
Lifting Metamodels to Ontologies:

A Step to the Semantic Integration of Modeling

Languages1

Gerti Kappel
1
, Elisabeth Kapsammer

2
, Horst Kargl

1
, Gerhard Kramler

1
,

Thomas Reiter
2
, Werner Retschitzegger

2
, Wieland Schwinger

3
, and Manuel Wimmer

1

1 Business Informatics Group, Vienna University of Technology
{gerti|kargl|kramler|wimmer}@big.tuwien.ac.at

2 Information Systems Group, Johannes Kepler University Linz
{ek|tr|wr}@ifs.uni-linz.ac.at

3 Dept. of Telecooperation, Johannes Kepler University Linz
wieland.schwinger@jku.at

Abstract. The use of different modeling languages in software development

makes their integration a must. Most existing integration approaches are meta-

model-based with these metamodels representing both an abstract syntax of the

corresponding modeling language and also a data structure for storing models.

This implementation specific focus, however, does not make explicit certain

language concepts, which can complicate integration tasks. Hence, we propose

a process which semi-automatically lifts metamodels into ontologies by making

implicit concepts in the metamodel explicit in the ontology. Thus, a shift of fo-

cus from the implementation of a certain modeling language towards the ex-

plicit reification of the concepts covered by this language is made. This allows

matching on a solely conceptual level, which helps to achieve better results in

terms of mappings that can in turn be a basis for deriving implementation spe-

cific transformation code.

1 Introduction

The shift from code-centric to model-centric software development places models as

first-class entities in model-driven development processes. A rich variety of modeling

languages and tools are available supporting development tasks in certain domains.

Consequently, the exchange of models among different modeling tools and thus the

integration of the respective modeling languages becomes an important prerequisite

for effective software development processes. Due to a lack of interoperability, how-

ever, it is often difficult to use tools in combination, thus the potential of model-driven

software development cannot be fully exploited.

In collaboration with the Austrian Ministry of Defense and based on experiences

gained in various integration scenarios [13], [19], [20], [28], [29], [31], [35] we are

1 This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation

and Technology (BMVIT) and FFG under grant FIT-IT-810806.

currently realizing a system called ModelCVS which aims at enabling tool integration

through transparent transformation of models between metamodels representing dif-

ferent tools’ modeling languages. However, metamodels typically serve as an abstract

syntax of a modeling language and often also as an object-oriented data structure in

which models are stored. A direct integration of different modeling languages by their

metamodels is not a trivial task, and often leads to handcrafted solutions created in an

error-prone process usually inducing high maintenance overheads. The integration can

be made easier, when concentrating on the concepts described by a language, only,

without needing to worry how the language implements these concepts. Geared to-

wards capturing knowledge in a certain domain, ontologies can help to explicitly rep-

resent the concepts of a language, and thus concentrate the integration task on a solely

conceptual level. Furthermore, ontologies enable tasks like logical reasoning and

instance classification that can yield additional benefits for semantic integration.

In accordance with the general understanding of the term, we refer to the process of

preparing a modeling language for such integration on a conceptual level as lifting,

which allows to transform a metamodel (abstract syntax) into an ontology representing

the concepts covered by the modeling language. The lifting procedure, however, can-

not be carried out straight-forwardly, as it has to achieve a shift in focus, which stems

from the fact that although metamodeling and ontology engineering share a common

ground in conceptual modeling in general, since ontologies and metamodels are de-

signed with different goals in mind. Metamodels prove to be more implementation-

oriented as they often bear design decisions that allow producing sound, object-

oriented implementations. Due to this, language concepts can be hidden in a meta-

model, which during the lifting procedure have to be made explicit in an ontology.

The main contribution of this paper is to lay out the lifting procedure and discuss

issues that have to be considered when lifting metamodels to ontologies. Hence, the

remainder of this paper is structured as follows: The next section gives a conceptual

overview of that lifting process and establishes a big picture in context with the

ModelCVS project. Section 3 elaborates on the part of lifting, which deals with a

formalism change concerning the way metamodels and ontologies are expressed. Sec-

tion 4 introduces a pattern catalogue that helps to explicate hidden language concepts

and exemplifies its usage. Based on these examples, Section 5 finally shows how the

lifting procedure can benefit typical integration tasks such as schema matching. Sec-

tion 7 discusses related work and Section 8 concludes with an outlook on future work.

2 Lifting at a glance

A key focus of the ModelCVS project is to provide a framework for semi-automatic

generation of transformation programs. Although ModelCVS’ architecture allows for

an immediate integration of metamodels via specific metamodel integration operators

called bridgings, of which executable model transformations can be derived, our ap-

proach sees a conceptual integration of metamodels via the creation of ontologies

from these metamodels as a prerequisite to enhance automation support. As the lifting

process results in ontologies explicitly representing the concepts of a modeling lan-

guage, we propose that matching these ontologies can provide better results in terms

of more concise mappings, which in turn can be derived into bridgings between the

original metamodels. The left-hand side of Fig. 1 shows the general setup of

ModelCVS’ architecture, whereas details on the right hand side especially depicting

the lifting process will be given throughout the following paragraphs. For more details

on ModelCVS we refer the reader to [17],[18].

When trying to lift metamodels to ontologies, the gap between the implementation

oriented focus of metamodels and the knowledge representation focus of ontologies

has to be closed. Our approach separates the lifting process into three steps. The first

step, which we refer to as conversion, involves a change of formalism (1), meaning

that a metamodel is transformed into an ontology. The transformation is given by a

mapping between the model engineering space and the ontology engineering space,

namely a mapping from a meta-metamodel (M3) to an ontology metamodel (M2).

This transformation results in what we call a pseudo-ontology, as the structure of this

ontology basically resembles the original metamodel and typically does not represent

concepts as explicitly as ontology engineering principles would advice to do.

Hence, in the subsequent refactoring step (2), patterns (cf. Section 4) are applied to

the resulting pseudo-ontology, which aim at unfolding typically hidden concepts in

metamodels that should better be represented as explicit concepts in an ontology. As

to be shown in Section 4, however, the decision of which pattern should be applied

where, incorporates new semantics into the model, that were previously retained as

part of the user’s expert knowledge about the modeling language, only.

Fig. 1. ModelCVS conceptual architecture

Finally, ontologies being extracted from modeling languages’ metamodels can be

enriched with axioms (3) and put in relation with other ontologies representing a

shared vocabulary about a certain domain. Thus, semantic enrichment refers to incor-

porating additional information into ontologies for integration purposes.

Instead of the original metamodels, the resulting ontologies are the driving artifacts

that enable semantic integration of the associated modeling languages. In our case, we

Class

Class ClassClass

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

align

mapping

T
ra

c
e
s

mapping

mapping

bridging

d
e
ri
v
e

O
n

to
lo

g
y

c
o
n

fo
rm

s

d
e
ri

v
e

M
e
ta

m
o

d
e

l

mapping

d
e

ri
v
e

lif
ti
n
g

lif
ti
n

g
c
o
n

fo
rm

s

Class

Class Class Class

Class

Class Classbridging

B

M
o

d
e
l

Class

Class Class Class

Class

Class Class

trans-
forming

M
e
ta

m
o

d
e
l

Preudo
Ontology

Refactored
Ontology

Enriched
Ontology

1c
o
n
v
e
rs

io
n

2re
fa

c
to

rin
g

3e
n
ric

h
m

e
n
t

add

Additional
Axioms

Shared Ontology O
n

to
lo

g
y

T
ra

c
e
s

1c
o
n
v
e
rs

io
n

2re
fa

c
to

rin
g

3e
n
ric

h
m

e
n
t

add

Additional
Axioms

align

Class

Class ClassClass

Class

Class Class

Class

Class ClassClass

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

align

mapping

T
ra

c
e
s

mapping

mapping

bridging

d
e
ri
v
e

O
n

to
lo

g
y

c
o
n

fo
rm

s

d
e
ri

v
e

M
e
ta

m
o

d
e

l

mapping

d
e

ri
v
e

lif
ti
n
g

lif
ti
n

g
c
o
n

fo
rm

s

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Classbridging

B

M
o

d
e
l

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

trans-
forming

M
e
ta

m
o

d
e
l

Preudo
Ontology

Refactored
Ontology

Enriched
Ontology

1c
o
n
v
e
rs

io
n

2re
fa

c
to

rin
g

3e
n
ric

h
m

e
n
t

add

Additional
Axioms

Shared Ontology O
n

to
lo

g
y

T
ra

c
e
s

1c
o
n
v
e
rs

io
n

2re
fa

c
to

rin
g

3e
n
ric

h
m

e
n
t

add

Additional
Axioms

align

use matching techniques that yield a mapping between two ontologies, which is then

the basis for a code generation process that derives model transformations defined

between the original metamodels. To be able to relate ontology mappings back to the

original metamodels, traces linking metamodel and ontology constructs have to be

established during the lifting process and maintained during the refactoring step.

However, a discussion about how our prototype implements the tracing and the code

generation mechanisms is considered out of scope of this paper, as is the not obliga-

tory enrichment step. But nevertheless these concepts are necessary to be mentioned to

understand the lifting as a part of a meaningful whole and as a prerequisite for opera-

tionalizing the discovered mappings in the form of executable model transformations.

3 Conversion - Mapping Ecore to ODM

This section elaborates on a mapping from the model engineering to the ontology

engineering technical space. In particular, we focus on describing a mapping from

Ecore, which is the meta-metamodel used in the Eclipse Modeling Framework (EMF)

[7] that also constitutes ModelCVS’ technological backbone, to the Ontology Defini-

tion Metamodel (ODM) [22]. This mapping constitutes the basis of our approach, as a

transformation based on this mapping is the first step in our lifting process. However,

this mapping is not yet introducing any kind of additional semantics into the meta-

model and solely provides a change of formalism.

It is relatively easy to find semantic correspondences between Ecore and ODM, as

both formalisms are per se fit for conceptual modeling. The goals aimed at when using

either formalism, however, differ. Often the intentions behind using a certain construct

overlap, like when defining a common superclass for two subclasses to denote that all

instances of the subclasses are also instances of the superclass. This intention would

be equally satisfied in both Ecore and ODM. However, in Ecore this also means that

instances of either subclass can be instance of one of the subclasses only, whereas

individuals in OWL could actually belong to both subclasses. These subtle semantic

nuances have to be considered when committing to a mapping. Although the definition

of a standard metamodel for ontology definition is still under way, the given mapping

description refers to terminology used in the latest submission to the ODM RFP [14].

This mapping is similar to a mapping proposition of UML to OWL [14] that can give

more details on the partly mechanic part of mapping modeling language constructs to

ontology constructs. The next two sub-sections focus on the caveats and the imple-

mentation of the Ecore to ODM mapping.

3.1 Caveats of Mapping

The conversion step can ignore meta-classes that do not represent concepts of the

modeling language and therefore, should not be lifted into an ontology. In case of

Ecore, the classes EFactory, EOperations, and EParameter fall into this category,

because these meta-constructs are necessary when generating Java implementation

classes from the metamodel, only. Furthermore, the Ecore metamodel contains ab-

stract classes which do not directly take part in the mapping as well, but their concrete

subclasses. Table 1 gives an overview of relevant meta-classes and a catalogue with

the appropriate mapping definitions towards the ODM metamodel.

Table 1. Overview of ECore to ODM mapping.

Ecore Concept OWL Concept Possible Caveat

EFactory, EOperation,

EParameter

no mapping ignored

EPackage OWLOntology inverse hierarchy

EClass OWLClass non-exclusive instanceof

EAttribute OWLDatatypeProperty name clash / qualification

EReference OWLObjectProperty name clash / qualification

EDatatype RDFSDatatype straight-forward

EEnum & EENumLiteral OWLDataRange & RDFSLiteral straight-forward

EAnnotation RDFSLiteral straight-forward

EPackage to OWLOntology. Being both containers for other metaclasses, at first

sight, the constructs EPackage and OWLOntology seem like a straight-forward match.

EPackage can be compared to traditional packaging mechanisms as known from other

modeling languages, that serves to group and compartmentalize modeling elements or

source code. Similarly an OWLOntology consists of a collection of ontology elements

like cases, properties, axioms and the like. However, the notion of the eSubpackage

reference cannot be straight-forwardly translated into the OWLimports property: An

ontology imports another ontology to make use of all the concepts defined in the im-

port. Thus, the top-level ontology has visibility over all imported concepts. Packages

on the other hand can have sub-packages, which have visibility over all their super-

packages. Hence, the semantics of subPackage and OWLimports oppose each other.

Furthermore, the grouping of model elements in sub-packages lies in the hands of the

modeler and basically allows for arbitrary grouping to keep large models comprehen-

sible. The import structure of ontologies is rather based on enabling efficient reason-

ing and creating a meaningful whole out of certain domain concepts.

Albeit the above mentioned issue, from a pragmatic point of view in most cases it is

reasonable to map packages directly to ontologies. Analogously, matching the sub-

Package reference to the OWLimports property generally works well, too, when being

aware that the result can be an ‘up-side down’ class hierarchy.

EClass to OWLClass. The metaclasses EClass and OWLClass map straight-

forwardly to an OWLClass, except that an OWLClass is used to cluster a number of

individuals, which can also be individuals of other classes, whereas instances of an

EClass cannot. This issue, however, does not pose a problem when mapping from

Ecore to ODM or when instances are not considered in the lifting process.

The lifting of abstract classes or interfaces depends on whether they represent se-

mantics of the modeling language which should also be represented as concepts in the

ontology, or whether they serve solely implementation specific purposes. Our ap-

proach follows a strategy of lifting all abstract classes and interfaces, as unnecessarily

lifted concepts can usually be better filtered out in the subsequent refactoring step.

EAttribute to OWLDatatypeProperty. In difference to an EAttribute belonging

to an EClass, a property in an ontology is independent of a certain OWLClass. Thus,

the straight-forward mapping from EAttribute to OWLDatatypeProperty can be prob-

lematic, because seemingly identical attributes in different classes can carry different

semantics, which would then be unified in a single ontology property.

To avoid this problem, one can incorporate additional information like the owning

class’ name into the name of the newly created property. In doing so, no information

gets lost and redundant properties can be joined in the subsequent refactoring step.

EReference to OWLObjectProperty. Similar to the previous mapping descrip-

tion, an EReference can be mapped onto an OWLObjectProperty when the mentioned

name clash problem is dealt with accordingly and the associated loss of semantics is

avoided. Apart from this, the eReferenceType reference can be mapped to the

RDFSDomain reference and the eContainingClass reference to the RDFSRange refer-

ence. Just like the former mapping, cardinalities do not pose a problem, as the Ecore

references in question have single cardinality which maps straight onto the multiple

cardinality of the equivalent references in the ODM.

Summarizing the above remarks, it has to be pointed out that the most important point

when defining a mapping from metamodels to ontologies is, that one has to be

aware how the resulting ontology is affected by the mapping decisions taken.

3.2 Creating Transformation Code for the Conversion Step

This sub-section describes the method that is used for creating executable model trans-

formation code facilitating the conversion step. Thereby, a mapping specification

between Ecore and ODM serves as input for a code generator, which produces execu-

table QVT-like model transformation code. The mapping specification is created with

the Atlas Model Weaver (AMW) [8] which is an Eclipse plug-in allowing to weave

links between metamodels or models, resulting in a so called weaving model.

In the context of ModelCVS, which builds on AMW’s weaving mechanism, we

more specifically refer to a weaving model as a bridging, as it constitutes a mapping

specification according to a certain integration scenario [17] of which executable

model transformation code can be generated. For defining the mapping between Ecore

and ODM we employ a bridging language that denotes a translation of Ecore models

into ODM models in a semantics preserving way. This language is defined analo-

gously to a weaving metamodel for the AMW. The semantics of this bridging lan-

guage is then operationally specified in an adjacent code generator, which produces

ATL [16] code that finally performs the actual conversion step.

Since the detailed semantics of the bridging language and the inner works of the

code generation mechanism are out of scope of this paper and we remain with a gen-

eral description of the method. In the following paragraphs a rationale for implement-

ing a custom version of the ODM is given.

Since the standardization process for the ODM is still ongoing, a decision was

made to implement a custom version of ODM. Our decision was driven by the fact

that on one hand, a working import/export functionality of XML serialized OWL

onotologies was needed, and on the other hand, an implementation providing an API

which reasoners and other ontological software infrastructure could readily use was

required. Hence, a decision was made to employ the Jena [15] framework that could

satisfy both requirements. To be able to bridge the Jena APIs into the model engineer-

ing technical space, an Ecore model was reengineered from the Jena API that in the

following is referred to as the Jena ODM. Wrapping the Jena ODM directly onto the

structure of the underlying API has the advantage, that the writing of an adapter pro-

gram calling the Jena API to instantiate a Java in-memory model from a Jena ODM

model and vice versa boils down to a trivial task. Nevertheless, once a standard is

finalized, the described approach can be modified with reasonable effort by defining a

transformation from the adopted ODM to the Jena ODM. In MDA terminology, this

approach could be compared to a PIM to PSM transformation introducing a new layer

of abstraction that helps to keep the adapter program free of transformation logic. For

reasons of brevity, we will not further elaborate on implementation details of the con-

version step. The output of this first step is a pseudo-ontology, which is the input for

the refactoring step whose associated patterns will be focused on next.

4 Refactoring Patterns for Pseudo-Ontologies

The aim of metamodeling lies primarily in defining modeling languages in an object-

oriented manner leading to efficient repository implementations. This means that in a

metamodel not necessarily all modeling concepts are represented as first-class citi-

zens. Instead, the concepts are frequently hidden in attributes or in association ends.

We call this phenomenon concept hiding. Consequently, also pseudo-ontologies, i.e.,

the output of the previous conversion step, lack the explicit representation of modeling

concepts. In order to overcome this problem, we propose refactoring as a second step

in the lifting process, which semi-automatically generates an additional and semanti-

cally enriched view of the conversion step’s output.

As an example for concept hiding in metamodels consider Fig. 2 In the upper part it

shows a simplified version of the UML metamodel kernel which is defined in the UML

Infrastructure [23], represented as pseudo-ontology. As we see in Fig. 2 the pseudo-

ontology covers twelve modeling concepts but uses only four classes. Hence, most of

the modeling concepts are implicitly defined, only.

To tackle the concept hiding problem, we propose certain refactoring patterns for

identifying where possible hiding places for concepts in metamodels are and also how

these structures can be rearranged to explicit knowledge representations. The refactor-

ing patterns given in the following subsections are classified into four categories. The

description of each pattern is based on [12] and consists of pattern name, problem

description, solution mechanism, and finally, of an example based on the UML kernel.

The kernel is shown in the upper part of Fig. 2 as a pseudo-ontology (before applying

the patterns) and in the lower part of Fig. 2 as a refactored ontology (after applying the

patterns). The numbers in the figure identify where a certain pattern can be applied

and how that structure will be refactored, respectively.

NamedElement

name : String

C

P
D

Class

isAbstract : Boolean

C

subclass *
*

superclass
P
D

Property

aggregation : Kind
lower : Integer
upper : Interger

P
D

P
D

P
D

C

owningClass

*

0..1

AssociationC

0..10..1
association

2..*

ownedEnd
*

owning-
Association

Class

name : String

C

P
D

AbstractClassC

ConcreteClassC

GeneralizationC

1

*

1

*

Property

name : String

C

P
D

CompositionP.C

SharedCompositionP.C

NonCompositionP.C

{disjoint}

AttributeCNonAttributeC

{disjoint}

C

P
D

RoleC

NonRoleC

Multiplicity

upper : Integer

lower : Integer

C

P
D

association

memberEnd

1

2..*
{disjoint}

ownedEnd

*

1

owning-
Association

0..1

owning-
Class

ownedAttribute
*

a

d1

e

f

b
Association

name : String

memberEnd

ownedAttribute

{xor} d2

P
D

f

R
ef
ac
to
re
d
O
n
to
lo
g
y

P
se
u
d
o
O
n
to
lo
g
y

C

Kind

none
shared
composite

P
D

P
D

P
D

E

subClasssuperClass

P
D 1

{disjoint}

NavigableRole

Attribute

Role

NonNavigableRole

NonAttribute

Role

IntrinsicAttribute

Attribute

NonRole

C

C

C

C

C

C

g

U U U

c

c

NamedElement

name : String

C

P
D
P
D

Class

isAbstract : Boolean

C

subclass *
*

superclass
P
D
P
D

Property

aggregation : Kind
lower : Integer
upper : Interger

P
D
P
D

P
D
P
D

P
D
P
D

C

owningClass

*

0..1

AssociationC AssociationC

0..10..1
association

2..*

ownedEnd
*

owning-
Association

Class

name : String

C

P
D
P
D

AbstractClassC

ConcreteClassC

GeneralizationC

1

*

1

*

Property

name : String

C

P
D
P
D

CompositionP.C

SharedCompositionP.C

NonCompositionP.C

{disjoint}

AttributeCNonAttributeC

{disjoint}

C

P
D
P
D

RoleC

NonRoleC

Multiplicity

upper : Integer

lower : Integer

C

P
D
P
D

association

memberEnd

1

2..*
{disjoint}

ownedEnd

*

1

owning-
Association

0..1

owning-
Class

ownedAttribute
*

a

d1

e

f

b
Association

name : String

memberEnd

ownedAttribute

{xor} d2

P
D
P
D

f

R
ef
ac
to
re
d
O
n
to
lo
g
y

P
se
u
d
o
O
n
to
lo
g
y

C

Kind

none
shared
composite

P
D
P
D

P
D
P
D

P
D
P
D

E

subClasssuperClass

P
D
P
D 1

{disjoint}

NavigableRole

Attribute

Role

NonNavigableRole

NonAttribute

Role

IntrinsicAttribute

Attribute

NonRole

C

C

C

C

C

C

g

U U U

c

c

Fig. 2: Part of the UML kernel as pseudo-ontology and as refactored-ontology

4.1 Patterns for Reification of Concepts

In this subsection, patterns are subsumed which introduce additional classes for hid-

den concepts that are not sub-concepts of already explicitly represented concepts.

a) Association Class Introduction: A modeling concept might not be directly repre-

sented by object properties but rather hidden within an association. In particular, it

might be represented by the combination of both properties representing the context in

which these object properties occur.

Refactoring: A new class is introduced in the ontology similar to an association class

in UML to explicitly describe the hidden concept. Since there is no language construct

for association classes in OWL, the association is split up into two parts which are

linked by the introduced class. The cardinalities of the new association ends are fixed

to one and the previously existing association ends remain unchanged.

Example: The combination of the roles of the recursive relationship of Class, subclass

and superclass, occurs in the context generalization.

b) Concept Elicitation from Properties: In metamodels it is often sufficient to im-

plement modeling concepts as attributes of primitive data types, because the primary

aim is to be able to represent models as data in repositories. This approach is in con-

tradiction with ontology engineering which focuses on knowledge representation and

not on how concepts are representable as data.

Refactoring: Datatype properties which actually represent concepts are extracted into

separate classes. These classes are connected by an object property to the source class

and the cardinality of that object property is set to the cardinality of the original

datatype property. The introduced classes are extended by a datatype property for

covering the value of the original datatype property.

Example: The properties Property.lower and Property.upper represent the concept

Multiplicity which is used for defining cardinality constraints on a Property.

4.2 Patterns for Elimination of Abstract Concepts

This subsection discusses one refactoring pattern for flattening inheritance hierarchies.

c) Abstract Class Elimination: In metamodeling, generalization and abstract classes

are used as a means to gain smart object-oriented language definitions. However, this

benefit is traded against additional indirection layers and it is well-known that the use

of inheritance does not solely entail advantages. Furthermore, in metamodels, the use

of abstract classes which do not represent modeling concepts is quite common. In such

cases generalization is applied for implementation inheritance and not for specializa-

tion inheritance. However, one consequence of this procedure is a fragmentation of

knowledge about the concrete modeling concepts.

Refactoring: In order to defragment the knowledge of modeling constructs, the

datatype properties and object properties of abstract classes are moved downwards to

their concrete subclasses. This refactoring pattern yields to multiple definitions of

properties and might be seen as an anti-pattern of object-oriented modeling practice.

However, the properties can be redefined with more expressive names (e.g. hypo-

nyms) in their subclasses.

Example: The property NamedElement.name is used for class name, attribute name,

association name and role name.

4.3 Patterns for Explicit Specialization of Concepts

In this subsection patterns are subsumed which introduce additional subclasses for

hidden sub-concepts.

d) Datatype Property Elimination: In metamodeling it is convenient to represent

similar modeling concepts with a single class and use attribute values to identify the

particular concept represented by an instance of that class. This metamodeling prac-

tice keeps the number of classes in metamodels low by hiding multiple concepts in a

single class. These concepts are equal in terms of owned attributes and associations

but differ in their intended semantic meaning. For this purpose, attributes of arbitrary

data types can be utilized but in particular two widespread refinement patterns are

through booleans and enumerations.

d1) Refactoring for Boolean Elimination: Concepts hidden in boolean attribute are

unfolded by introducing two new subclasses of the class owning the boolean, and

defining the subclasses as disjoint due to the duality of the boolean data type range.

The subclasses might be named in an x and non-x manner but descriptive names

should be introduced into the ontology by the user.

Example: Class.isAbstract is either true or false, representing an abstract or a concrete

class, respectively.

d2) Refactoring for Enumeration Elimination: Implicit concepts hidden in an enu-

meration of literals are unfolded by introducing a separate class for each literal. The

introduced classes are subclasses of the class owning the attribute of type enumeration

and are defined as disjoint, if the cardinality of the datatype property is one, or over-

lapping if the cardinality is not restricted.

Examples: Property.aggregation is either none, shared, or composite, representing a

nonCompositionProperty, a sharedCompositionProperty or a CompositionProperty.

e) Zero-or-one Object Property Differentiation: In a metamodel the reification of a

concept is often determined by the occurrence of a certain relationship on the instance

layer. In such cases, the association end in the metamodel has a multiplicity of zero-

or-one which implicitly contains a concept refinement.

Refactoring: Two subclasses of the class owning the object property with cardinality

of zero-or-one are introduced. The subclass which represents the concept that realizes

the relationship on the instance layer receives the object property from its superclass

while the other subclass does not receive the object property under consideration.

Furthermore, the object property of the original class is deleted and the cardinality of

the shifted object property is restricted to exactly one.

Example: Property.association has a multiplicity of zero-or-one, distinguishing be-

tween a role and a nonRole, respectively.

f) Xor-Association Differentiation: Xor-constraints between n associations (we call

such associations xor-associations) with association ends of multiplicity zero-or-one

restrict models such that only one of the n possible links is allowed to occur on the

instance layer. This pattern can be used to refine concepts with n sub-concepts in a

similar way like enumeration attributes are used to distinguish between n sub-

concepts. Thus, xor-associations bind a lot of implicit semantics, namely n mutually

excluding sub-concepts which should be explicitly expressed in ontologies.

Refactoring: This pattern is resolvable similar to the enumeration pattern by introduc-

ing n new subclasses, but in addition the subclasses are responsible for taking care of

the xor-constraint. This means each class receives one out of the n object properties,

thus each subclass represents exactly one sub-concept. Hence, the cardinality of each

object property is fixed from zero-to-one to exactly one.

Example: Property.owningAssociation and Property.owingClass are both object

properties with cardinality zero-or-one. At the instance layer it is determined if an

instance of the class Property is representing an attribute (contained by a class) or a

nonAttribute (contained by an association).

4.4 Patterns for Exploring Combinations of refactored Concepts

Refactorings that introduce additional subclasses, i.e., patterns from category Spe-

cialization of Concepts, must always adopt a class from the original ontology as start-

ing point since the basic assumption is that different concept specializations are inde-

pendent of each other. Hence, in the case of multiple refactorings of one particular

class, subclasses introduced by different refactorings are overlapping. In Fig. 2 this is

denoted using a separate generalization set for each refactoring. However, this ap-

proach requires an additional refactoring pattern for discovering possible relationships

between combinations of sub-concepts.

g) Concept Recombination: In order to identify concepts which are hidden in the

ontology as mentioned above, the user has to extend the ontology by complex classes

which describe the concepts resulting from possible sub-concept combinations.

Refactoring: User interactions are required for identifying the concepts behind the

combination of concepts by evaluating the combinations in a matrix where the dimen-

sions of the matrix are the overlapping generalization sets in consideration.

Example: When studying the textual descriptions of the semantics of UML one finds

out that some relationships between the different kinds of properties define additional

concepts which are not explicitly represented in the ontology. In particular, the evalua-

tion of role/nonRole and attribute/nonAttribute combinations leads to the additional

intersection classes depicted in the lower part of Fig. 2.

Summarizing, the result of the refactoring step, an ontology which facilitates an im-

plementation neutral view of the metamodel, is characterized as follows:

• Only datatype properties which represent semantics of the real world domain

(ontological properties) are contained, e.g. Class.className, Multiplicity.upper.

This means no datatype properties for the reification of modeling constructs (lin-

guistic properties) are part of the refactored ontology.

• Most object properties have cardinalities different from zero-or-one, such that no

concepts are hidden in object properties.

• Excessive use of classes and is-a relations turns the ontology into a taxonomy.

5 Evaluation of Matching Potential

This section discusses the effects of the refactoring step as defined in the previous

section on ontology matching, which is an important task in semantic integration. In

particular, we first point out problems in matching pseudo-ontologies that negatively

affect matching quality. Subsequently we show how the application of our refactoring

patterns can alleviate matching problems and improve mapping quality.

In our example we are using pseudo-ontologies and refactored ontologies originat-

ing from ER and UML metamodels, respectively. The UML ontologies have already

been introduced in the previous section, the ER ontologies are depicted in Fig. 3. The

ontologies are mapped with COMA++ [2], which allows matching OWL ontologies

and produces mappings which represent suggested semantic correspondences. A map-

ping consists of triples of source element, target element, and a specific confidence

rate ranging from zero to one. It is configurable, by associating weights with certain

matching rules that can be modified to fit the user’s preferences. Hence, the use of

COMA++ is naturally a semi-automatic task involving tweaking of the matching algo-

rithm and manual editing of the proposed mapping.

CardinalityCardinality

max:EString

min:EString

IS_A_RelationIS_A_Relation

EntityEntity

name:EString [1..1]

RoleRole

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

1

0..1

* has_general_Entity *

1 general

has_specific_Entity

*

1

refers_To

role

1

role

cardinality
role2..*

relationship1attribute*

entity1

C

C

C

C C

C

EntityEntity

name:EString [1..1]

RoleRole

name:EString

CardinalityCardinality

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

*

0..1

general_Entity

*

specific_Entity

*

1

refers_To

role

1

role

cardinality
role2..*

relationship1attribute*

entity1

C

C

C

C

C

max:EString

min:EString

a

RefactoredOntologyPseudoOntology

CardinalityCardinality

max:EString

min:EString

CardinalityCardinality

max:EString

min:EString

IS_A_RelationIS_A_RelationIS_A_RelationIS_A_Relation

EntityEntity

name:EString [1..1]

EntityEntity

name:EString [1..1]

RoleRole

name:EString

RoleRole

name:EString

RelationshipRelationship

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

AttributeAttribute

name:EString [1..1]

1

0..1

* has_general_Entity *

1 general

has_specific_Entity

*

1

refers_To

role

1

role

cardinality
role2..*

relationship1attribute*

entity1

C

C

C

C C

C

EntityEntity

name:EString [1..1]

RoleRole

name:EString

CardinalityCardinality

RelationshipRelationship

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

AttributeAttribute

name:EString [1..1]

*

0..1

general_Entity

*

specific_Entity

*

1

refers_To

role

1

role

cardinality
role2..*

relationship1attribute*

entity1

C

C

C

C

C

max:EString

min:EString

a

RefactoredOntologyPseudoOntology

Fig. 3. ER pseudo-ontology (left) and refactored ontology (right)

In the following we discuss four general problem classes that can be identified when

defining mappings between pseudo-ontologies, and how they become obsolete by

applying refactoring. The manifestation of the mapping problems in the UML to ER

mapping and their solutions using refactored ontologies are shown in Fig. 4. The num-

bers in that figure refer to the following list of problems:

(1) Ambiguous Concept Mappings: This problem originates from classes in a

pseudo-ontology that represent multiple concepts. The example illustrated in Fig. 4

(left) is the mapping from Property in UML to Role and Attribute in ER. This ambigu-

ity arises because the UML pseudo-ontology defines a general concept (Property)

without explicitly stating the sub-concepts which in contrast are represented as explicit

concepts in the ER pseudo-ontology. This kind of problem is solved by the patterns

from the Specialization and the Combination categories, which introduce the hidden

concepts as subclasses and complex classes, respectively, thus avoiding ambiguous

mappings. In Fig. 4 (right) one can see that the classes introduced from class Property

allow semantically unambiguous mappings for roles, and attributes in the sense of

UML IntrinsicAttribute.

(2) Ambiguous Property Mappings: The use of abstract classes in a metamodel

is a design decision. Hence, when mapping properties that are defined in abstract

classes, they may be fragmented over different inheritance layers. This problem is

depicted in Fig. 4 (left) by mapping the datatype property NamedElement.name to

multiple targets. After applying patterns from the Elimination category, the inheritance

layers become flattened and the properties are shifted to the subclasses of the abstract

classes, thus enabling unambiguous one-to-one mappings. E.g., in Fig. 4 (right) the

datatype property name of the class NamedElement is flatted into the subclasses which

lead to unambiguous mappings for the datatype property name.

(3) No Counterparts: Pseudo-ontologies might differ in their granularity of mod-

eling concept definitions, although the same modeling concepts are useable by the

modeler. Consequently, some mappings cannot be expressed, because explicit con-

cepts of some pseudo-ontology are missing as explicit concept representations in the

other. In our mapping example shown in Fig. 4 (left) no corresponding concept in the

UML pseudo-ontology exists for the Cardinality concept of the ER pseudo-ontology.

Patterns from the Reification category tackle this problem by the reification of hidden

concepts, allowing to define mappings that were not possible before the refactoring

step. Concerning the missing counterpart for the Cardinality concept, after applying

the patterns it is possible to map the Cardinality concept to the introduced Multiplicity

concept as shown in Fig. 4 (right).

(4) Linguistic-to-Ontology Property Mappings: Concerning invalid mappings,

one source of defect is mapping linguistic properties to ontological properties. For

instance, in our example shown in Fig. 4 (left) Class.isAbstract which represents a

linguistic property was automatically mapped by COMA++ to Entity.name which

represents an ontological property. Patterns from the Specialization category trans-

form linguistic properties to concepts, thus tackling this problem, because only onto-

logical properties remain in the refactored ontology. In Fig. 4 (right) one can see that

no mappings between linguistic and ontological properties are possible.

_Attribute

_Role

_Attribute_name:String

_Role_name : String

NamedElementNamedElement

namename : : stringstring

ClassClass

isAbstractisAbstract : : BooleanBoolean

ownedAttributeownedAttribute : : PropertyProperty

subClasssubClass : : ClassClass

superClasssuperClass : : ClassClass

AssociationAssociation

memberEndmemberEnd : : PropertyProperty

ownedEndownedEnd : : PropertyProperty

PropertyProperty

upperupper : integer: integer

lowerlower : integer: integer

associationassociation : Association: Association

owningAssociationowningAssociation : : AssoAsso……

owningClassowningClass : : ClassClass

aggregationaggregation

_Role

EntityEntity

namename : : stringstring

general_Entitygeneral_Entity : : EntityEntity

specific_Entityspecific_Entity: : EntityEntity

rolerole : : RoleRole

attributeattribute : Attribute: Attribute

AttributeAttribute

entityentity : : EntityEntity

namename : : stringstring

RoleRole

relationshiprelationship : : RelatioRelatio……

refersTorefersTo : : EntityEntity

namename : : stringstring

cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship

rolerole : : RoleRole

namename : : stringstring

CardinalityCardinality

min : min : stringstring

maxmax : : stringstring

Property

Attribute

Role

UML.owl ER.owl

?

2

4

1

ClassClass

ConcreteClassConcreteClass

AbstractClassAbstractClass

ownedAttributeownedAttribute : Attribute: Attribute

classNameclassName : String: String

MultiplicityMultiplicity

lowerlower : integer: integer

upperupper : integer: integer

PropertyProperty

RoleRole

roleNameroleName : : stringstring

associationassociation : Association: Association

NonRoleNonRole

IntrinsicAttributeIntrinsicAttribute

intrinsicAttributeNameintrinsicAttributeName : : stringstring

NavigableRoleNavigableRole

NonNavigableRoleNonNavigableRole

AssociationAssociation

associationNameassociationName : : stringstring

memberEndmemberEnd : : RoleRole

ownedEndownedEnd : : NonAttributeNonAttribute

EntityEntity

namename : : stringstring

has_general_Entityhas_general_Entity : IS_A: IS_A……

has_specific_Entityhas_specific_Entity: IS_A: IS_A……

rolerole : : RoleRole

attributeattribute : Attribute: Attribute

AttributeAttribute

entityentity : : EntityEntity

namename : : stringstring

RoleRole

relationshiprelationship : : RelationshipRelationship

refersTorefersTo : : EntityEntity

namename : : stringstring

cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship

rolerole : : RoleRole

namename : : stringstring

CardinalityCardinality

min : min : stringstring

maxmax : : stringstring

IS_A_RelationIS_A_Relation

ER.owlUML.owl

Attribute

RoleRole

IntrinsicAttribute

3

2

3

1

1

2

2

2

RefactoredOntologyPseudoOntology

_Attribute

_Role

_Attribute_name:String

_Role_name : String

NamedElementNamedElement

namename : : stringstring

ClassClass

isAbstractisAbstract : : BooleanBoolean

ownedAttributeownedAttribute : : PropertyProperty

subClasssubClass : : ClassClass

superClasssuperClass : : ClassClass

AssociationAssociation

memberEndmemberEnd : : PropertyProperty

ownedEndownedEnd : : PropertyProperty

PropertyProperty

upperupper : integer: integer

lowerlower : integer: integer

associationassociation : Association: Association

owningAssociationowningAssociation : : AssoAsso……

owningClassowningClass : : ClassClass

aggregationaggregation

_Role

EntityEntity

namename : : stringstring

general_Entitygeneral_Entity : : EntityEntity

specific_Entityspecific_Entity: : EntityEntity

rolerole : : RoleRole

attributeattribute : Attribute: Attribute

AttributeAttribute

entityentity : : EntityEntity

namename : : stringstring

RoleRole

relationshiprelationship : : RelatioRelatio……

refersTorefersTo : : EntityEntity

namename : : stringstring

cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship

rolerole : : RoleRole

namename : : stringstring

CardinalityCardinality

min : min : stringstring

maxmax : : stringstring

Property

Attribute

Role

UML.owl ER.owl

?

2

4

1

ClassClass

ConcreteClassConcreteClass

AbstractClassAbstractClass

ownedAttributeownedAttribute : Attribute: Attribute

classNameclassName : String: String

MultiplicityMultiplicity

lowerlower : integer: integer

upperupper : integer: integer

PropertyProperty

RoleRole

roleNameroleName : : stringstring

associationassociation : Association: Association

NonRoleNonRole

IntrinsicAttributeIntrinsicAttribute

intrinsicAttributeNameintrinsicAttributeName : : stringstring

NavigableRoleNavigableRole

NonNavigableRoleNonNavigableRole

AssociationAssociation

associationNameassociationName : : stringstring

memberEndmemberEnd : : RoleRole

ownedEndownedEnd : : NonAttributeNonAttribute

EntityEntity

namename : : stringstring

has_general_Entityhas_general_Entity : IS_A: IS_A……

has_specific_Entityhas_specific_Entity: IS_A: IS_A……

rolerole : : RoleRole

attributeattribute : Attribute: Attribute

AttributeAttribute

entityentity : : EntityEntity

namename : : stringstring

RoleRole

relationshiprelationship : : RelationshipRelationship

refersTorefersTo : : EntityEntity

namename : : stringstring

cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship

rolerole : : RoleRole

namename : : stringstring

CardinalityCardinality

min : min : stringstring

maxmax : : stringstring

IS_A_RelationIS_A_Relation

ER.owlUML.owl

Attribute

RoleRole

IntrinsicAttribute

3

2

3

1

1

2

2

2

RefactoredOntologyPseudoOntology

Fig. 4. COMA++ mapping between pseudo-ontologies and refactored ontologies

When considering the effect of the refactoring step on the mapping process, one can

see a higher potential for manually fine-tuning the mapping due to the finer granularity

of a refactored ontology. The improvement in mapping potential, however, comes at

the cost of performing the refactoring step and of dealing with a higher number of

classes. The alternative would be to use a more sophisticated mapping language to

describe unambiguous mappings. In contrast, our approach of using refactoring pat-

terns offers a way to solve the discussed mapping problems through simple semantic

correspondences, only. Consequently, the overall complexity of the mapping process

is decreased due to its splitting into a refactoring part, which brings the pseudo-

ontologies to a common granularity and a mapping part, which relies on simple equal-

ity mappings that can be generated semi-automatically.

6 Related Work

In terms of the applied technologies and the overall goals of the ModelCVS project,

our work is generally related to the areas of model engineering [3], semantic integra-

tion [27] and tool integration [34]. More specifically, the proposed lifting procedure is

related to approaches concerned with metadata lifting, refactoring and ontology engi-

neering, which we will focus on in the following paragraphs.

Our work is to a good deal influenced by efforts which try to close the gap between

the model engineering technical space and the ontology engineering technical space.

Among these are, e.g. Bezivin et al. [4] who argue for a unified M3 infrastructure and

Atkinson [1] who showed that there are plenty similarities between the two technical

spaces and that differences are mostly community-based or of historic nature. Natu-

rally, an M3 unified infrastructure could possibly ease the proposed lifting procedure.

Concrete efforts aiming to provide an adequate bridge encompass [9], specifying a

mapping from UML to DAML-OIL, and most prominently the submissions [14] to the

OMG’s ODM RFP [22] also suggesting a mapping from UML to OWL. Although

these efforts influenced the mapping proposed in our conversion step, our focus is not

on making a rich language like UML fit for ontology modeling, but on extracting

meaningful ontologies from metamodels defining modeling languages.

Many other efforts aiming at semantic integration of data also use a procedure that

lifts metadata to ontologies. These efforts use XML Schemata [33],[6],[11],[30]

which are mapped to RDFS or to OWL [10], respectively. [24] carries out an addi-

tional normalization step after lifting, but focuses on ameliorating lexical and simple

structural heterogeneities, only. All of these approaches are not immediately reusable

in our metamodel-centric context, however, and none of the above approaches relies

on refactoring patterns that would allow to make hidden concepts explicit. As an ex-

ample, [26] lifts XML schemata and states that the resulting ontologies “will be ad-

hoc”. Our refactoring approach of pseudo-ontologies tries to deal with this problem.

Furthermore, the refactored OWL ontologies can be matched without the need for a

complex mapping or query language, which addresses the problem identified in [21]

that calls for an OWL query language. There is few related work in terms of refactor-

ing ontologies that were created from an underlying metadata representation aiming at

a shift in focus as we do. [25] tries to find implicit semantics through linguistic and

structural analysis in labels of hierarchical structures on the Web, but seems not appli-

cable to find hidden concepts in modeling languages, nor does it provide means like to

reify these. An interesting approach to ontology refactoring is discussed in [5], which,

as opposed to our approach, has the goal of pruning an ontology and deriving a

schema thereof, that is then refactored towards an implementation oriented focus.

[32] identifies variability, which is the ability to express semantically equal con-

cepts differently, as the reason for different conceptual models being able to meet the

same requirements. Our work can be seen as addressing the problems of heterogenei-

ties introduced due to variability, as the refactoring step can help to make concepts

explicit in a uniform way, even though they are initially hidden in different ways.

7 Conclusion

In this paper we have introduced the lifting procedure, which allows to create ontolo-

gies from metamodels representing modeling languages. The application of refactor-

ing patterns on the resulting ontologies can make originally hidden concepts explicit

and thus improve automation support for semantic integration tasks. Although it is not

foreseeable that such tasks will ever be fully automated, we believe that support for

the at least semi-automatic integration of modeling tools via their modeling languages

is feasible. It is easy to see, that such tool integration tasks require proper tool support

and methods guiding the integration process themselves.

Lifting metamodels to ontologies is only one important step in realizing the

ModelCVS project. Future work will focus on defining specific domain ontologies

that can be relied on in the enrichment step to further enhance ontology matching, as

well as enhancing the tracing and the code generation mechanisms to automatically

derive model transformation programs from higher-level integration specifications.

References

1. Atkinson C.: On the Unification of MDA and Web-based Knowledge Representa-
tion Technologies. 1st International Workshop on the Model-Driven Semantic Web (2004)

2. Aumueller, D.; Do, H., Massmann, S.; Rahm, E.: Schema and ontology matching with

COMA++. SIGMOD Conference, June (2005)

3. Bézivin, J.: On the Unification Power of Models. Software and System Modeling (SoSym)

4(2):171-188, (2005)

4. Bézivin J. et. al.: An M3-Neutral infrastructure for bridging model engineering and ontol-

ogy engineering. In: Proc. of the First International Conference on Interoperability of En-

terprise Software and Applications. Springer, p. 159-171. (2005)

5. Conesa J.: Ontology-Driven Information Systems: Pruning and Refactoring of Ontologies.

Doctoral Syposium of 7th Int. Conf. on the Unified Modeling Language, Lisbonl, (2004)

6. Cruz I. F., Xiao Huiyong, Hsu Feihong.: An Ontology-Based Framework for XML Seman-

tic Integration. Int. Database Engineering and Applications Symposium, 217-226 (2004)

7. Eclipse Tools Project: Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/

8. Didonet Del Fabro M., Bézivin J., Jouault F., Breton E., Gueltas G.: AMW: a generic

model weaver. Proc. of the 1ères Journées sur l'Ingénierie Dirigée par les Modèles, (2005)

9. Falkovych K., Sabou M., Stuckenschmidt H.: UML for the Semantic Web: Transformation-

Based Approaches. Knowledge Transformation for the Semantic Web. IOS Press, (2003)

10. Ferdinand M. et al.: Lifting XML Schema to OWL, 4th Int. Conf. on Web Engineering

(ICWE), Munich, Germany, July, (2004)

11. Fodor O., Dell'Erba M., Ricci F., Spada A., Werthner H.: Conceptual normalisation of

XML data for interoperability in tourism. Proc. of the Workshop on Knowledge Transfor-

mation for the Semantic Web, Lyon, France, July, (2002)
12. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional, (1997)

13. Haller M., Pröll B., Retschitzegger W., Tjoa A.M., Wagner R., “Integrating Heterogeneous

Tourism Information in TIScover - The MIRO-Web Approach”, Conf. on Information and

Communication Technologies in Tourism (ENTER), Barcelona, April, 2000.

14. IBM, Sandpiper Software: Fourth Revised Submission to the OMG RFP ad/2003-03-40,

www.omg.org/docs/ad/05-09-08.pdf

15. Jena 2 Ontology API, http://jena.sourceforge.net/ontology/

16. Jouault F., Kurtev I.: Transforming Models with ATL: Proceedings of the Model Trans-

formations in Practice Workshop at MoDELS, Montego Bay, Jamaica (2005)

17. Kappel et. al.: On Models and Ontologies - A Layered Approach for Model-based Tool

Integration. Modellierung 2006, Innsbruck, March (2006)

18. Kappel et. al.: Towards A Semantic Infrastructure Supporting Model-based Tool Integra-

tion. 1st Int. Workshop on Global integrated Model Management, Shanghai, May (2006)

19. Kappel G., Kapsammer E., Retschitzegger W.: Integrating XML and Relational Database

Systems, in WWW Journal, Kluwer Academic Publishers, June 2003.

20. Kramler G., Kapsammer E., Kappel G., Retschitzegger W.: Towards Using UML 2 for

Modeling Web Service Collaboration Protocols", in Proc. of the Int. Conf. on Interopera-

bility of Enterprise Software and Applications, Geneva, Switzerland, Feb. 2005.

21. Lehti P., Fankhauser P.: XML Data Integration with OWL: Experiences and Challenges.

Symposium on Applications and the Internet, p. 160, (2004)

22. OMG: Ontology Definition Metamodel RFP, ad/2003-3-40, (2003)

23. OMG: UML 2.0 Infrastructure Final Adopted Specification, formal/05-07-05, (2005)

24. Maedche A., Motik B., Silva N., Volz R.: MAFRA - An Ontology Mapping Framework in

the Semantic Web. ECAI Workshop on Knowledge Transformation, Lyon, France, (2002)

25. Magnini B., Serafini L., Speranza M.: Making explicit the Semantics Hidden in Schema

Models. Proc. of the Workshop on Human Language Technology for the Semantic Web

and Web Services, ISWC, Florida, October, (2003)

26. Moran M., Mocan A.: Towards Translating between XML and WSML. 2nd WSMO Imple-

mentation Workshop (WIW), Innsbruck, Austria, June (2005)

27. Noy N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD

Record, Special Issue on Semantic Integration, 33 (4), December, (2004)

28. Reiter T., Kapsammer E., Retschitzegger W., Schwinger W.: Model Integration Through

Mega Operations, Proc. of the Int. Workshop on Model-driven Web Engineering (MDWE),

Sydney, Australia, July 2005

29. Reiter T., Retschitzegger W., Schwinger W., Stumptner M.: A Generator Framework for

Domain-Specific Model Transformation Languages, Proc of at the 8th Int. Conf. on Enter-

prise Information Systems (ICEIS 2006), 23-27 May 2006, Paphos, Cyprus.

30. Roser S.: Ontology-based Model Transformation. Doctoral Symposium of the 8th Int. Con-

ference on Model Driven Engineering Languages and Systems, Jamaica, October, (2005)

31. Schrefl M., Bernauer M., Kapsammer E., Pröll B., Retschitzegger W., Thalhammer Th.:

Self-Maintaining Web Pages, Information Systems (IS), Vol. 28/8, Elsevier, 2003.

32. Verelst J., Du Bois B., Demeyer S.: Using Refactoring Techniques to Exploit Variability in

Conceptual Modeling. ERCIM-ESF Workshop, Challenges in Software Evolution, (2005)

33. Volz et al.: OntoLIFT. IST Proj. 2001-33052 WonderWeb, Del. 11, (2003)

34. Wasserman A.I.: Tool integration in software engineering environments, Proc. of the Int.

Workshop on Software engineering environments, Springer, New York, USA, (1989)

35. Wimmer M., Kramler G.: Bridging Grammarware and Modelware, in Proc. of Satellite

Events at the MoDELS 2005 Conference, Montego Bay, Jamaica, Oct. 2005

