools via their modeling languages 

is feasible. It is easy to see, that such tool integration tasks require proper tool support 

and methods guiding the integration process themselves.  

Lifting metamodels to ontologies is only one important step in realizing the 

ModelCVS project. Future work will focus on defining specific domain ontologies 

that can be relied on in the enrichment step to further enhance ontology matching, as 

well as enhancing the tracing and the code generation mechanisms to automatically 

derive model transformation programs from higher-level integration specifications. 
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