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Abstract: Ontology and schema matching are well established techniques, which
have been applied in various integration scenarios, e.g., web service composition and
database integration. Consequently, matching tools enabling automatic matching of
various kinds of schemas are available. In the field of model-driven engineering, in
contrast to schema and ontology integration, the integration of modeling languages re-
lies on manual tasks such as writing model transformation code, which is tedious and
error-prone. Therefore, we propose the application of ontology and schema matching
techniques for automatically exploring semantic correspondences between metamod-
els, which are currently the modeling language definitions of choice. The main focus
of this paper is on reporting preliminary results and lessons learned by evaluating cur-
rently available ontology matching tools for their metamodel matching potential.

1 Introduction

The rise of the Semantic Web [BLHL01] influences many areas of computer science. Not
only the web engineering community feels the need for semantically enhanced technolo-
gies to increase the World Wide Web’s machine processability but also researchers from
a variety of fields follow this stream. Ontologies, which originate from knowledge rep-
resentation, have experienced their renaissance and have become a mainstream research
area. Nowadays, they are considered a very promising approach to handle any kind of in-
formation. They provide a vocabulary to describe a domain of interest and a specification
of the used terms’ meaning. Much effort is spent on the development of tools to efficiently
process ontologies, including ontology creation tools, query tools, matching tools, and
reasoning tools.

At about the same time the notion of ”The Semantic Web” was born, a new software ap-
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proach was officially launched — the Model Driven Architecture (MDA) — intended to
support Model Driven Engineering (MDE). As indicated by their names, models play the
key role in MDA as well as in MDE and become first-class citizens in the software de-
velopment process. Models provide a very high level of abstraction on the one hand, on
the other hand they are very well suited for visualization. With the rise of MDA, the land-
scape of available tools for model-driven software development is growing steadily. These
tools support a wide range of tasks like model creation, simulation, checking, and code
generation. Coming along with this multitude of tools, heterogeneity increases, which
complicates or even prevents tool interoperability due to different syntax, semantics, ex-
change formats, etc. The efficient exchange of models, however, constitutes an important
prerequisite for effective software development processes based on MDE. Unfortunately,
the transformation of one model to another model and the development of integration so-
lutions is a very cumbersome, error-prone, and repetitive task if performed manually. An
approach to tackle this problem at least semi-automatically is to consider the metamodels
of the modeling languages, to identify correspondences between them in order to iden-
tify concrete mappings of metamodel concepts. To the best of our knowledge, there is no
explicit tool support for matching metamodels.

If we take a look at the field of ontology engineering and semantic web, we find a multitude
of techniques developed for various integration purposes like ontology matching that try
to identify semantic correspondences between ontologies. Ontology matching supports
handling of heterogeneous ontologies. The approach originates from former application
domains of matching systems like database or XML schema integration. As metamodels
and ontologies are closely related, it seems obvious to use those tools for the identification
of semantic correspondences between metamodels.

Thus, we propose a novel application domain for traditional ontology and schema match-
ing systems: the integration of modeling languages via their metamodels. The contribu-
tions of this paper are twofold: (1) we provide a collection of metamodels represented
as ontologies, namely the metamodels of the UML class diagram (version 1.4 and 2.0),
the modeling language of Eclipse’s modeling framework (Ecore), the extended entity-
relationship language (EER), and a web modeling language (WebML). (2) We report on
our experiences when applying a set of ontology matching tools for metamodel matching
and specifically focus on the tools’ suitability for this task.

The remainder of this paper is structured as follows: The next section gives an overview
of the model-driven engineering and ontology engineering technical spaces, and covers
the description of our proposed Metamodel Matching Framework. Section 3 describes
the setup and results of our metamodel matching experiment. Section 4 summarizes our
lessons learned. Finally, conclusions and future work concerning specific extensions for
metamodel matching are given.



2 On Models, Metamodels, Ontologies, and How They Match

We propose a framework based on ontologies for the matching of metamodels. The inten-
tion of using ontologies as means for representing metamodels is to benefit from the wide
range of tools available for ontology processing. Roughly speaking, our framework con-
sists of 2 components: (1) the ModelWare and (2) the OntoWare, namely the part which
deals with models and metamodels and the part which is about the ontologies. Before go-
ing into the details of our framework, we introduce some basic terminology and concepts.

2.1 ModelWare and OntoWare

Recently, Model Driven Engineering (MDE) [AK03] has received considerable attention
and is well on the way to become the new paradigm for software engineering. In MDE,
models replace code as the primary artefacts in the software development process. Now
developers are forced to focus on modeling the problem domain and not on program-
ming one possible (platform-specific) solution. Thus, the abstraction from specific pro-
gramming platforms by modeling at a platform-independent level and the definition of
model transformations allow for the generation of platform-specific implementations. The
Model Driven Architecture (MDA) [Gro03] by the Object Management Group (OMG) is a
very prominent example of MDE. MDA is based on the OMG’s standards, amongst them
its modeling language, The Unified Modeling Language (UML) [Gro05], and its meta-
modelling language, namely the Meta Object Facility (MOF) [Gro04].

The usage of diverse domain-specific modeling languages and the usage of diverse ver-
sions of the same language rise the need for language integration in order to ensure in-
teroperability between different tools. The first task in the integration process consists of
finding semantically equivalent modeling concepts between two languages, i.e., finding
equivalent metamodel elements. This task is known as model weaving and is typically
done manually. The result of the model weaving task is a weaving model which incor-
porates all semantically equivalent links between elements of the metamodels. These
weaving models can be used as input for deriving model transformations to realize the
operational integration of models. Still, there are no approved attempts for the automation
of the model weaving task and the derivation of model transformation code.

In the last few years, ontologies have gained enormous attention as they are considered
as a very promising element in the creation of semantically enhanced technologies. The
notion ontology subsumes a variety of terms and definitions. Ontologies aim to capture
the consensual knowledge of a given domain in a generic and formal way [CFLGP06].

As the same domain knowledge can be modeled in various manners by different ontolo-
gies, it is necessary to find ways to detect and to express correspondences. Ontology
matching is the task of manually, automatically or semi-automatically find the semanti-
cally equivalent elements between two ontologies. It can be seen as a set of rewriting
rules which associates the elements of a source ontology with the elements of the target
ontology. The result of the matching process is called ontology mapping. And this is our



starting point – we want to use those tools for the machting of metamodels.

What exactly is the difference between an ontology and a metamodel? Even though a de-
tailed discussion of this question is out of scope of this paper, we will shortly reflect our
point of view. Confusion between the terms ”ontology” and ”model” or ”ontology” and
”metamodel” arises easily as on the first glance the differences between those concepts do
not appear very severe. One possible way to arrange the terms ”ontology” and ”model”
is based on Lassila’s and McGuinness’ spectrum of ontologies [LM01] and the 3D matrix
by A. Gruber et. al. [GWG06]. According to those authors ontologies range from simple
informal catalogs over more formal schema representations to heavy-weight logic-based
ontologies. Modeling languages like UML, ER, etc. can be seen as formal schemas and
thus can be treated as ontologies. The difference lies in the expressiveness of the formal-
ism. Due to this difference it is possible to make a more fine grained distinction between
different kinds of ontologies.

Ontologies and metamodels can be distinguished from their domain of discourse. Ontolo-
gies are mostly used for modeling real world domains or systems by means of a schema
and describing real world entities by means of individuals. In contrast, metamodels are
used for defining modeling languages which are used to describe real world domains or
systems. This means that the instances of metamodels are not representing real world en-
tities, instead the instances are models. Furthermore, metamodels consist of containment
relationships between elements, which describe the data structure for storing the models,
however, this data storage aspect is not covered by currently used ontology languages.

2.2 Bridging ModelWare and OntoWare

As we have already discussed above, the integration of modeling languages is an absolute
must in the technical space of the ModelWare. However, there are no automatic matching
techniques available and therefore, the integration task is currently performed manually.
Before implementing new methods for metamodel matching, which we see as a special
kind of schema or ontology matching, we want to explore the already existing match-
ing techniques of the OntoWare technical space. Thus, we propose a metamodel match-
ing framework which is based on a transition from ModelWare to OntoWare by means
of transforming Ecore-based [BSM+03] metamodels into OWL-based ontologies. After
achieving this transition, we can reuse the ontology matching tools which process the on-
tologies actually representing the metamodels. After performing the matching task, we
translate the ontology mapping into a weaving model. From this weaving model, we are
able to derive the actually needed transformation rules to transform models conforming to
the metamodel A into models conforming to the metamodel B. Note that the OntoWare
layer is completely transparent to the user who can simply focus on the ModelWare.

Figure 1 illustrates the architecture of our framework on the left-hand side and provides
a concrete example on the right-hand side where the lifting of a concrete metamodel
(namely, the metamodel of the UML class diagram) to an ontology is shown. Detailed
information on the lifting process can be found in [KKK+06].
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Figure 1: Metamodel Matching Framework

3 Metamodel Matching Experiment

This work is focused on the evaluation of ontology matching tools with respect to their
suitability for metamodel matching. In the following, we discuss the selected matching
systems, the kind and structure of the used metamodels, how we measure the quality of
the matching results, and, finally, the results of the experiment.

3.1 Selected Matching Systems

In this work, we concentrate on evaluating schema-based matching tools, i.e, we do not
consider instance-based matching techniques. This is due to the fact that we are using the
data provided by metamodels (schema-level) and not data from models (instance-level)
for finding equivalences between metamodel elements. The comprehension of instance-
based matching techniques that is, the reasoning about models conforming to metamodels,
remains a subject to future work. Another requirement the matching tools must fulfill is
that they must at least allow to identify simple one-to-one equivalences between two on-
tologies. The last requirement is that the tools must be capable of reading in OWL input
files. Currently, most tools support OWL Lite, only, which is not sufficient for metamod-
els represented in OWL. In particular, OWL DL is needed when using enumerations and
cardinality restrictions greater than 1 in the metamodels. External information resources,
such as dictionaries, thesauri or taxonomies, are very promising and would help to in-
crease the quality of the automatically computed mappings. However, for our experiments
we do not take advantage of domain-specific external information resources. As with the
instance-based matching techniques, the definition of such external resources and the ap-



plication as well as user interaction during the matching task is left to future work. In view
of this criteria the following four tools were chosen: Alignment API [Euz04], COMA++
[ADMR05], CROSI [KHRS05], and FOAM [ES05].

3.2 Measures for the Quality of Matching

To measure the quality of the matching tools, we reuse measures stemming from the field
of information retrieval to compare the manually determined matches M (also called rele-
vant matches) to the automatically found matches A. The primary measures are precision
and recall [SM87], which are negatively correlated. Thus, we use a common combination
of the primary measures, namely F-measure [vR79].

The measures are based on the notion of true positives (tp = A∩M ), false positives (fp =
A∩ M̄ where M̄ = |tn|+ |fp|), and false negatives (fn = M ∩ Ā where Ā = |fn|+ |tn|).
tn stands for true negatives. Based on the cardinalities of these sets the aforementioned
measures are defined similarly as in [SM87], [vR79] as follows:

• Precision = |tp|
|A| = |tp|

|tp|+|fp|

• Recall = |tp|
|M | = |tp|

|tp|+|fn|

• F-Measure = 2∗|tp|
(|fn|+|tp|)+(|tp|+|fp|) = 2 ∗ Precision∗Recall

Precision+Recall

Precision reflects the share of relevant matches among all the automatically retrieved
matches given by A. This measure can also be interpreted as the conditional probability
P (M/A). A higher precision means that the matches found are more likely to be correct.
If the number of false positives equals zero, all matches are to be considered correct.

Recall reflects the frequency of relevant matches compared to the set of relevant matches
M. Again this measure can be expressed as a conditional probability which is given by
P (A/M). A high recall states that nearly all relevant matches have been found. Nothing
is said about wrong matches contained in A.

F-measure takes both precision and recall into account to overcome some over- or un-
derestimations of the two measures. Formally the F-measure is in our case the equally
weighted average of the precision and recall measure.

3.3 A Testset of Structural Modeling Languages

For the elaborate evaluation of the selected matching tools we developed a testset which
consists of five structural modeling languages. These are frequently used in software en-



gineering, namely UML 2.01 (class diagram part), UML 1.42 (class diagram part), Ecore3,
WebML4 (content model part) and EER5. Table 1 summarizes the main characteristics
of the modeling languages by means of counting the metamodel elements according to
their types. As the numbers suggest, the metamodels can be categorized by their size in
large, middle and small. Furthermore, Table 1 summarizes the main characteristics of the
taxonomy expressed in the metamodels. UML 1.4, UML 2.0 and Ecore are heavily us-
ing inheritance relationships resulting in a large inheritance depth, in contrast to WebML
and EER, which are only using some inheritance relationships resulting in a maximum
inheritance depth of one. Furthermore, the UML metamodels make use of multiple in-
heritance. Finally, Table 1 states the origin of the terminology which is used for naming
the metamodel elements. In this context, it must be mentioned, that the UML metamodels
and Ecore use object-oriented terminology, in contrast to WebML and EER, which use
database terminology.

Table 1: Testset: Structural Modeling Languages

UM
L

2.0
CD

UM
L

1.4
CD

Eco
re

W
eb

M
L

EER

#Class 40 33 18 6 7
#Attribute 18 31 31 8 5
#Containment 23 8 9 3 4
#Reference 52 29 25 4 7
#Enumeration 3 6 0 2 0
#EnumLiteral 11 18 0 15 0
#AllModelElements 158 143 83 53 23
Size large large middle small small
Taxonomy
#SuperClass 17 11 7 1 1
#SubClass 36 28 16 4 2
#Multiple Inheritance 9 3 0 0 0
Inheritance Depth 6 5 5 1 1
Terminology OO OO OO DB DB

These five metamodels are automatically transformed into OWL ontologies by our meta-
model lifter component [KKK+06]. The metamodels (expressed in Ecore) and the cor-
responding ontologies (expressed in OWL) can be found at our ModelCVS 6 project web
site. After establishing the metamodels and ontologies, we defined 10 matching scenarios
(each scenario matches two different metamodels) and furthermore, we developed manual
mappings for each scenario. In addition to the metamodels and ontologies, the mappings
between the ontologies expressed in INRIA Alignment Format [Euz04] can also be found
at the ModelCVS project site.

Figure 2 shows an excerpt of the Ecore and UML 2.0 metamodel in UML class diagram
notation (cf. upper half of Figure 2) and as trees (cf. lower part of Figure 2). In addi-

1available at http://www.omg.org/technology/documents/modeling spec catalog.htm#UML
2available at http://www.omg.org/technology/documents/modeling spec catalog.htm#UML
3available at http://www.eclipse.org/emf
4available at http://www.big.tuwien.ac.at/projects/webML
5based on [Che76]
6http://www.modelcvs.org/
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Figure 2: Mapping Example: Ecore to UML 2.0

tion to the metamodel elements, the lower part of Figure 2 illustrates the mappings a-f
between the two metamodels. In Ecore EClasses can be abstract or concrete (cf. attribute
abstract) and own a collection of EAttributes and a collection of EReferences. While
EAttributes represent intrinsic attributes of EClasses, EReferences represent relationships
between EClasses and may be composition relationships (cf. attribute containment). In
UML Classes own Properties representing intrinsic attributes. However, Properties can
also be owned by Associations. In such cases, Properties represent association ends (cf.
memberEnd in Figure 2) also called roles. Associatons may be of type simple, aggregation
or composition depending on the attribute aggregation of the contained Properties. The
xor-constraint between ownedAttributes and memberEnd ensures that a property is either
an attribute or an association end but not both at the same time. This xor-constraint leads
to the duplication of the class Property in the tree-based view.

Mappings a and b in Figure 2 represent clear one-to-one correspondences. Mapping a
specifies the equivalence between EClass in Ecore and Class in UML. Mapping b defines
that the attribute abstract of EClass is equivalent to the attribute isAbstract of Class, in par-
ticular also data types and multiplicities of the two attributes match exactly. Mapping c de-
fines that the reference eAttribute of EClass is equivalent to the reference ownedAttributes
of Class. However, the attributes of the classes EAttribute and Property do not match at
all. Mapping d defines that the reference eReferences is equivalent to memberEnd. In this
case, the features of the classes EReference and Property are mappable (cf. Mapping e
and f ). However, two problems are associated with mapping d and e. First, the attribute
containment of EReference is of type Boolean and the attribute aggregation of Property is
of type Enumeration with the values none, shared and composite. This mapping requires
a special integration rule, namely how the boolean values true and false are mapped to the
three enumeration literals. Second, there is no mapping from an Ecore concept to the class
Association of UML 2.0 resulting in the problem of missing container objects, when trans-
forming eReferences to memberEnds, because properties which are memberEnds must be
owned by an association. This circumstance further leads to the problem that the generated
model is not conform to the associated metamodel.



In general, the Ecore and the UML 2.0 metamodel offer nearly equivalent modeling con-
cepts, but in particular some heterogeneities, e.g., linguistic and structural, exist. Fur-
thermore, this simple mapping example already points out that zero-to-one mappings are
quite common between metamodels and complicate the derivation of model transforma-
tion considerably. Further information on zero-to-one mappings and solutions for deriving
transformations in the field of schema integration may be found in [LN07].

3.4 Experimental Results

Due to lack of space, Figure 3 shows the results of the ontology matching tools used with
their default settings. All experimental results are available at the ModelCVS project web
site.

Figure 3 gives a detailed overview of the results gained with the default settings of the tools
illustrated as a star glyph. Each axis of the glyph represents a mapping of two metamodels.
The three values represent precision, recall and F-measure. Figure 3 allows for an easy
comparision of the matching quality of the four tools and furthermore can identify which
integration tasks deliver good or bad results. Some tools did not find any results for some
matching tasks, therefore some axis of the star glyph are empty. The inner gray ring in
Figure 3 describes the value of 0.5, which is in particular the most interesting value for the
F-measure. An F-measure higher than 0.5 indicates a positive benefit, a value lower than
0.5 means a negative benefit.

In the following, we discuss the best and worst cases for our three measures when using
the tools with their default settings. The highest precision value was achieved with Align-
mentAPI for UML1.4 to UML2.0 (precision=0.96; recall=0.40; F-measure=0.57). The
best recall and F-measure value was achieved with COMA++ for UML1.4 to UML2.0
(precision=0.63; recall=0.58, F-measure=0.61).

To calculate an average value of precision, recall and F-measure we set the measurement
values to zero for the cases when the tools did not deliver results. The average is calculated
as the arithmetic mean by summarizing all values and divide it by the number of possible
matching results (10). Each measure has a range between zero and one therefore the
assumption of zero for the tools which did not find any result is passable.

The best average precision was achieved by CROSI (precision=0.33; recall=0.15; F-
measure=0.18) and FOAM (precision=0.33; recall=0.09; F-measure=0.14). 33% of the
found mappings of CROSI and FOAM are correct but CROSI found 15% of all possible
and correct mappings instead of FOAM with 9%. Therefore, the benefit measured in terms
of F-measure is better for CROSI (0.18) than for FOAM (0.14). The best average recall and
F-measure was achieved by COMA++ (precision=0.26; recall=0.25; F-measure=0.25).
With the precision of 0.26 and recall of 0.25 we have a balanced result.

In our evaluation we have also experimented with modified settings of the tools result-
ing in 13 different tool settings (four tools with standard settings + nine modifications).
The best precision of the nine modifications was achieved for UML1.4 to UML2.0 with
modified CROSI (precision=1; recall=0.29; F-measure=0.45). Compared to the results of
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Figure 3: Matching results (standard settings)

CROSI with standard settings (precision=0.27; recall=0.32; F-measure=0.30) we can say
that the modifications achieved a much better result. All found mappings were correct and
only 3% less of all possible correct mappings were identified as with CROSI’s default set-
tings. The best recall and also the best F-measure was achieved with modified COMA++
for UML1.4 to UML2.0 (precision=0.69; recall=0.57; F-measure=0.62), although these
results do not differ so much from the results of COMA++ with default settings (preci-
sion=0.63; recall=0.58; F-measure=0.61).

If we examine the average of the three measures of the 13 tool versions, the best preci-
sion over all integration scenarios was achieved with modified settings in CROSI (preci-
sion=0.83), but the recall and F-measure are very low (recall=0.12 and F-measure=0.20).
The found mappings are mostly correct, but there were many mappings left that were not
found by the tool. The best recall was achieved with a modified version of COMA++
(recall=0.33). Despite of the low precision (precision=0.37), it leads also to the best F-



measure (F-measure=0.34). The benefit of the matching results of COMA++ is much
higher as the benefit of CROSI with its high precision. Summarizing, it can be said that
modifying the settings often leads to a better precision. However, the higher the precision
gets, the lower is the value of the recall, i.e., it is hard to increase the F-measure value
considerably.

3.5 Conclusion of the Experiment

Besides the different modifications and combinations of different matching techniques
which produce higher precision values but at the same time lower the recall values, the
metamodels must fulfill some requirements in order to prove that matching tools are worth
using. The 10 integration scenarios showed that the metamodels must have a common
terminology and taxonomy, which is the case when matching UML 1.4, UML 2.0 and
Ecore. These combinations lead to the best results despite their size which obviously lead
to a higher number of elements that have to be matched. Furthermore, good results are
achieved when matching WebML with EER. These two metamodels also have a common
terminology and both do not heavily use inheritance relationships. In contrast, matching
WebML or EER with UML 1.4, UML 2.0 or Ecore results in a very low precision and in
a very poor recall which is mostly below 0.10. These results lead to the conclusion that
ontology matching tools are not always appropriate for matching metamodels. Instead, the
metamodels must fulfill some common properties which of course is not always the case
when matching real-world metamodels.

4 Lessons Learned

In this section we present our lessons learned of the metamodel matching experiment pre-
sented in the previous chapter. In particular we discuss on the one hand the problems
we have faced with the input schemas, produced mappings, and matching tools and on
the other hand the usefulness of the generated mappings for deriving executable model
transformation rules.

No support for enumerations: Enumerations frequently occur in metamodels, represent-
ing a domain of constants (expressed as Literals) which are used for typing attributes.
However, Enumerations are only supported in OWL DL and not in OWL Lite. Currently,
most matching tools support OWL Lite, only, thus ignoring Enumerations, Literals and
the type information of Enumeration-typed attributes. The matching scenarios showed,
that mappings between Literals of Enumerations are very helpful for deriving the required
model transformation rules, because it must be exactly specified how the data is actually
transformed. Furthermore, the mappings between Literals are often straight forward, i.e.,
simple one-to-one correspondences. Typically, in the UML 1.4 to UML 2.0 mapping sce-
nario many correspondences between Literals and Enumerations are present.

Different modeling styles for Boolean-typed attributes: Particulary, in the UML 1.4 to UML



2.0 matching scenario the mapping between Boolean-typed attributes and Enumeration-
typed attributes is often required. This is due to the fact, that the majority of Enumerations
consisting of two Literals can be represented as Boolean. For instance, the enumeration
ordering = {unordered, ordered} is used for the type of the order attribute in UML 1.4.
In UML 2.0 the equivalent attribute isOrdered is defined as a Boolean. In such cases the
mappings between the possible values of the attributes must be also considered, i.e., the
right value combinations must be identified. For example, the Literal unordered is mapped
to false and the Literal ordered to true.

Need for value correspondences: The mapping examples showed that it is not possible to
derive all necessary information for the model transformations based on the metamodel
information, only. Besides metamodel definitions, instance values must be considered
which are required for defining the model transformation rules. The following problem
case exemplifies this requirement. In Ecore the upper cardinality has the value -1 if the
upper cardinality (of an association end) is unrestricted. In WebML the upper cardinality
is defined as N for representing a unrestricted upper cardinality. Consequently, for the
transformation rules not only the equivalent attributes are necessary. In addition, also the
equivalent values of the semantically equivalent attributes are required for transforming
the models. However, metamodels are not including such technical encoding conventions,
hence, there is no way to reason about equivalent values on metamodel level. These val-
ues are contained in the models, only. Consequently, instance-based approaches are very
interesting for deriving such value correspondences. Such an approach must reason about
instances of the metamodels, i.e., comparing elements of models which conform to their
metamodels.

Metamodel versioning is the winner: The matching scenario UML 1.4 to UML 2.0 is a
special scenario, namely an example for Metamodel Evolution. This task offers the best
matching quality in terms of used measures due to the high degree of name similarities
between UML 1.4 and UML 2.0, one can say both share a common terminology. In par-
ticular, most of the transformation rules can be automatically derived from the ontology
mappings for transforming models conforming to the smaller UML 1.4 metamodel into
models conforming to the larger UML 2.0 metamodel. Only a few more complex trans-
formation rules are necessary for the integration and are established manually.

Mappings between different types: The manually established mappings in the experiment
showed that mappings between different types (e.g., Attributes 2 References) are quite
common. These kind of mappings, however, represent one of the most challenging prob-
lems regarding their transformation into executable model transformation code. For in-
stance, when deriving a transformation rule from an Attribute 2 Reference mapping, one
must reason about how the value of the attribute is transformed to an object reference and
how the value of the attribute is expressed within the referenced object. For instance, such
a mapping is needed in the UML 1.4 to UML 2.0 integration scenario. In UML 1.4 the
default value of an attribute is described as an attribute of the class Attribute. In contrast,
in UML 2.0 the default value is not modeled as an attribute, instead it is modeled as a
reference to the class ValueSpecification.

Name equivalence does not necessarily equate with conceptual equivalence and vice versa:
When building our manual mappings, we found out that in some cases metamodel ele-



ments have the same name, but their semantics are quite different and the elements should
not be mapped by equivalence links. One prominent example is the class EnumLiteral
of the Ecore metamodel. EnumLiteral has an attribute value and also an attribute name.
The WebML metamodel contains a class DomainValue which is semantically equivalent
with EnumLiteral and has an attribute value. However, the mapping between EnumLit-
eral.value and DomainValue.value is not correct, instead EnumLiteral.name should be
mapped to DomainValue.value. This is due to the fact that EnumLiteral.value is only a
running counter for the literals. Instead, EnumLiteral.name and DomainValue.value both
present constant values of an Enumeration. This case is not solvable without additional
knowledge or exploring instances of the metamodels, i.e., the models.

No common taxonomy of modeling concepts: Building the manual mappings showed, that
there is not a high heterogeneity between the concrete classes of metamodels, but between
the abstract classes. Moreover, the design of the taxonomies in metamodels is mostly ar-
tificial and not based on a common ground resulting in different design possibilities. A
very interesting case is the following example. When mapping Ecore to UML 2.0 both
metamodels have an abstract class StructuralFeature (in Ecore called EStructuralFeature,
because Ecore uses always an ’E’ as prefix for class names). When looking at the attributes
of the two classes, it is obvious identifiable that these two classes do not share even one
semantically equivalent attribute. This problem raises two important questions. First, is
it appropriate to flatten the taxonomy hierarchy, duplicate all properties in the subclasses
and delete the abstract classes before doing the matching task? This is possible, because
abstract classes have no instances on the model level and this means there are no transfor-
mation rules required for this kind of classes. Second, should we map classes with name
equivalences as semantically equivalent or at least as semantically related when they do
not share the same properties? This means, is the terminology more important than the
structural properties, or vice versa? For model transformations the structural properties
are more important, because they must be set in the transformation rules. However, from
an ontological point of view this question might have a different answer.

Are Metamodels no typical Ontologies? Summarized, it can be said that metamodels are
composed of much more relationships between concepts and less attributes compared to
typical input schemas for ontology matching tasks. Typical input schemas consist of a
big taxonomy of concepts with attributes. However, relationships are often not present
or only to a minimal extend. Our metamodel matching experiments showed that find-
ing correspondences between relationships is the hardest task, however, the differentiation
of containment and reference relationships in the reasoning tasks are promising, because
metamodels make heavy use of containment references which are also very important
information for the model transformation definitions. Furthermore, our matching experi-
ments showed that the similarity between the different metamodels, even though they are
in the same domain, is much lower than for typical matching scenarios such as used in the
ontology matching contest 7.

7http://oaei.ontologymatching.org/2006/



5 Conclusion and Future Work

In this paper, we reported on our experience using ontology matching tools for producing
semantic correspondences between metamodels. Summarizing it can be said, that the
metamodels must have some common properties when matching tools should be used for
the integration task, such as a common terminology or taxonomy. For the evaluation of
currently existing ontology matching tools, we developed a framework for measuring the
quality of automatically produced mappings which consists of five real-world metamodels
(expressed in Ecore and OWL), mappings between them, and a tool for computing the
match quality in terms of well-established measures. This framework is freely available
on our project site and we hope that this would stimulate further research in the field of
metamodel matching. This means, the framework should be reused from third parties to
evaluate their ontology matching tools. The only precondition is an adapter which converts
the produced results into the INRIA Alignment Format [Euz04]. The objective is that the
most promising technique can then be implemented in the ModelWare technical space and
directly executed on the metamodels.

Moreover, we have presented several lessons learned and open issues which are subject
to future work for us in order to improve the metamodel matching potential. In partic-
ular, three questions are of special interest. (1) How to produce a reasoning graph for
metamodel definitions? Is the resulting graph of the OWL definitions enough or do we
need other types, e.g., are the lost containment relationships needed for deriving important
mappings? (2) Why are the results of the ontology matching contest much better than our
results – is there a big difference in the method or in the testsets? The last question would
further lead to another, more general question: (3) Is there a structural difference between
ontologies and metamodels? A possible next step would be the evaluation of ontology
matching tools which support the flexible combination of different matching techniques,
such as COMA++ supports. In this respect, we will have a look at different possibilities
of combinations and find out which one is performing best for our testset.
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