
Measuring the Explicitness of Modeling Concepts in
Metamodels ∗

Horst Kargl
Business Informatics Group,

Vienna University of
Technology

Favoritenstrasse 9-11
1040, Vienna, Austria

kargl@big.tuwien.ac.at

Michael Strommer
Business Informatics Group,

Vienna University of
Technology

Favoritenstrasse 9-11
1040, Vienna, Austria

strommer@big.tuwien.ac.at

Manuel Wimmer
Business Informatics Group,

Vienna University of
Technology

Favoritenstrasse 9-11
1040, Vienna, Austria

wimmer@big.tuwien.ac.at

ABSTRACT
Metamodels represent the abstract syntax of modeling lan-
guages. However, they do not explicitly define which model-
ing concepts the user can use in the notation of the language.
Thus, simply counting the number of classes in the meta-
model is not appropriate for altering the number of mod-
eling concepts available to the user. This paper addresses
this issue with the definition of a metric for describing the
ratio between the number of concepts explicitly represented
by classes in the abstract syntax and the concepts available
in the notation. In particular, this metric is important when
bridging two modeling languages, because the hidden con-
cepts in the abstract syntax have to be made explicit in the
transformation rules.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Measurement, Language

Keywords
metamodel metrics, modeling languages

1. INTRODUCTION
Evaluation of models is a hard and ambiguous task. Whether
a model can be asserted as semantically correct within a
certain domain of discourse always depends on the view-
point of the observer. In order to gather objective facts
about models, the use of metrics is necessary. Metrics have

∗This work has been partly funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT)
and FFG under grant FIT-IT-810806.0

a long history in software development as a quality mea-
sure. Measured value can be interpreted for itself, or it can
be combined to create aggregated metrics for stating a more
abstract conclusions. During the triumphal procession of
Object Oriented Programming (OOP) in the last one and a
half decades and the subsequent development of Object Ori-
ented Modeling (OOM) techniques, a lot of effort was made
to develop metrics for object-oriented models (OO-metrics).
OO-metrics allow to make statements about the quality of
software models [8][14][7].

With the advent of Model Driven Engineering (MDE) [12],
the need of formal metamodels for modeling languages arises
and consequently the need for metrics for metamodels. Ba-
sically a metamodel can be seen a s a model; it also consists
of classes, relations, inheritance, etc. However, the intension
of a metamodel (the abstract syntax) is different from that
of most M1 models. A metamodel is an object oriented lan-
guage definition. Therefore the instances of a metamodel
are again models with a graphical notation, the concrete
syntax. Nevertheless, metamodels can be treated as models
for a specific domain, the domain of modeling language def-
inition. Hence, most of the metrics for OOM can be applied
to metamodels [6].

In this paper we introduce a new metric, which discovers
the explicitness of a metamodel. We define explicitness in
the context of metamodels as the number of concepts in
the modeling language that are first class concepts in the
metamodel. This definition is based on the assertion that
the number of first class concepts in the abstract syntax
can differ from that in the concrete syntax. For example
consider the modeling concept Attribute in the UML class
diagram. In the UML 2.0 class diagram metamodel there
exists no first class definition for Attribute . It is hidden in
the class Property [5]. But in the concrete syntax of UML
2.0 class diagrams, there exists a notation for the concept
Attribute.

The contribution of this paper consists of a new metric for
measuring the explicitness of a metamodel with the help
of the notation elements available in the concrete syntax.
Therefore we count concrete classes in the metamodel and
divide them with the number of notation elements in the
concrete syntax. This ratio specifies the need of refactoring
the metamodel to get the implicit concepts explicit [5].



MM

Concept

Notation

5
5

5
5

counting

semantic

a) explicite MM

5
7

0
7

counting

semantic

b) implicite MM

7
5

counting

5
5

semantic

c) unused MM-Classes

Figure 1: Three characteristics of the balance value

The remainder of this paper is structured as follows. Section
2 gives an introduction of our approach with a description
of the calculation, its interpretation, some side effects, and
a solution to reduce these side effects. Section 3 describes
the execution of the metric in the context of the UML 1.4
and the UML 2.1 metamodel. Section 4 discusses the related
work. Finally, Section 5 concludes with an outlook on future
work.

2. CALCULATING THE EXPLICITNESS OF
METAMODELS

Modeling languages have specific modeling concepts, which
can be expressed with its notation elements (the concrete
syntax). The composition of modeling concepts is defined
in the metamodel (the abstract syntax). These modeling
concepts, which are used in the concrete syntax, do not nec-
essarily have an exact counter part in the abstract syntax.
Concepts in the metamodel are often reused with the help
of attributes and associations to other concepts. We call
this phenomenon concept hiding [5]. Our aim is to get a
metric to estimate the explicitness of metamodels. The Ex-
plicitness of MetaModel (EM2) metric can be calculated by
counting all concrete classes of a metamodel and dividing it
by the number of notation elements on the concrete syntax.

EM2(as, n) =
count(as.concreteClasses())

count(n.elements())

A metamodel does not only consist of concrete classes but
of abstract classes as well. Since abstract classes have no
conceptual representation on the concrete syntax, they can-
not be instantiated. For this reason abstract classes are not
counted.

2.1 Interpretation of the Metric EMM
In general, we can make three assertions about the ratio
between the number of concrete classes in the metamodel
and the number of notation elements.

EM2 value Interpretation
< 1 Concept deficit
= 1 Concept equilibrium
> 1 Concept redundancy | overload

A graphical representation is given in figure 1. The ellipses
represent the metamodels with their first class concepts.
The clouds represent the semantic concepts of the modeling
language. The diamonds represent the notation elements.
The links between these three elements depict the reference
between the metamodel and its notation. The top right frac-
tion (cf. counting in figure 1) represents the ratio by count-
ing MM-concepts and notation elements without including
further information. The bottom right fraction (cf. seman-
tic in figure 1) represents the semantically correct ratio that
describes the ratio of concepts and their representation on
the concrete syntax. To determine the bottom right frac-
tion, further information is necessary, that is included in
the links between metamodel and notation. In the follow-
ing we discuss the three aforementioned distinct cases of the
EM2 metric.

• Concept deficit : An EM2 value smaller than one means
that there exist more concepts in the concrete syntax
than in the abstract one (see figure 1b). The reason
for this is that the concepts are hidden in the meta-
model. In the field of model transformations, which
are defined on the metamodel, it is easier to map one
metamodel to another if no hidden concepts exist in
the metamodel. A balance smaller than one is an in-
dicator for the need of refactoring [5].

• Concept equilibrium: An EM2 value of one means that
there are exactly as many concepts in the metamodel
as in the concrete syntax (see figure 1a).

• Concept overload : An EM2 value greater than one
can have two reasons. The first one is a notation in
the concrete syntax with more than one concept in the
metamodel. Two concepts in the metamodel with sim-
ilar semantics is a non-realistic assumption and can be
left out. The second reason are metamodel concepts,
which do not represent a notation element (see figure
1c).

2.2 Side Effects of the Metric
Automatically applying the metric to a modeling language
may entail some side effects. Only concrete classes of the
metamodel and all notation elements that form the con-
crete syntax are counted. Depending on the metamodel, a
concrete class must not necessarily have a notation element.



5
7

counting

5
5

semantic

x) notation redundancy

MM

Concept

Notation

5
3

counting

5
5

semantic

y) notation overload

5
4

5
5

counting

semantic

z) notation combination

Figure 2: Side effects of the metric

This increases the denominator of the fraction and results in
a higher EM2 (the upper right fraction in figure 1c). This
would be interpreted as a more explicit metamodel. The
bottom right fraction in figure 1c) depict the semantic ra-
tio between concepts, metamodel classes and its notation
elements.

Counting metamodel classes with no representation in the
concrete syntax can be prevented by following the mapping
between a metamodel concept and its notation. If there is a
link with no constraint, the metamodel class has a concrete
notation element. Otherwise, the class hides some infor-
mation and is not a first class element for this concept. A
constraint link is a mapping between a metamodel class and
a notation element having further restrictions, e.g., that a
association to another metamodel class ought to be set, or
that an attribute of the metamodel class must have a spe-
cific value. With this further information, most of the side
effects and the resulting misinterpretation of the balance can
be avoided.

On the level of the concrete syntax, it is possible that a lan-
guage concept has two or more notation elements, like the
interface notation in UML. By counting all these notation
elements, the numerator of the fraction increases and the
balance becomes lower, see figure 2x. This would lead to
interpret the metamodel as less explicit, with more hidden
concepts. Evaluating the mappings between the notation
and the metamodel, as aforementioned, can avoid this cir-
cumstance. If there exists a link without a constraint be-
tween a metamodel class and two notation elements this two
notation elements are counted as one.

One and the same notation elements can be used for differ-
ent concepts (2y). This result in a lower numerator of the
fraction and leads to the interpretation of an overspecified
metamodel. Again following the links between notation ele-
ments and metamodel elements is a solution to this problem.

Notation elements represent a concept of the modeling lan-
guage, but it is possible that the combination of two or more
notation elements stands for a different concept which has
no explicit notation. This changes the balance to a higher
ratio if the concept is explicit in the metamodel but could
not be counted on the concrete syntax because combined

notation elements are not countable (2z). In this case fol-
lowing the links between metamodel concepts and notation
elements provides no solution. An approach to cope with
this problem is to analyze one or more concrete examples
(M1 models) and analyze how the notations can be com-
bined.

3. ANALYSING UML 1.4 AND UML 2.0
The UML metamodel 1.4.2 [10] and 2.1 [11] for class mod-
eling were chosen as test cases for the EM2 metric. Strictly
counting concrete classes in the metamodel and predefined
notation elements from the specifications, we found the fol-
lowing estimates for the EM2 value.

Metamodel version EM2 value
UML 1.4.2 ≈ 0, 77
UML 2.1 ≈ 0, 65

These estimations have however to be taken with care be-
cause of possible inaccuracies in counting notation elements.
There exist several notation elements where it is not clear
whether to count them as one or each separately, as we did
in our evaluation scenario. As an example for this kind
of problem you might consider the Dependency relationship
and its various stereotyped notation elements attached to it.
Also we have not eliminated arising side effects, except for
the notation combination side effect.

3.1 Discussion the Metric Results
Although the results are not totally unbiased they seduce
that both metamodels rely on implicit concepts. Further-
more we can say there is a greater implicitness incorporated
into the UML 2.1 metamodel than in the UML 1.4.2 meta-
model. The class Attribute represents just one concept in
UML 1.4.2 that has been made implicit in UML 2.1. In the
following we will now go more into details and illustrate the
characteristics and side effects of our metric.

As a potential source of implicitness of concepts we discov-
ered the usage of enumerations, which are heavily applied in
both metamodels. The definition of the EM2 metric does
not involve the count of enumerations and their literals. But
these literals often represent a notation element, often in



combination with some classes. For example, the enumera-
tion AggregationKind is used in both metamodels to distin-
guish between three different notation elements, that is to
say regular association, aggregation, and composition.

The depicted side effect notation overload in figure 2, ap-
peared in the UML 2.1 metamodel in the case of the meta
classes ElementImport and PackageImport. Both classes
make use of the same notation element. The meaning be-
tween the two can only be made unambiguous when consid-
ering the connected model elements, i.e., Classes or Pack-
ages.

Notation redundancy could also be recognized in both meta-
models. Consider the interface class as an example, which
can be graphically represented by two different means. An-
other example would be the various possible notation forms
of an association (with a diamond in the middle or with-
out, or with an arrow or without). The algorithm described
above would filter such redundancies to eliminate the prob-
lem and concentrate on concepts instead of graphical repre-
sentations.

We also encountered the problem of unused concrete meta
classes that do not define a general notation. The respon-
sibility is instead delegated to some other classes, that can
be subclasses of the class under consideration. For example,
the class Parameter in UML 2.1 has no direct link to any
notation element. The class Operation therefore defines the
notation for its parameters. Similar to the count of unused
meta classes is the count of general notation elements that
have no concrete class in the metamodel. The class Multi-
plicityElement, that is declared abstract, specifies a general
notation for multiplicities, which can be further specialized
in corresponding subclasses. The EM2 metric takes the no-
tation into account, but omits the abstract class, leading to
a rare side effect, that we call standalone notation.

Combining notation elements is common practice in the
UML metamodels. Take as an example the notation for a
stereotype, that is composed of the notation of a simple class
and the name of the stereotype within guillemets. When
computing our metric for the two metamodels we counted
each combined notation element as individual to avoid the
side effect resulting from notation combination.

4. RELATED WORK
Best to our knowledge, there has been no work on metrics
for explicitness of metamodels and our work is the first study
on this topic. However, our work is mainly influenced by two
orthogonal research directions, on the one hand by metrics
for UML class diagrams and on the other hand by metrics
for Ontologies.

Metrics for UML class diagrams are mostly based on met-
rics for OO programs. This is due to the close connection
of UML class diagrams to OO programming languages like
Java. In [14] six different metrics for UML class diagrams are
analyzed and compared whereas the question arises which
model elements, e.g., classes, attributes, and associations,
have impact on the complexity of a class diagram. In [9] the
metrics are more generically defined based on graph struc-
tures. Again, the metrics operate on quantitative charac-

teristics, e.g., node count, edge count, and path length, and
then these single metrics are combined to higher-order met-
rics.

Summarizing these proposed metrics for UML class dia-
grams mostly focus on the quantitative analysis of model
elements, thus the metrics only measure the explicit defin-
itions. Our work is different, because we look for implicit
concepts which are hidden in combinations of model ele-
ments. In addition, we are analyzing language definitions
and therefore we study the relation between modeling con-
cepts, abstract syntax, and concrete syntax, which is cer-
tainly not applicable to UML class diagram models.

In [15] and [3] various metrics for ontologies are discussed
which mainly measure the structural dimension in the same
way as with OO models reflecting the fact that most ontolo-
gies are also represented in an object-oriented manner. Ad-
ditionally to the structural measurement in Gangemi et al.
[2] measurements for the functional dimension and usabil-
ity, as well as a NLP-driven evaluation are introduced. Fur-
thermore, the OntoClean approach [13] tries to detect both
formal and semantic inconsistencies in an ontology. This
perception goes along with our that counting the number
of elements of certain types is not sufficient to specify the
complexity of a model.

Our work is different to the proposed ontology metrics in
that with our metric we are able to indicate how many con-
cepts are implicitly represented which is due to the exploita-
tion of the abstract to concrete syntax mapping which is
metamodeling depending and not an ontology topic. Nev-
ertheless, many ontology techniques are promising for the
semantic evaluation of models and metamodels which is sub-
ject to future work.

The most related work is [4] in which OO metrics are applied
to assess five versions of UML metamodels. The authors
propose metrics for the stability of UML metamodels and for
the design quality of UML metamodels such as reusability,
flexibility, and understandability, which are computed from
single measures.

Our work is different due to two facts. First, we also incor-
porate the notation of the modeling language, and second,
we analyze which modeling concepts are missing in the ab-
stract syntax as first class definitions. However, it is inter-
esting that in [4] the computed value for understandability
of UML 2 is much worse compared to its predecessor. Fur-
thermore, it would be very interesting to compute the mea-
surements for the design quality before and after applying
our proposed refactoring patterns as introduced in [5].

5. CONCLUSION AND FUTURE WORK
In this paper we introduced the EM2 metric for determin-
ing the explicitness of metamodels. The EM2 metric helps
to analyze a metamodel and to get an idea about how many
concepts are hidden in it. With this metric it is possible to
detect which metamodel classes are potential hiding points
for concepts by analyzing the mapping between the notation
elements and the metamodel classes. One drawback of EM2

is that an implementation of the modeling language with its
notation elements is necessary to eliminate the aforemen-



tioned side effects. Otherwise, the metric possibly delivers
biased ratios from the modeling language.However, for tool
support the implementing of modeling language is necessary
and therefore no additional costs arise.

The motivation for this metric is the emerging field of Model
Driven Engineering (MDE) and model transformation, which
are defined on the metamodel layer. The EM2 metric is
useful for determining the degree to which metamodels can
be matched automatically according to their explicitness.
Facilitating automatic matching of two metamodels, which
have a less explicitness, is a nearly impossible task. Fu-
ture work is a prototypical implementation of the metric
within the Eclipse Graphical Modeling Framework (GMF
[1] ). The hidden concepts, once detected using EM2, can
then be made explicit using the refactoring approach de-
scribed in [5]. The implementation of the EM2 metric is
further motivated through the hard and error prone task
of extracting notation elements of the UML specification,
that is due to the informal and fragmented definition of the
mapping between the notation and the abstract syntax.

6. REFERENCES
[1] Graphical Modeling Framework GMF, June 2006.

[2] M. C. J. L. Aldo Gangemi, C. CAtenacci. A
theoretical framework for ontology evaluation and
validation. In Semantic Web Applications and
Perspectives Semantic Web Applications and
Perspectives (SWAP) - 2nd Italian Semantic Web
Workshop, Trento, Italy, 2005.

[3] A. Cross, V.; Pal. Metrics for ontologies. In Fuzzy
Information Processing Society, 2005. NAFIPS 2005.
Annual Meeting of the North American, pages
448–453, June 2005.

[4] Y. Jiang, W. Shao, L. Zhang, Z. Ma, X. Meng, and
H. Ma. On the classification of uml’s meta model
extension mechanism. In UML, pages 54–68, 2004.

[5] G. Kappel, E. Kapsammer, H. Kargl, , G. K.
Thomas Reiter, W. Retschitzegger, W. Schwinger, and
M. Wimmer. Lifting metamodels to ontologies - a step
to the semantic integration of modeling languages.
ACM/IEEE 9th International Conference on Model
Driven Engineering Languages and Systems, Genova,
Italy, 2006.

[6] H. Ma, W. Shao, L. Zhang, Z. Ma, and Y. Jiang.
Applying oo metrics to assess uml meta-models.
volume 3273, pages 12–26, 2004.

[7] E. Manso, M. Genero, and M. Piattini. No-redundant
metrics for uml class diagram structural complexity.
In M. M. Johann Eder, editor, Advanced Information
Systems Engineering, 15th International Conference,
CAiSE 2003, Klagenfurt, Austria, ISBN
3-540-40442-2, volume 2681 of Lecture Notes in
Computer Science, pages 127–142. Springer, jun 2003.

[8] C. C. Marcela Genero, Mario Piattini. A survey of
metrics for uml class diagrams. Journal of Object
Technology, 4(9):59–92, November-December 2005.

[9] T. Mens and M. Lanza. A graph-based metamodel for
object-oriented software metrics. Electr. Notes Theor.
Comput. Sci., 72(2), 2002.

[10] OMG. Unified Modeling Language Specification
Version 1.4.2, formal/04-07-02. OMG, 2004.

[11] OMG. Unified Modeling Language: Superstructure
version 2.1 ptc/2006-04-02. OMG, April 2006.

[12] D. C. Schmidt. Model driven engineering. IEEE
Computer Society, February 2006.

[13] C. Welty, R. Kalra, and J. Chu-Carroll. Evaluating
ontological analysis. In In Proceedings of the ISWC-03
Workshop on Semantic Integration, 2003.

[14] T. Yi, F. Wu, and C. Gan. A comparison of metrics
for uml class diagrams. SIGSOFT Softw. Eng. Notes,
29(5):1–6, 2004.

[15] H. Yoa, A. M. Orem, and L. Etzkorn. Cohesion
metrics for ontology design and application. Journal
of Computer Science, 1(1):107–113, 2005.


