
Models in Conflict – Detection of Semantic
Conflicts in Model-based Development?

Thomas Reiter2, Kerstin Altmanninger1, Alexander Bergmayr2, Wieland
Schwinger1, and Gabriele Kotsis1

1 Department of Telecooperation
Johannes Kepler University Linz, Austria

[kerstin.altmanninger|wieland.schwinger|gabriele.kotsis]@jku.at
2 Information Systems Group (IFS)

Johannes Kepler University Linz, Austria
[bergmayr|reiter]@ifs.uni-linz.ac.at

Abstract. To make the model-driven paradigm a widespread success,
appropriate tools such as version control systems (VCS) are required to
adequately support a model-based development process. However, first
approaches specializing on model-based versioning, do not take into ac-
count the semantics of the artefacts they operate upon. Thus, conflict
detection mechanisms are based on detecting conflicting concurrent mod-
ifications on a software artefact’s syntactic representation, only, without
explicitly considering the semantics the artefact stands for.
As opposed to a heavyweight approach relying on formal mathematics,
we follow a lightweight approach that is based on creating views of a
model that explicate a certain aspect of a modeling language’s seman-
tics. Such a view is created through a model transformation from the
original model which has been edited by the developers. Using both the
original model and the generated view our approach relies on graph-based
comparison strategies to detect conflicts due to concurrent editing to de-
termine syntactic and semantic conflicts, respectively. Consequently, by
means of various example scenarios, we demonstrate how our approach
is able detect conflicts that otherwise would remain undetected.

1 Introduction

The shift from code-centric to model-centric software development places mod-
els as first class entities in “Model-driven Software Development” (MDSD) pro-
cesses. A major prerequisite for the wide acceptance of MDSD are proper meth-
ods and tools as available for traditional software development, such as build
tools, test frameworks or “Version Control Systems” (VCS). Considering the
latter, VCS are particularly essential when the development process proceeds in
parallel such that different developers concurrently modify a model, which may
result in concurrent, potentially conflicting modifications.
? This work has been partly funded by the Austrian Federal Ministry of Transport,

Innovation and Technology (BMVIT) and FFG under grant FIT-IT-810806.

Such conflicting modifications need to be resolved by appropriate techniques
for model comparison, conflict detection, conflict resolution and merging, which
in case of a heterogeneous tooling environment are required to operate on the
resulting model (i.e. state-based).

Since, as already stated, models are the first class entities in model driven
development, this should not rely on text- or tree-based VCS like Subversion [1],
CVS [2] or CoEd [3]. Although they offer excellent version control techniques
for text-based documents, the granularity of comparison is a single line. This
makes such VCS not a first-hand choice for MDSD, since for effectively dealing
with conflicting modifications, the logical structure of models has to be taken
into account.

For dealing with concurrent modifications on models and specifically for
properly identifying conflicts, it is necessary not only to consider the syntac-
tical structure of models (i.e. the syntax of the model) but also to “understand”
the model’s semantics. For example, concurrent modifications on a model may
not result in an obvious conflict when syntactically different parts of the model
(e.g., different model elements) were edited. Nevertheless, they may interfere
with each other, thus yielding an actual conflict (e.g., modification of two differ-
ent model elements may have a conflicting side effect), which without considering
the model’s semantics would remain hidden. Furthermore, certain conflicts may
only occur due to the syntactical representation of a model, since sometimes
more than one possibility exists to conceptually express the same state of affairs
in a modeling language. This does not necessarily lead to a conflict with respect
to the model’s semantics (e.g., decision nodes as well as conditional nodes in
UML activity diagrams are two ways to express alternative branches in a pro-
cess). Especially modeling languages offering “syntactic sugar” in the sense that
convenience constructs allow to express the same meaning in varying ways, can
easily give rise to the above mentioned scenario.

Whereas model comparison and model merging can be facilitated by means of
existing graph-based approaches, facilitating an “understanding” of the models
during conflict detection and conflict resolution is still an open issue for models.
We argue that through the definition of semantics, a VCS can find conflicts more
precisely during conflict detection, thus avoiding falsely indicated conflicts and
finding previously undiscovered ones.

Although, in the field of programming languages some approaches have been
presented [4] providing some “understanding”, they typically rely on formal se-
mantics and apply to certain languages, only. Such approaches cannot immedi-
ately be reused in the realm of models, since unfortunately, a full formal specifi-
cation of the semantics underlying a modeling language is very often not feasible:
On the one hand, many modeling languages do not have a formal semantics as
these are often hard and costly to define [5], and on the other hand, in the light of
a growing number of domain specific languages a flexible and more light-weight
approach is desirable.

Consequently, in this paper we lay out a light-weight approach for making
use of a modeling language’s semantics for conflict detection, which is based on

interpreting the model in a view that makes explicit certain characteristics of the
original language. Thus, additionally to existing graph-based VCS our approach
has the ability to detect “semantic” conflicts that are specific to the modeling
language that these models conform to. The benefits of the proposed light-weight
approach are threefold. Firstly, it is open to incorporate any modeling tool.
Secondly, it is flexible to operate on virtually any modeling language. Finally, it
is extensible to incorporate the semantics of interest for a certain development
scenario.

2 Semantic Versioning

2.1 Conceptual Overview of Semantic Conflict Detection

A model conforms to a certain metamodel that defines the abstract syntax of
a modeling language, which itself does not provide any machine-interpretable
semantics. Most definitions of semantics are functions that map the abstract
syntax of one language onto the abstract syntax of another well understood
language or a formal semantic domain.

As already stated, the definition of semantics for a modeling language is
a difficult process involving the actual formalization of the semantics and the
finding of an agreement between stakeholders thereon. For our work, such full-
fledged semantic definitions are out of scope. Consequently, instead we advocate
a way of specifying semantics, that is machine-interpretable and flexible enough
to just represent those aspects of a language’s semantics that are of special
interest for concurrent development.

Therefore, in our proposed approach, the semantic mapping between a mod-
eling language’s metamodel and a metamodel representing a certain view of
interest, is defined through a model transformation. The output of such a trans-
formation is another model which conforms to the metamodel representing the
semantic view definition of interest. Compared to the definition of semantics for
programming languages [6], our model transformation-based approach is simi-
lar to a translational semantics specification, which maps the constructs of one
language onto constructs of another, usually simpler language such as machine-
instructions. Similarly, in our case we translate into a view that defines a certain
facet of interest for our purpose of conflict detection, only. A translational ap-
proach can be considered as a special case of denotational semantics, with the
valuation functions denoting constructs of the target language instead of a purely
mathematical semantic domain. Thus, the rules of a model transformation re-
late the elements of the metamodel (abstract syntax) to which the original model
conforms to and the elements of the metamodel representing the semantic view
definition.

As a consequence of the transformation realizing a semantic mapping, conflict
detection can be carried out on both models and semantic views. Throughout
the rest of this paper we will refer to conflicts that are determined purely upon
the comparison of two versions of a model as syntactical conflicts whereas a

semantic conflict is a conflict that is detected between the representations of
such a model’s versions in a semantic view. The actual finding of conflicts in
both the original model and the view functions analogous to the graph-based
detection of structural conflicts in existing versioning systems like [7–9], based
on the detection of concurrent modifications to the same element.

No Semantic Conflict
Sy

nt
ac

tic

C
on

fli
ct

N
o

Sy
nt

ac
tic

C

on
fli

ct

V' V"

V

V' V"

V

V' V"

V

V' V"

V

Semantic Conflict

A B

C D

Fig. 1. Overview on conflict types

Fig. 1 shows four possible combinations of scenarios that can occur when a
model’s semantic views are incorporated into conflict detection. These scenarios
are arranged according to an observed syntactic or semantic conflict, respectively.
As a simplification, the figure does not make use of a concrete model, but uses
bars as abstractions for models with highlights indicating a modification in a
certain part of the model. The left light shaded bars refer to the original model
(before transformation) and the right dark shaded bars refer to the semantic
view of a model (after transformation). Thus, if changes in the model or the view
occur in the same place, a syntactic or semantic conflict is detected, respectively.
Of course, only the model is checked out and edited by developers, whereas the
semantic view is only a product of the transformation. The common ancestor
version V is shown on top of the modified versions V ′ and V ′′.

2.2 Semantic Views by Example

In the following we introduce an example that demonstrates the definition of
a semantic view for a simplified version of the “Business Process Execution
Language” (BPEL) [10]. The view we are going to define focuses on certain
BPEL constructs that serve as “syntactic sugar” to enhance readability and are
a convenient way for structuring groups of activities. The Sequence construct for
instance, denotes sequential execution of its contained Activities. However, the
same meaning can be expressed by linking up individual activities accordingly.
For instance, a Sequence S containing the Activities A1 and A2 is equivalent
to Activities A1 and A2 connected by a Link from A1 to A2. Assuming these

two semantically equivalent models originate from a common ancestor and are
the outcome of concurrent editing, a conventional versioning system would find
a number of differences between these two models and according to that would
report a number of conflicts. A developer would then have to interpret these
models and come to the conclusion that besides the structural difference be-
tween the models, no semantic difference exists. Drawing such conclusions can
automatically be achieved by a comparison of models transformed into semantic
views, which abstracts from syntactical modifications and allows seeing concep-
tual changes to the model, only.

Fig. 2 shows four concrete situations where an instance of a simplified BPEL
metamodel has been checked out by both developers, each time undergoing mod-
ifications that lead to one of the four conflict scenarios mentioned earlier. In every
scenario the updated model elements are marked and the right hand side gives
details about the calculation of elements in conflict.

In each of the scenarios, two developers make concurrent modifications to a
BPEL Sequence S1 initially containing Activities A1, A2, and A3, possibly re-
sulting in update conflicts. The actual comparison of model elements is based on
an identifying attribute designated in the metamodel. By inspecting the struc-
tural features, namely the attributes and references of a model element, one can
determine whether the model element as a whole has been updated. In particu-
lar, we differentiate between four different strategies, to detect structural changes
in a graph that are of interest for conflict detection.

1. Attribute update (ATT): The value of an attribute has been changed.
E.g., The attribute ‘minimumAge’ has been set from ‘21’ to ‘18’.

2. Reference update (REF): The set of referenced model elements has been
changed. For example new model elements have been added or removed. (c.f.
Fig. 2)

3. Role update (ROL): A model element is referenced or de-referenced by
another model element.

4. Referenced element update (REF): A referenced model element has
undergone an update.

For reasons of simplicity the modifications in the examples are of just two kinds,
namely inserting a new Activity into a Sequence, which affects the Sequence
through a reference update (REF), and connecting an Activity through a Link,
in which case the Activity is affected through a role update (ROL). For both the
“syntactic” as well as the “semantic” side, a set of model elements (Con) that
have undergone conflicting modifications is computed. For instance, depending
on whether the set of syntactic conflicts is empty, a syntactic conflict has or has
not been detected.

In scenario (A), the first developer (V ′) adds a new Activity A0 and connects
it with a Link L01 to A1, whereas the second developer (V ′′) inserts a new
Activity A4 into Sequence S1. The affected model elements are A1 and S1 due
to a role and a reference update. In the semantic view, A1 and A3 are affected.
Therefore, neither a syntactic nor a semantic conflict occurs.

UpdCon = {}
Updates' = {S1REF}
Updates" = {A3ROL}

CrCon = {}
Creates' = {A4}
Creates" = {L35,A5}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

Syntax

A1 A2L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3A0 L0-1

A3

V UpdCon = {}
Updates' = {A1ROL}
Updates" = {A3ROL}

CrCon = {}
Creates' = {A0,L01}
Creates" = {L34,A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A4L3-4

V UpdCon = {}
Updates' = {A3ROL}
Updates" = {A3ROL}

CrCon = {}
Creates' = {L34,A4}
Creates" = {L34,A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

Semantic View

A1 A2 A3L1-2

V'

V"

L2-3

A0 A1 A2L0-1 L1-2 A3L2-3

A1 A0 A2L1-0 L0-2 A3L2-3

V

UpdCon = {A3ROL}
Updates' = {A3ROL}
Updates" = {A3ROL}

CrCon = {}
Creates' = {L34,A4}
Creates" = {L35,A5}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {A3}

UpdCon = {A1ROL}
Updates' = {A1ROL}
Updates" =
{A1ROL,A2ROL}

CrCon = {}
Creates' = {A0,L01}
Creates" = {L10,A0,L02}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {A1}

No
 S

yn
tac

tic
 &

No
 S

em
an

tic
 C

on
flic

t

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A5L3-5

V

Activity
id
value

Link
id

Process
id

source
target

hashas
* *

1
1

A1 A2 A3

S1

{ordered}

A2 A3

S1

{ordered}

A1 A2 A3

S1

L0-1

V' V"

V

A4A1A0

UpdCon = {S1REF}
Updates' =
{S1REF,A2ROL,A3ROL}
Updates" = {S1REF}

CrCon = {}
Creates' = {S2,A4}
Creates" = {A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {S1}

UpdCon = {}
Updates' = {A1ROL}
Updates" = {S1REF}

CrCon = {}
Creates' = {A0,L01}
Creates" = {A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

A1 A2 A3

S1

A1 A2 A3

S1

A4 A1 A2 A3

S1

L3-5 A5

V' V"

V

A1 A2 A3

S1

A1
A1 A0 A2

S1

A3

V' V"

A0

A2S2 A3

S1

V UpdCon = {S1REF}
Updates' =
{S1REF,A1ROL}
Updates" = {S1REF}

CrCon = {}
Creates' = {S2,A0}
Creates" = {A0}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {S1}

A1 A2 A3

S1

A1

A3

S1

A4
A1 A2 A3

S1

A4

V' V"

A2

S2

V

contains
Activity
id
value

Link
id

Process
id

source
target

hashas
* *1

1
*

Sequence

A

B

C

D

Si
m

pl
ifi

ed
 B

PE
L

No
 S

yn
tac

tic
 &

Se
ma

nti
c C

on
flic

t
Sy

nta
cti

c &
No

 S
em

an
tic

 C
on

flic
t

Sy
nta

cti
c &

Se
ma

nti
c C

on
flic

t
REF
ROL

REF
ROL

REF
ROL

REF
ROL

REF
ROL

Conflict
detection
strategy

{ordered}

M
et

am
od

el
C

on
fli

ct
 d

et
ec

tio
n

be
tw

ee
n

ve
rs

io
ns

 o
fm

od
el

s
Transformation

UpdCon = {}
Updates' = {S1REF}
Updates" = {A3ROL}

CrCon = {}
Creates' = {A4}
Creates" = {L35,A5}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

Syntax

A1 A2L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3A0 L0-1

A3

V UpdCon = {}
Updates' = {A1ROL}
Updates" = {A3ROL}

CrCon = {}
Creates' = {A0,L01}
Creates" = {L34,A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A4L3-4

V UpdCon = {}
Updates' = {A3ROL}
Updates" = {A3ROL}

CrCon = {}
Creates' = {L34,A4}
Creates" = {L34,A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

Semantic View

A1 A2 A3L1-2

V'

V"

L2-3

A0 A1 A2L0-1 L1-2 A3L2-3

A1 A0 A2L1-0 L0-2 A3L2-3

V

UpdCon = {A3ROL}
Updates' = {A3ROL}
Updates" = {A3ROL}

CrCon = {}
Creates' = {L34,A4}
Creates" = {L35,A5}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {A3}

UpdCon = {A1ROL}
Updates' = {A1ROL}
Updates" =
{A1ROL,A2ROL}

CrCon = {}
Creates' = {A0,L01}
Creates" = {L10,A0,L02}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {A1}

No
 S

yn
tac

tic
 &

No
 S

em
an

tic
 C

on
flic

t

A1 A2 A3L1-2

V'

V"

L2-3

A1 A2 A3L1-2 L2-3 A4L3-4

A1 A2 A3L1-2 L2-3 A5L3-5

V

Activity
id
value

Activity
id
value

Link
id
Link
id

Process
id
Process
id

source
target

hashas
* *

1
1

A1 A2 A3

S1

{ordered}

A2 A3

S1

{ordered}

A1 A2 A3

S1

L0-1

V' V"

V

A4A1A0

UpdCon = {S1REF}
Updates' =
{S1REF,A2ROL,A3ROL}
Updates" = {S1REF}

CrCon = {}
Creates' = {S2,A4}
Creates" = {A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {S1}

UpdCon = {}
Updates' = {A1ROL}
Updates" = {S1REF}

CrCon = {}
Creates' = {A0,L01}
Creates" = {A4}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

A1 A2 A3

S1

A1 A2 A3

S1

A4 A1 A2 A3

S1

L3-5 A5

V' V"

V

A1 A2 A3

S1

A1
A1 A0 A2

S1

A3

V' V"

A0

A2S2 A3

S1

V UpdCon = {S1REF}
Updates' =
{S1REF,A1ROL}
Updates" = {S1REF}

CrCon = {}
Creates' = {S2,A0}
Creates" = {A0}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {S1}

A1 A2 A3

S1

A1

A3

S1

A4
A1 A2 A3

S1

A4

V' V"

A2

S2

V

contains
Activity
id
value

Activity
id
value

Link
id

Process
id
Process
id

source
target

hashas
* *1

1
*

SequenceSequence

A

B

C

D

Si
m

pl
ifi

ed
 B

PE
L

No
 S

yn
tac

tic
 &

Se
ma

nti
c C

on
flic

t
Sy

nta
cti

c &
No

 S
em

an
tic

 C
on

flic
t

Sy
nta

cti
c &

Se
ma

nti
c C

on
flic

t
REF
ROL

REF
ROL

REF
ROL

REF
ROL

REF
ROL

Conflict
detection
strategy

{ordered}

M
et

am
od

el
C

on
fli

ct
 d

et
ec

tio
n

be
tw

ee
n

ve
rs

io
ns

 o
fm

od
el

s
Transformation

Fig. 2. BPEL example

Similar to scenario (A), two Activities are added in scenario (B), which do
not result in a syntactic conflict as S1 and A3 are affected. In the semantic
view however, as the two new Activities A4 and A5, were inserted at the end of
the Sequence, a conflict arises in A3. In scenario (C), a new Activity A4 and a
new Sequence S2 is added. This results in a syntactic conflict, as S1 is affected
through a reference update. However, the adding of S2 does not affect execution
order, and since in the semantic view both modifications are equal, no semantic
conflict occurs.

Finally in scenario (D), a syntactic conflict occurs through adding new ele-
ments to S1. These modifications, however, are not equal as they were in the

previous scenario and affect A1 through a role update resulting in a semantic
conflict.

The following OCL expressions define the above used conflict sets in more
detail. The set Con contains all conflicting model elements and is a union of
three further sets that represent update-update, create-create and update-delete
conflicts accordingly. The UpdCon set consists of concurrently edited model el-
ements, CrCon contains concurrently created elements that are however not
equal, and DelCon contains concurrently updated and deleted model elements.
The function isUpdated determines an update to a model element and the func-
tion areNotEqual checks for the equality (as opposed to the identity) of two
model elements.

Listing 1.1. OCL Expressions

Con=UpdCon−>union (CrCon−>union (DelCon))

UpdCon=Updates ’−>i n t e r s e c t i o n (Updates”)−> s e l e c t (e | e . areNotEqual (V ’ ,V”))
CrCon =Creates ’−>i n t e r s e c t i o n (Creates”)−> s e l e c t (e | e . areNotEqual (V ’ ,V”))
DelCon=(Updates ’−>i n t e r s e c t i o n (De le te s ”))−>union (Updates”−> i n t e r s e c t i o n (De le te s ’))

Updates ’=V−>s e l e c t (e | e . isUpdated (V,V ’)
Updates”=V−>s e l e c t (e | e . isUpdated (V,V”)

Creates ’=(V ’−V)
Creates ”=(V”−V)

De le te s ’=(V−V’)
De le te s ”=(V−V”)

These above-mentioned comparison strategies, that are encapsulated in the
isUpdated method, can be applied to individual metamodel elements. For in-
stance, in examples depicted in Fig. 2, we assumed that a model element has
undergone modification if one of its references has been changed (reference up-
date). Furthermore, we recognize an update to a model element, if a link of
a reference pointing to that model element has been created or removed (role
update). Such a strategy makes sense if the role of a model element that is indi-
cated by a reference influences the meaning of a model in a way, that can result
in possible conflicts. Adding new elements to a simple container-like model ele-
ment would for instance not result in a conflict. It may however be useful to be
informed of a conflict if a reference denoting a more specialized role is modified.

3 Prototype

After the previous section has introduced our approach from a conceptual point
of view, the following section will describe our prototype application from a more
technical perspective. Furthermore, as yet the given examples have abstracted
from check-in/check-out functionality and simply assumed the existence of an
ancestor revision and two working copies, an example describes how the pro-
totype implementation deals with accumulating the differences between several
revisions before an actual comparison takes place.

In order to define the abstract syntax of a modeling language and a desired
semantic view definition, a metamodeling architecture is needed. The “Eclipse
Modeling Framework” (EMF) [11] provides Ecore, which is a simplified version

conforms to

EcoreEcore

MetamodelMetamodel Metamodel of
view definition

Model V'syn

Semantically
enhanced VCS
for models Merge

Conflict
DetectionComparison ComparisonConflict

Detection

Conflict
Resolution

SDO Graph
V*syn

conforms toconforms to

SDO Graph Vsyn

SDO Graph V"synSDO Graph V'syn

Model Vsyn

Model V"syn Model V'sem

SDO Graph V'sem

SDO Graph Vsem

SDO Graph V"sem

Model Vsem

Model V"sem

ATL
Transformation

Fig. 3. Architecture of the proposed semantically enhanced VCS for models

of MOF that constitutes an M3 layer. Furthermore, EMF covers persistence sup-
port with an XMI serialization mechanism and a reflective API for manipulating
EMF models. The creation of a semantic view from a model is realized through
the “Atlas Transformation Language” (ATL) [12], which is a QVT-like model-to-
model transformation language. Accordingly, the top of Fig. 3 shows the usage
of this metamodeling stack in the context of our prototype’s architecture.

The comparison of the versions (V ′
syn, V ′′

syn, V ′
sem, V ′′

sem) with their common
ancestor (Vsyn, Vsem) is carried out on a generic graph representation of the re-
spective models and views. For this purpose, the EMF reference implementation
of “Service Data Objects” (SDO) [13] is used. SDO is a general framework to
realize standardized access to potentially heterogeneous data sources such as
databases, XML files or models serialized in XMI. SDO allows to create “data-
graphs” from EMF models, which are convenient for comparison purposes as
SDO’s mechanism to establish the difference between two graphs can be used.
These so called “change summaries” are used in our prototype to store modifi-
cations between versions, which are then used by the actual conflict detection
mechanism. Hence, the underlying algorithm implements the aforementioned
comparison strategies and establishes the relevant sets of conflicting elements.
This comparison component of our prototype is implemented in Java on top of
SDO and EMF.

Figure 4 illustrates the workflow in our proposed VCS also including the
currently not addressed phases conflict resolution and merge which are part of
the check-in process.

CSW

CSR
Conflict
Detection

CS*
Comp-
arison

XMI

XMI

Repository

Developer A publishes his version first

VCS
Interface

Developer A Developer B

XMI XMI

Two developers copy the same model Both begin to edit their copies with their
model development tooling preferred

The VCS applies a 3-way check-in process on basis of the last revision (R') in the repository,
the working copy (W") of developer B and their common ancestor (R).

XMI

MergeConflict
Resolution

VC
S

Mo
de

lin
gT

oo
l

1 2 3

W W

Repository
R

Developer A Developer B

W' W"

Repository

Developer A Developer B

W' W"

VC
S

Mo
de

lin
gT

oo
l

Developer A Developer B

W' W"

R

R'

Developer A Developer B

W' W*

RepositoryR*Repository

R R' CS'

W"

R R' CS'
CS* R*

VCS
Interface

VCS
Interface

VCS
Interface

Comp-
arison CS'

R

R
R' CS'

4

W'
R

CSWCSW

CSRCSR
Conflict
Detection

CS*CS*
Comp-
arison

XMI

XMI

Repository

Developer A publishes his version first

VCS
Interface

Developer A Developer B

XMI XMI

Two developers copy the same model Both begin to edit their copies with their
model development tooling preferred

The VCS applies a 3-way check-in process on basis of the last revision (R') in the repository,
the working copy (W") of developer B and their common ancestor (R).

XMI

MergeConflict
Resolution

VC
S

Mo
de

lin
gT

oo
l

1 2 3

W W

Repository
R

Developer A Developer B

W' W"

Repository

Developer A Developer B

W' W"

VC
S

Mo
de

lin
gT

oo
l

Developer A Developer B

W' W"

R

R'

Developer A Developer B

W' W*

RepositoryR*Repository

R R' CS'

W"

R R' CS'
CS* R*

R R' CS'
CS* R*

VCS
Interface

VCS
Interface

VCS
Interface

Comp-
arison CS'CS'

R

R
R' CS'

4

W'
RR

Fig. 4. Workflow scenario of the proposed approach

To start with, two developers A and B contact the repository and create a
personal working copy (W) – a local reflection of the repository’s file ¶. De-
velopers then work in parallel, modifying their private copies (W ′ and W ′′) ·.
Developer A saves his changes to the repository first. Because the last revision
in the repository is the direct ancestor of the incoming working copy (W ′) the
check-in can proceed. The file saved in the repository is the modified working
copy of developer A (W ′) and the computed change summary (CS′), provided
by SDO, of W ′ and his ancestor (R) ¸. When developer B attempts to save his
changes later, the repository informs him that his artifact (W ′′) is out-of-date.
In other words, that artifact W ′′ is not a working copy of the current last revi-
sion in the repository (R′). Therefore, the VCS has to apply a 3-way check-in
process containing the phases comparison, conflict detection, conflict resolution
and merge. The process starts with comparing the working copy of developer
B (W ′′) with his ancestor (R) to determine the modifications (CSW). To be
able to compute conflict detection the change summary between the last revi-
sion in the repository (R′) and the common ancestor (R) has to be retrieved.
In this workflow scenario there only exists one change summary between the
revisions but if more then one exist, they have to be accumulated resulting in
CSR. Now the conflict detection, resolution and merge process can start involv-
ing the developer B. Once the developer B has integrated both sets of changes,
he saves the merged artifact (R∗) and the change summary (CS∗) back to the
repository ¹. Generally, in order to always work on the actual artifact from the
repository, developers have to update their current artifact to avoid unnecessary
3-way check-in processes.

4 Case Study

This section discusses an evaluation of our approach regarding its capabilities
for semantic conflict detection upon three different application scenarios. To
demonstrate variability two scenarios deal with behavioral and structural mod-
eling, whereas the third scenario deals with applying our approach to imperative
programming languages. These example scenarios were chosen because on the
one hand we deem them representative for various modeling languages in prac-
tical use, and on the other hand, to illustrate the flexibility of our approach not
just for models, but possibly for code-oriented software artifacts, too.

As shown on the left-hand side of Fig. 5, the first scenario ¶ deals with con-
flict detection between BPEL documents. For our evaluation we have extended
the previously introduced BPEL metamodel and the assorted semantic trans-
formation, mainly by including the Flow construct denoting parallel execution
of activities. Since basically an almost arbitrary mixture of the Sequence, Flow
and explicit Link constructs can be used to model a process definition, seman-
tic conflict detection gives considerable benefits in actually separating merely
syntactic from “real” semantic conflicts. Our experiments have shown us, that
without semantic conflict detection, spotting the latter becomes a tedious task
as they can easily be obscured by BPEL’s “syntactic sugar”.

The second scenario · deals with the inheritance of methods in a Java class
hierarchy. Thereby we aim at detecting conflicts that involve updates of inherited
methods. The concept of inheritance is made explicit through a semantic view
that propagates all inherited methods down the class hierarchy, which in turn
allows semantic conflict detection based on the created view. Consequently, a
semantic conflict can be detected, as both developers have introduced a method
with the same name but different return type.

The third scenario ¸ deals with semantic versioning of a simple imperative
programming language. Thereby, a program is transformed into a dependency
graph, which makes explicit data dependencies between statements in the code.
Thus, for instance, concurrent changes to two different statements that influence
some other model element can be detected. In the example shown, this is the case
as the statements setting the variables x and y are modified, which indirectly
updates the statement setting the value of z.

The effort for specifying the transformations for each of these examples was
considerably small, as each of the above scenarios account for only about 50 to
200 lines of ATL transformation language code. Thus, the return on investment
gained in better conflict detection clearly outweighs the initial effort spent on
specifying the semantic views. Furthermore, the above examples emphasize the
versatility of a model transformation-based approach, as one gains the ability
to perform diverse tasks like eliminating syntactic sugar ¶, explicate hidden
concepts in models through the application of inference rules ·, and in general
the establishment of specialized views on models ¸ that highlight certain aspects
of interest.

Concluding, we perceive that the strength of our approach lies in its way of
specifying semantics through model transformations, as apposed to a rigorous

Syntactic Conflict, but no Semantic Conflict

def x
def y
def z

x := 5
y := 3
z := x+y

def x
def y
def z

x = 5
y = 1
z = x+y

def x
def y
def z

x = 8
y = 3
z = x+y

„def x“
„def y“
„def z“

„x = 8“
„y = 3“
„z = x+y“

„def x“
„def y“
„def z“

„x = 5“
„y = 1“
„z =x+y“

„def x“
„def y“
„def z“

„x = 5“
„y = 3“
„z = x+y“

No Syntactic Conflict, but Semantic Conflict

Example: Inheritance Hierarchy (Java 1.4) Example: Simple imperative programming language

S
eq

1
Flow

S
eq

2

A0

A1 A2

A3

Flow

A0

A1 A2

A3

S
eq

1

S
eq

2
A0

A1 A2

A3

A0

A1 A2

A3

A0

A1 A2

A3

A0

A1 A2

A3

a() : A

a() : B

A

B

A A

B B

a() : A

a() : B

A A

B B

a() : A

A

B

Example: BPEL

Transformation
Transformation

TransformationV V
VV

V

V

V' V'' V' V''

V' V'V'' V''

V' V'V'' V''

UpdCon = {}
Updates' = {A1ROL,A2ROL,FlowREF}
Updates" = {A0ROL,A3ROL}

CrCon = {}
Creates' = {“a():A”}
Creates" = {“a():B”}

DelCon = {}
Deletes' = {Seq1,Seq2}
Deletes" = {Flow,LA0-S2,LS1-A3}

Con = {Flow}

UpdCon = {}
Updates' = {}
Updates" = {}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

UpdCon = {}
Updates' = {AREF}
Updates" = {BREF}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

UpdCon = {}
Updates' = {AREF,BREF}
Updates" = {BREF}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {BREF}

CrCon = {}
Creates' = {“a():A”, “a():A”}
Creates" = {“a():B”}

CrCon = {}
Creates' = {}
Creates" = {}

UpdCon = {}
Updates' = {“y”ATT}
Updates" = {“x”ATT}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

CrCon = {}
Creates' = {}
Creates" = {}

UpdCon = {}
Updates' = {“y”ATT,“z”IND}
Updates" = {“x”ATT,“z”IND}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {“z”}

REF
ROL

CrCon = {}
Creates' = {}
Creates" = {LA0-S1,LA0-S2,LS1-A3,LS2-A3}

CrCon = {}
Creates' = {}
Creates" = {}

REF
ROL

REF
ROL REF

ROL

ATT

IND
ATT
ROL

1 2 3
Syntactic Conflict, but no Semantic Conflict

def x
def y
def z

x := 5
y := 3
z := x+y

def x
def y
def z

x = 5
y = 1
z = x+y

def x
def y
def z

x = 8
y = 3
z = x+y

„def x“
„def y“
„def z“

„x = 8“
„y = 3“
„z = x+y“

„def x“
„def y“
„def z“

„x = 5“
„y = 1“
„z =x+y“

„def x“
„def y“
„def z“

„x = 5“
„y = 3“
„z = x+y“

No Syntactic Conflict, but Semantic Conflict

Example: Inheritance Hierarchy (Java 1.4) Example: Simple imperative programming language

S
eq

1
Flow

S
eq

2

A0

A1 A2

A3

Flow

A0

A1 A2

A3

S
eq

1

S
eq

2
A0

A1 A2

A3

A0

A1 A2

A3

A0

A1 A2

A3

A0

A1 A2

A3

a() : A

a() : B

A

B

A A

B B

a() : A

a() : B

A A

B B

a() : A

A

B

Example: BPEL

Transformation
Transformation

TransformationV V
VV

V

V

V' V'' V' V''

V' V'V'' V''

V' V'V'' V''

UpdCon = {}
Updates' = {A1ROL,A2ROL,FlowREF}
Updates" = {A0ROL,A3ROL}

CrCon = {}
Creates' = {“a():A”}
Creates" = {“a():B”}

DelCon = {}
Deletes' = {Seq1,Seq2}
Deletes" = {Flow,LA0-S2,LS1-A3}

Con = {Flow}

UpdCon = {}
Updates' = {}
Updates" = {}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

UpdCon = {}
Updates' = {AREF}
Updates" = {BREF}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

UpdCon = {}
Updates' = {AREF,BREF}
Updates" = {BREF}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {BREF}

CrCon = {}
Creates' = {“a():A”, “a():A”}
Creates" = {“a():B”}

CrCon = {}
Creates' = {}
Creates" = {}

UpdCon = {}
Updates' = {“y”ATT}
Updates" = {“x”ATT}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {}

CrCon = {}
Creates' = {}
Creates" = {}

UpdCon = {}
Updates' = {“y”ATT,“z”IND}
Updates" = {“x”ATT,“z”IND}

DelCon = {}
Deletes' = {}
Deletes" = {}

Con = {“z”}

REF
ROL

CrCon = {}
Creates' = {}
Creates" = {LA0-S1,LA0-S2,LS1-A3,LS2-A3}

CrCon = {}
Creates' = {}
Creates" = {}

REF
ROL

REF
ROL REF

ROL

ATT

IND
ATT
ROL

1 2 3

Fig. 5. Case study scenarios

mathematical definition of semantics, model transformations are immediately
executable and besides expressing the actual semantics of the modeling language,
would for instance also allow to explicate application specific rules or some form
of model metrics.

5 Related Work

The closest approach to ours is laid out by SemVersion [14], which is itself based
on RDF, proposing the separation of language specific features (e.g., semantic
difference) from general features (e.g., structural difference or branch and merge).
To perform the semantic difference the semantics of the used ontology language
are taken into account. Therefore, assuming using an RDF Schema as the on-
tology language and two versions (A and B) of an RDFS ontology, SemVersion
uses RDF Schema entailment on model A and B and infers all possible triples.
Now, a structural difference on A and B can be calculated in order to obtain
the semantic difference. In our approach semantic differences between models
are established after a transformation into the semantic representation followed
by a structural difference computation. SemVersion, however, compared to the
work presented in this paper is not flexible to operate on any modeling language
and furthermore does not provide version control functionalities.

In terms of optimistic state-based VCS, Odyssey-CVS [7] presents a graph-
based system for versioning UML elements, aiming to support UML-based CASE
tools in evolving their artifacts. Odyssey-CVS, therefore, is not flexible in the
used modeling language but open to incorporate any modeling tool. Model dif-
ferences and conflicts found during the comparison and conflict detection phase
are results of a purely structural comparison of two versions of a model with
their common ancestor. Hence semantic aspects of a modeling language are not
considered.

In terms of comparison and difference detection between versions of models
Ohst et al. [15] addresses the problem of how to detect and visualize differences
between versions of UML models such as class or object diagrams. The approach
presented is loosely-coupled to the modeling tooling and provides difference com-
putation for UML models, only. The proposed difference computation algorithm
detects only structural differences visualized to the developer and provides an
approach for the comparison phase, that is part of the VCS’s check-in process.
Furthermore, Ohst et al.’s approach is not extensible in order to “understand”
and interpret the semantics of a model.

More widely related to our proposed approach, are VCSs which focus on
models but are tightly-coupled to the modeling environment in order to be able
to save operations performed on models. For example, Nguyen [8] proposes a
VCS which deals with the detection of structural and textual differences between
versions of many kind of software artifacts, including models. Oda and Saeki [9]
describe the need for a graph-based VCS which manages the changes on various
kind of elements that are different according to the used diagrams (UML, ER).
Oda and Saeki’s approach does not support concurrent editing and therefore
is not supporting a check-in process which is capable to merge different model
versions. Overall, beside the fact that semantics of the modeling languages are
not considered in both of this widely related works, these approaches are accurate
since operations on models are stored but therefore close interoperability between
an editor and the VCS repository is needed.

6 Conclusion and Future Work

In this paper a light-weight approach for incorporating semantics into VCSs for
models is proposed. It is argued that by means of transforming a model into a
view, syntactic sugar can be eliminated and hidden concepts can be explicated.
Hence, the joint use of model transformations expressing certain semantic as-
pects of a modeling language, and the employment of graph-based comparison
techniques on models and views, allows for a more precise semantically enhanced
conflict detection between concurrently edited versions of models.

The approach, for which a prototype is presented, is open to the modeling
environment through using XMI as an exchange format between the VCS and
the modeling tooling. Furthermore, it relies on meta-modeling techniques and
MDSD standards which are providing flexibility of the approach to operate on
virtually any modeling language. The benefits of the proposed approach are
exemplified in this paper through three diverse scenarios revealing that with a
relatively small amount of effort to establish the necessary transformations, a
return on investment can quite easily be gained.

With respect to future work, the presented approach has the potential to not
only define a single semantic view definition, but multiple semantic view defini-
tions which may focus on certain semantic aspects each, thus promising increased
conflict detection precision. Therefore, future research needs to elaborate on how
to extend the conflict detection approach to also operate on multiple semantic

views. Also worthwhile is the investigation into the conflict detection strategies
which can be specifically fine-tuned towards different modeling languages. At
the current state of development the approach solely focuses on the phases com-
parison and conflict detection. Questions how these conflicts can be visualized
for the developer and how they can be resolved and merged is going beyond the
scope of this paper. Therefore in the future we will investigate how the involved
semantics can also improve the conflict resolution and the consecutive model
merging phase.

References

1. Subversion. (http://subversion.tigris.org/)
2. Concurrent Versions System. (http://www.nongnu.org/cvs/)
3. Bendix, L., Larsen, P.N., Nielsen, A.I., Petersen, J.L.S.: CoEd – A Tool for Version-

ing of Hierarchical Documents. In: ECOOP ’98: Proceedings of the SCM-8 Sym-
posium on System Configuration Management. Volume 1439 of LNCS., Springer
(1998) 174–187

4. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering 28 (2002) 449–462

5. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”?
Computer 37 (2004) 64–72

6. Slonneger, K., Slonneger, K., Kurtz, B.: Formal Syntax and Semantics of Pro-
gramming Languages: A Laboratory Based Approach. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1995)

7. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: a Flexible Version Control Sys-
tem for UML Model Elements. In: SCM ’05: Proceedings of the 12th international
workshop on Software configuration management, ACM Press (2005) 1–16

8. Nguyen, T.N.: A Novel Structure-Oriented Difference Approach for Software Ar-
tifacts. In: Proceedings of the 30th Annual International Computer Software and
Applications Conference (COMPSAC). Number ISBN: 0-7695-2655-1, IEEE Com-
puter Society (2006) 197–204

9. Oda, T., Saeki, M.: Generative Technique of Version Control Systems for Software
Diagrams. In: Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM’05), IEEE Computer Society (2005) 515–524

10. Business Process Execution Language for Web Services version 1.1: Specification.
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/ (2007)

11. EMF Homepage. http://www.eclipse.org/modeling/emf/ (2007)
12. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL – Eclipse Support for Model

Transformation. In: Proceedings of the Eclipse Technology eXchange workshop
(eTX) at the ECOOP 2006 Conference, Nantes, France. (2007)

13. SDO Homepage. http://www.eclipse.org/modeling/emf/?project=sdo (2007)
14. Völkel, M.: D2.3.3.v2 SemVersion – Versioning RDF and Ontologies. http :

//www.aifb.uni − karlsruhe.de/Publikationen/showPublikation?publid = 1163
(2006)

15. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams.
In: Proceedings of the 9th European Software Engineering Conference (ESEC).
Number ISBN: 1-58113-743-5, ACM Press (2003) 227–236

