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Abstract— With the advent of Model-Driven Engineering
(MDE) several model transformation approaches and languages
have been developed in the last 5 years. Most of these existing
approaches are metamodel-based with metamodels representing
both an abstract syntax of the corresponding modeling language
and also a data structure for storing models. However, this
implementation specific focus makes it difficult for users of
modeling languages to develop model transformations, because
metamodels do not necessarily define all language concepts
explicitly which are available for notation purposes. Therefore,
we propose a by-example approach for defining inter-model
mappings representing semantic correspondences between con-
crete domain models which is more user-friendly then directly
specifying model transformation rules or mappings based on
the abstract syntax. The inter-model mappings between domain
models can be used to generate the model transformation rules,
by-example, taking into account the already defined mapping be-
tween abstract and concrete syntax elements. With this approach
the user’s knowledge about the notation of the modeling language
is sufficient for the definition of model transformations regarding
semantic correspondences. Hence, no detailed knowledge about
the metamodel and the model transformation language is re-
quired.

I. INTRODUCTION

Software development is a complex task. Developers have
tried to overcome complexities with different kinds of method-
ologies and technologies (e.g., OOP, CASE-Tools, general-
purpose notation, etc.). One of the latest approaches is Model-
Driven Engineering (MDE), which aims to define a frame-
work for modeling, metamodeling and transformation between
models. In particular, a model can be transformed into a
semantically corresponding model (horizontal transformation)
or into a model on another level of abstraction (vertical trans-
formation). In this paper we explain a way to define horizontal
model transformations, following a special kind of MDE,
namely Model-Driven Architecture (MDA) [1], an Object
Management Group (OMG) [2] initiative, with metamodels
representing both an abstract syntax of the corresponding mod-
eling language and also a data structure for storing models.
However, this implementation specific focus does not ease the
way for user-friendly development of model transformations,
because metamodels do not explicitly define all language
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concepts, which are available for notation purposes. These
concepts are hidden in the metamodel and often hard to
discover. For example, in the core of the UML metamodel
(defined in the UML Infrastructure [3]) the concept attribute is
hidden in the class Property. Properties can only be attributes
if the property has a relation owningClass to a class. When the
user has to define model transformations these hidden concepts
must be re-engineered by hand.

Therefore, we propose Model Transformation By-Example
(MTBE) which is based on other by-example approaches like
Programming By-Example (PBE) or Querying By-Example
(QBE). PBE tries to generate code from user interactions
with a GUI program (e.g., Microsoft Excel) with the help of
a concrete example (e.g., coloring of cells). The generated
code can be used to automatically replay the recorded actions.
Based on the aforementioned by-example approaches, MTBE
allows the definition of inter-model mappings representing
semantic correspondences between concrete domain models
on the M1 layer, which is more user-friendly, in contrast
to directly specifying model transformation rules based on
the metamodel (abstract syntax) on the M2 layer. However,
the inter-model mappings can be used to generate the trans-
formation rules by-example, taking into account the already
defined mapping (notation) between abstract and concrete
syntax elements. The notation includes the constraints how
elements from the abstract syntax (metamodel) are related to
the concrete syntax. Applying MTBE to EMF [4] and GMF
[5] it is possible to reuse the already available constraints to
derive ATL [6] transformations out of the mappings on the
concrete syntax between the modeling languages. The user’s
knowledge about the notation of the modeling language is
sufficient for the definition of model transformations regarding
semantic correspondences. Hence, no details about the abstract
syntax (metamodel) is required. However, it is essential to
align two models, which represent the same problem domain,
to automatically derive the transformation rules.

The main contribution of this paper is to lay out a by-
example based approach for defining mappings on the M1
layer between concrete domain models which incorporates the
notation of modeling languages and allows the generation of
model transformation code based on the M2 layer. In addition,
several issues are discussed when generating model transfor-
mation code from the user defined inter-model mappings.



Hence, the remainder of this paper is structured as follows:
The next section gives an overview of shortcomings of current
model transformation approaches, prerequisites for applying
a by-example approach for deriving model transformation
code, and a conceptual framework that can be used to realize
MTBE. Section 3 covers an example application of MTBE,
which deals with the alignment of the modeling languages
UML and ER, and the generation of model transformation
code for transforming UML models into ER models, and
vice versa. Section 4 discusses some open issues of applying
MTBE in practice concerning the user-friendly adaption of
generated model transformation code, extending the language
for user-defined inter-model mappings, reference examples for
modeling domains and a prototypical implementation. Section
5 discusses related work and finally we outline conclusions
and future work in Section 6.

II. MOTIVATION, PREREQUISITES AND CONCEPTUAL
FRAMEWORK FOR MTBE

In this section first the shortcomings of current model
transformation approaches are discussed, subsequently the
prerequisites of modeling languages for applying MTBE are
briefly explained. Furthermore, this section is concluded by
outlining a conceptual framework for generating model trans-
formations by-example.

A. Shortcomings of current model transformation approaches

In the MDE research field various model transformation
approaches have been proposed in the past 5 years, mostly
based on either a mixture of declarative and imperative rules
such as ATL [6], or on graph transformations such as AGG
[7], Fujaba [8], [9], and BOTL [10], or on relations MTF
[11]. Moreover, the Object Management Group (OMG) has
published a first version of QVT [12] which should become
the standard model transformation language. Summarizing all
these approaches, it can be said that state of the art for defining
model transformations is to describe model transformation
rules between a source and a target metamodel (M2), whereas
the rules are executed on the instance layer (M1) for trans-
forming a source model into a target model. Consequently,
each of these approaches is based on the abstract syntax of
modeling languages, i.e., on their metamodels, only, and the
notation of the modeling language is totally ignored.

In collaboration with the Austrian Ministry of Defense
and based on experiences gained in former integration sce-
narios [13], [14] we are currently realizing a system called
ModelCVS [15], [16] which aims at enabling tool integra-
tion through transparent transformation of models between
metamodels representing different tools’ modeling languages.
Hence, we developed various model transformation examples
for tool integration purposes using some of the aforemen-
tioned approaches, and in doing so, we discovered two main
issues which prevent the user-friendly definition of model
transformations. On the one hand there is a gap between how
the modeler reasons about aligning two models and how the
corresponding rules are defined in order to be executable by
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Fig. 1. Gap between user intention and computer representation

the computer, and on the other hand not all concepts of a
modeling language supported by the concrete notation are
explicitly represented in the metamodel. In the following we
discuss these two issues in more detail.

Issue 1: There is a huge gap between the user’s intention
of aligning two languages and the way model transformation
rules are defined for being automatically executable by the
computer. Mostly, the user reasons on models representing
real world examples shown by concrete notation elements
and mappings between semantically corresponding model el-
ements. However, this way of thinking is not appropriate for
defining model transformations with currently available model
transformation languages, because they support defining model
transformation rules based on the abstract syntax, only.

Figure 1 illustrates this problem by an alignment scenario
for UML and ER models. The upper half of figure 1 depicts
that for the user it is appropriate to reason on models repre-
senting real world examples expressed in concrete notation
of the modeling language to find the semantic equivalent
parts. In contrast, the lower half of figure 1 shows the same
domain model in abstract syntax visualized as an UML object
model. As one can see, the abstract syntax is designed for
the computer in order to process the models efficiently and
not for the visualization of the domain knowledge in an
easy understandable way. Hence, when trying to understand
a domain model in abstract syntax one has to explore more
model elements compared to the concrete notation represen-
tation, and furthermore, one has to know all relevant details
of the metamodel, i.e., the language definition. Moreover, this
problem is further aggravated by the following issue.

Issue 2: The aim of metamodeling lies primarily in defin-
ing modeling languages in an object-oriented manner lead-
ing to efficient repository implementations. This means that
in a metamodel not necessarily all modeling concepts are
represented as first-class citizens. Instead, the concepts are
frequently hidden in attributes or in association ends. We call
this phenomenon concept hiding. For an in-depth discussion of
concept hiding and how concepts can be hidden in metamodels
see [17].

As an example for concept hiding in metamodels consider
figure 2. In the upper part it shows a simplified version of
the UML metamodel kernel which is defined in the UML
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Infrastructure [3]. In the lower part a domain model is shown
in concrete UML syntax as defined by the notation tables in
the UML Superstructure [18]. As one can see in figure 2, the
metamodel covers more than 10 modeling concepts but uses
only four classes. Hence, most of the modeling concepts are
implicitly defined, only. It is left as an exercise to the reader
to find out where and how the concepts attribute, navigable
role, non-navigable role, and multiplicity are defined in the
metamodel.

These two issues mainly circumvent the user-friendly def-
inition of model transformations. Therefore, we propose an
orthogonal and extending approach to existing model trans-
formation approaches for defining semantic correspondences
in the concrete syntax of the models and the automatic
generation of model transformations for the abstract syntax.
This procedure allows a more user-friendly development of
model transformations. Before going into details about the by-
example approach we have to discuss which tasks are currently
involved when model transformations are developed.

In general, before actually formalizing the model transfor-
mation rules in a model transformation language the user
has to acquire knowledge about semantic correspondences
between the concepts of the modeling languages as incor-
porated in their metamodels. One appropriate way to gain
this knowledge is to start modeling the same problem do-
main with both modeling languages. By comparing the two
resulting models the semantic correspondences between model
elements can be easily found which again can be used to
derive the correspondences between the metamodel elements.
In addition, these models entail another benefit - they can be
deployed for testing purposes as input for the expected model
transformation and for comparing the output of the model
transformation execution.

After clarifying all necessary semantic correspondences the
user has to implement the gained mapping knowledge in the
model transformation rules. For this task the user has to
understand how the notation is represented in abstract syntax
elements and how missing concepts in the abstract syntax can
be reconstructed, e.g., by setting attribute values and links to
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other objects. Here comes MTBE into play. First, the mappings
are explicitly definable between the domain models shown in
concrete syntax which allows also the documentation of the
semantic equivalences. Second, these mappings are a good
starting point for automatically generating the required model
transformation code which is more efficient in contrast to
current approaches where the user has to implement all of
them by hand.

B. Prerequisites for MTBE

This subsection discusses the prerequisites for establishing
model transformations by example to realize the aforemen-
tioned benefits. The primary idea of MTBE is to exploit the
concrete notation of modeling languages, which is well known
by the user, for defining mappings between semantically corre-
sponding model elements on the M1 layer. In order to further
discuss the by-example approach for model transformations,
the interrelationships between the abstract syntax, concrete
syntax and the mapping between them, which describe the
notation of the modeling language, have to be clarified. In
accordance with MMF [19] and GMF [5] figure 3 depicts
how these three parts of a formal language definition are
interrelated in terms of an UML package diagram.

The package abstract syntax summarizes elements of
the abstract syntax, i.e., the metamodel. For example for
UML these would be concepts such as property, class and
association. In contrast, the package concrete syntax covers
graphical elements, e.g., ellipse, label, and rectangle, which
can be further combined to more complex forms, e.g.,
ClassRectangle, AttributeLabel. Finally, how elements of the
abstract syntax are mapped to elements of the concrete syntax
is defined in the package as 2 cs which mainly consists of
triples of the following form:

Triple :=< as E, cs E, const(as E)? > (1)

The first part as E stands for an element of the abstract
syntax package, the second cs E for an element of the concrete
syntax package and the last const(as E) stands for an optional
constraint, e.g., defined in OCL, that defines under which
conditions, i.e., links and attribute values of an instance of
as E, as E is represented by cs E. The optional constraint
part (const(as E)) of the triple is the most relevant part for
this work.
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In case no constraint is defined, there is a one-to-one
mapping between an abstract syntax element and a concrete
syntax element, i.e., the concept defined in the metamodel
is directly represented by one concrete notation element.
However, the other case is the more interesting in context
of solving the concept hiding problem. The presence of a
constraint defines a new sub-concept for the notation layer,
which is not explicitly represented by one of the metamodel
classes. Consequently, when defining model transformations
based on the abstract syntax, the constraints for these sub-
concepts must be defined by the user in the query part or
when going the other way round by setting the property values
correctly in the generation part of the transformation rules.
This is a tedious and error-prone task that requires excellent
knowledge about the metamodel.

With MTBE this circumstance can be improved by incor-
porating the existing constraints defined in the triples (cf. 1)
of the as 2 cs package (cf. figure 3) into the model transfor-
mation generation process in order to minimize the effort for
re-engineering and defining these constraints by hand.

C. Conceptual Framework for MTBE

This subsection discusses a conceptual framework for
MTBE at a glance. The key focus of this framework is the
automatic generation of transformation programs regarding
semantic correspondences between two languages as can be
seen in figure 4. In this framework the model transformation
generation process requires 3 steps, that are explained in the
following.

Step 1: The initial step is the definition of models of the
same problem domain in both modeling languages (cf. left
and right of the lower half of figure 4). The user can decide
if a single model, which covers all aspects of the languages,
or several examples, each focusing on one particular aspect.
Presumably the second approach is more preferable. The
requirements on the models are twofold. First, certainly they
must conform to their metamodels, and second, the available
modeling constructs of the modeling language should be
covered by the examples.

Step 2: The second step in the framework is that the user

has to align the domain models (M1) by defining semantic
correspondences (mappings) between model elements of the
left and right side (cf. middle of the lower half of figure
4). For simplicity, it is assumed that the models on the left
and on the right side represent the same problem domain, as
explained in step 1. In the current state of our work we assume
full equivalence mappings, only. However, the introduction of
other mapping kinds is subject to future work. Concerning
the example models, general reference models for several
modeling domains such as structural, interaction, and process
modeling can ease the development of the required examples.
However, this part is also subject to future work.

Step 3: After finishing the mapping task, the third step
is that the Model Transformation Generator (cf. MTGen
in figure 4) takes the user-defined mappings as input and
generates a model transformation program which is based
on metamodel elements. The resulting model transformation
programs can transform any source model, which conforms
to the source metamodel, can be transformed into a target
model which conforms to the target metamodel. However, as
further explained in section 3, this generation process may
need some user interactions for resolving ambiguities in the
mappings, arising from heterogeneities concerning the extend
of the modeling languages. Another necessary condition for
the transformation generation process is that the MTGen needs
access to the package as 2 cs (cf. figure 3) in order to compute
all necessary conditions for the query and property values for
the generation parts of the transformation rules.

Subsequently, the generated model transformation programs
can be tested on the models, that were already used for
defining the mappings. This is another benefit of the by-
example approach, as the input and output models for testing
the model transformations are already available and no extra
work for developing test cases is necessary. The target models
generated by the transformation program can be compared to
the already existing models. When some differences between
the two models arise, the user can decide if the mappings
on M1 should be revised and a newer version of the model
transformation program should be generated or if the mappings
on M1 are correct and the model transformation needs some
fine-tuning directly in the transformation code.

III. MTBE BY-EXAMPLE

In this chapter we will exemplify the operating mode of
MTBE by a concrete example. In order to do so, consider the
situation in which we have two UML classes Professor and
Student as well as a one-to-many relationship between them.
This simple UML class diagram is depicted in the upper left
corner of figure 5. In addition, the same problem domain is
also modeled in terms of an ER diagram that can be found
in the upper right of figure 5. In the upper half both models
are represented in concrete syntax, whereas the lower part of
figure 5 represent the same models in abstract syntax, which
is the type of representation the computer uses for model
transformation execution. For simplicity and higher readability
the models in abstract syntax are represented as UML object



diagrams. The example models shown in figure 5 are quite
simple, however, they are sufficient to show the most important
aspects of our proposed MTBE approach.

In the following subsections the steps 2 and 3 of the MTBE
framework (cf. figure 4) are discussed in more detail. Step 2
has to be carried out by users themselves and concerns the
alignment of two domain models shown in concrete syntax
(cf. subsection III-A). Step 3 is split into 4 sub-steps, to give
an in-depth discussion of the work the MTGen has to do.
In particular, we explain how the abstract syntax is analyzed
to collect all necessary data for the model transformations.
Therefore, we interpret the models shown in abstract syntax
as object models consisting of objects, attribute values and
links, because these models can be seen as instances of
the metamodel, which again can be seen as a simple class
diagram. Consequently, we first explain the creation of objects
(cf. subsection III-B), then the placement of attribute values
(cf. subsection III-C), and finally the linking of objects (cf.
subsection III-D). By collecting the data of these three sub-
steps, it is possible to derive all necessary information in order
to define the query parts (e.g., the from part of ATL rules) and
also the generation parts (e.g., the to part of ATL rules) of the
model transformation rules (cf. subsection III-E).

A. Mapping Definitions

First, the user has to define mappings between model
elements of the two concrete domain models as shown in
figure 5. These mappings are illustrated by thin dotted lines
between elements of the two models in figure 5. For the
sake of clarity, we omitted some of the mappings as this
helps to focus on those mappings that are of special interest
for our algorithms explained in the next subsections. As
mentioned before in chapter II-C mappings specified by users
are solely full equivalence mappings, i.e. one-to-one mappings.
Furthermore, these mappings can be regarded as bidirectional
in contrast to other by-example transformation approaches,
e.g., [20]. Hence, model transformation code can be generated
for both directions, namely from UML to ER, and vice versa.

Second, we need to know how the model elements shown
by the concrete syntax correspond to the model elements
shown by the abstract syntax. These definitions are provided
by the package as 2 cs as described in section II-B. The links
between concrete syntax and abstract syntax are illustrated in
figure 5 as thin solid arrows for the right and for the left side,
respectively. Again we left out some of the links to focus on
the mapping definitions which are relevant for the following
discussions.

B. Object Creation

As we defined semantic correspondences between model
elements of the two domain models in the previous step, we
can now move on to the object creation process. Assume
first that we want to transform the UML class diagram into
an ER diagram. Therefore, the algorithm has to analyze the
abstract syntax of both models and additionally the user-
defined mappings. In particular, the algorithm has to check if a

certain type of object in the UML model is mapped to a certain
type of object in the ER model. If this is the case, there is also
a full equivalence mapping on the abstract syntax layer and a
simple transformation rule without a condition can be gener-
ated for this object type. For example, objects of type class are
mapped to objects of type entity (cf., mapping a in figure 5),
only. However, some objects of the same type are mapped to
different object types depending on their attribute values and
links. In this case, an additional mapping operator is available
for the abstract syntax layer, namely conditional equivalence
mapping. The conditions for the conditional equivalence links
are derived from the as 2 cs package, i.e., the concept hiding
is resolved, and finally these conditions manifests in the query
part of the model transformation rules. For example, property
objects of the UML class diagram are mapped to both attribute
objects (cf., mapping b in figure 5) and role objects (cf.,
mapping d in figure 5) of the ER model. Taking the constraints
property.owningClass != null and property.association ==
null of the as 2 cs package into account, we can assure that
only an ER attribute is generated when the property actually
represents an attribute in the UML class diagram. The same
procedure can be applied for properties representing roles.

After completion of this step we have created all necessary
objects for an ER diagram from a UML class diagram, which
are the basis for our next steps to be performed. The same
procedure can also be applied for a ER diagram to an UML
class diagram transformation as our transformations can be
generated in either direction.

C. Placement of Attribute Values

This step constitutes the placement of attributes values
for the created objects. In contrast to the object creation
step where primary the query parts of the transformation
rules were relevant, this subsection focuses on the generation
parts, i.e., how to set the attribute values. First of all, we
have to differentiate between two different kinds of attributes
which occur in metamodels, namely ontological attributes and
linguistic attributes.

Ontological attributes represent semantics of the real world
domain which can be incorporated by the user by setting
the values explicitly in the concrete syntax. Examples for
ontological attributes are Class.name and Attribute.name. In
order to set the ontological attributes in the generation part
of the transformation rules we use heuristics, e.g., string
matching. In our example, we can conclude that the name
of a class should be the name of an entity when considering
the class professor and the entity professor (cf., mapping b in
figure 5), because these two attributes have the same value.

Linguistic attributes are used for the reification of modeling
constructs which cannot be set explicitly by the user in the con-
crete syntax, e.g., Class.isAbstract or Property.aggregation.
Hence, these attributes have predefined ranges of values as
they are fixed elements of the language definition. When deal-
ing with linguistic attributes in context of MTBE we need to
exploit the information stored in the as 2 cs mappings, because
in these mappings the concepts become explicit by defining
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the required condition, i.e., how the values have to be set to
fulfill the requirements for the sub-concept. For example, when
transforming an ER attribute to an UML property, we also
have to set the linguistic attributes of the property class (e.g.
Property.aggregation) which can be done by incorporating the
information stored in the as 2 cs mapping.

D. Linking Objects

Finally the links between the created objects have to be
deduced from the metamodel, from our triples of the as 2 cs
mappings containing OCL constraints, from the user-defined
mappings, and user interaction as the last choice when the
last three mentioned options are not sufficient. This part of
the transformation step is obviously the most interesting one,
as most difficulties arise at this stage. In particular, the user-
defined mappings on the concrete syntax can result in unam-
biguous mappings, i.e., mappings that are controversial and it
is not automatically decidable which case should be chosen for
the general model transformation. Especially 0..1 associations

in combination with xor-constraints in the metamodel are
relevant in this context, as they might entail some hidden
concepts. Another reason of unambiguous mappings is the
heterogeneity of the expressiveness of the modeling languages.

In the following the creation of object links is described,
whereby we classify some interesting cases regarding to mul-
tiplicity of the association ends of the metamodel, namely 1..1,
0..1 and 0..1 in combination with xor-constraints.

1) Unambiguous mappings: Concerning unambiguous
mappings, two interesting cases are here stated, namely as-
sociation ends with multiplicity 1..1 and 0..1.

• 1..1 association ends: We encounter such association ends
in our ER metamodel between Entity and Attribute as
can be seen in the bottom of figure 5. In addition, when
looking at the middle of figure 5, one can see, that each
ER attribute is linked to an ER entity as this is the
mentioned constraint of the ER metamodel. Furthermore,
one can see that each UML attribute is linked to an ER
attribute and that the containing UML class is linked



to the containing ER entity, respectively. Consequently,
if we transform an UML property, that is actually an
attribute, into an ER attribute, we can automatically
create the link between entity and attribute.

• 0..1 association ends: This kind of association ends in
the metamodel allows concept hiding, as is done in the
UML metamodel for the class Property. A property can
either be a special kind of role or an attribute belonging
to a certain class. As we will see, association ends of this
kinds are not as easy decidable as 1..1 association ends
are, because the links are not required on the abstract
syntax layer and can vary, also within the same example.
However, in case of unambiguous mappings, i.e., the link
is always or never present on the abstract syntax layer,
a general model transformation rule can be derived. For
example, ER relationship has two links to its roles and
UML association has two links to its properties. Further-
more, ER relationship is mapped to UML association (cf.,
mapping c in figure 5) and the ER roles are mapped to
the UML properties of the association (cf., mappings d
and e in figure 5). When going from ER to UML, we
can deduce that each corresponding association should
have links to the properties which correspond from the
roles of the ER relationship. However, the second possible
kind of link between association and role (cf. concerning
association end owningAssociation in figure 5) is not
automatically decidable as we see in the next subsection.

2) Ambiguous mappings: In this part we describe an ex-
ample that shows that especially for object linking some
ambiguities can occur which have to be resolved by user
interactions.

In figure 5 two user-defined mappings are shown, which
are the source for ambiguity mappings on the abstract syntax
layer. In this example the role examinee in the ER model
is mapped to the navigable role examinee in the UML class
diagram, but the role examiner is mapped to the non-navigable
role examiner in the UML class diagram. Now we want to
discuss the impacts on the abstract syntax layer mappings.
The problem arises that it is not decidable which general
transformation rule should be derived, because one role of
the ER model is mapped to an UML property, which has a
link to an class object (cf., mapping e in figure 5), and another
role of the ER model is mapped to an UML property which
has instead an link to an association object (cf., mapping d
in figure 5). This unambiguity results from the metamodel of
UML where an xor-constraint exists between owningAssoca-
tion and owningClass, as can be seen in figure 5, and from the
fact that UML differentiates between navigable role and non-
navigable role without supporting the general role concept.
As our definition of the ER metamodel does not allow for
two different kinds of roles as the UML metamodel does, we
cannot derive an general transformation rule. Instead the user
must decide on how to deal with roles from the ER model
in the UML model. This example shows that in general it is
not possible to automatically derive all model transformation
rules, not even between modeling languages, which share the

same modeling domain. Instead, for some rules the user has to
interact and decide, which alternative is appropriate, such as
in our example to generate navigable roles in the UML model
for roles of the ER model.

E. ATL Rule Generation

At last all gathered information can be aggregated to
generate proper ATL transformations. In the following, two
examples are shown just to give an idea how the query parts
and generation parts of the ATL transformations are generated.

The first example as presented in listing 1 is a transfor-
mation from ER attributes to UML properties, which actually
represent UML attributes in the concrete syntax. Note that the
generation part of this rule is the most interesting part, because
the attribute value assignments for ontological and linguistic
attributes have been automatically generated.

Listing 1. Attribute2Property
1 module ER2UML;
2 c r e a t e OUT : UML from IN : ER ;
3

4 r u l e A2P {
5 from a : ER! A t t r i b u t e
6 to p : UML! P r o p e r t y (
7 name <− a . name ,
8 a g g r e g a t i o n <− ’ none ’ ,
9 . . .

10 owningClass <− a . e n t i t y
11 )
12 }

The second example is an ATL rule that incorporates the
condition of the abstract to concrete syntax mapping for UML
in its query part in order to produce ER attributes for UML
properties which are actually representing UML attributes on
the concrete syntax layer, only.

Listing 2. Property2Attribute
1 module UML2ER;
2 c r e a t e OUT : ER from IN : UML;
3

4 r u l e P2A {
5 from p : UML! P r o p e r t y (
6 p . owningClass . o c l I s U n d e f i n e d ( )
7 = f a l s e and
8 p . a s s o c i a t i o n . o c l I s U n d e f i n e d ( )
9 )

10 to a : ER! A t t r i b u t e (
11 name <− p . name ,
12 e n t i t y <− p . owningClass
13 )
14 }

IV. OPEN ISSUES IN MTBE

Concerning open issues, we particularly strive for first,
user-friendly adaptation of the generated model transformation
code, second, extension of the language of the user defined



mappings, third, creation of reference examples, and fourth,
prototypical implementation of graphical mapping editors.

1) User-friendly adaption of generated model transforma-
tion code: The MTBE framework in its current state has one
major drawback concerning the one-step model transformation
generation based on the abstract syntax when the user needs to
adapt the generated transformation by hand. This drawback is
due to hidden concepts in the metamodel, that are explicit
in the concrete syntax. Hence, the user has to deal with
the used constraints from the notation when adapting ATL
rules. We are to tackle this problem by applying higher-order
transformations as introduced in [21] in combination with
using models of models whereas each particular model has
a particular purpose as introduced in [22].

In particular, we combine these two techniques in a two-step
model transformation generation process with an intermediate
layer as illustrated in figure 6.

Step 1: Starting from the mappings between concrete do-
main model elements, in a first step, a model transformation
is generated in which the concepts available in the notation
are explicitly represented to hide complexities of the original
metamodel from the user. For this intermediate step, a meta-
model has to be generated from the original metamodel which
in addition to concepts from the original metamodel covers
concepts introduced by the notation. Hence, the purpose of
this generated metamodel is explicit knowledge representa-
tion allowing easier development of model generation code.
The generation of the extended metamodel is realized by
automatically transforming the original metamodel combined
with mapping conditions of the package as2cs into a new
metamodel which explicitly represents the concepts.

Step 2: In a second step, the transformation code adapted
with additional user extensions is transformed into a model
transformation which operates on the abstract syntax. For
this step we adopt the fact that also a transformation is a
model, which allows the transformation, of a transformation to
reduce to model transformation. In the transformation of the
transformation, the sub-concepts introduced by the notation
are reduced to their super-concepts and expressed in the
transformation rules with complex conditions in the query
parts.

2) Extension of the mapping language: The presented map-
ping language for the concrete syntax consist of one operator,
namely full equivalence mapping. Consequently, when MTBE
should also support model transformations, which go beyond
semantic equivalence, the mapping language has to be ex-
tended by other operators, such as string manipulation, condi-
tional equivalence mapping, and nested mappings. Therefore,
we have to look at further examples to derive a requirement
catalog for a MTBE mapping language in order to determine
further mapping operators.

3) Creation of reference examples for specific modeling
domains: One of the main goals of our ModelCVS project
is to build reference models representing a well described
problem domain for various modeling domains to support the
integration task. These reference models can be reused for the

presented by-example approach as domain models, which are
aligned by the user. Hence, the user need not conceive domain
models from scratch, instead the reference models can be used
as starting point for most prominent modeling languages and
modeling domains. However, we also plan to explore in more
detail how the domain models should look like and which
undesirable situations are possible when models are aligned
at M1 which share the same problem domain.

4) Prototypical implementation: Concerning the implemen-
tation of tool support for MTBE, emerging technologies such
as the Graphical Modeling Framework (GMF) [5] for defining
and generating graphical editors can be used. GMF separates
between the concrete syntax and abstract syntax as discussed
in subsection II-B. However, the standard editor generator is
only capable of generating model editors for a single language.
Therefore, we plan to extend the standard editor generator
of GMF to support the generation of a mapping editor. This
extended generator should take two language definitions (e.g.,
UML and ER) and the mapping language as input and should
produce a mapping editor which is capable of defining domain
models in both languages and also to map the model elements
of the domain model.

V. RELATED WORK

With respect to our approach of defining inter-model map-
pings between domain models (M1) and the derivation of
model transformation code from these mappings we distin-
guish between three kinds of related work: first, related work
concerning on linking model elements between models within
a separate model (model weaving), second, declarative and
example-based transformation rules mainly supported by graph
transformations and third, related by-example approaches
starting from their origin approach, namely query-by-example.

In general, our approach of defining similarities between
modeling languages and models is related to model transfor-
mation. Model transformation in the context of MDE is a rapid
emerging topic as can be seen in the model transformation
workshop at the MoDELS/UML 2005 conference. One of
the first and nowadays one of the most matured approaches
is the ATLAS Model Weaver (AMW) [23] and the ATLAS
Transformation Language ATL [6]. The idea behind model
weaving is to define a relationship between a left model (or
metamodel) and a right model (or metamodel) with certain
kind of mapping operators which can also be user-defined.
This approach is related to the mapping between two concrete
domain models of two different modeling languages, however,
the difference lies in the representation of the models and
in the level of the mappings. AMW works with the abstract
syntax representation of a model, while our approach works
with mappings between models represented with the concrete
syntax of the modeling languages. The benefit of mapping
examples shown in concrete syntax is the absence of hidden
concepts which occur quite often in metamodels. Our work is
also different to the AMW in that the model transformation
generation process of the AMW currently focuses on using
mappings between metamodels (M2 mappings) and therefore



module UML2ER
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Fig. 6. 2-step transformation generation

based on the abstract syntax as input to derive ATL code [24],
while our approach aims at generating model transformation
code from M1 mappings. Hence, we have shifted the definition
of the mappings from the abstract syntax to the concrete syntax
and from the metamodel layer to the model layer.

Our proposed MTBE approach follows the main principles
of the query-by-example (QBE) approach introduced in [25].
The aim of QBE is to have a language for querying and
manipulating relational data. This is achieved by skeleton
tables, which consists of example rows filled out with con-
stants, constraints, and variables, combined with commands.
Commands describe what to do with the selected tuples that
match the defined queries, such as deletion or selection of
the tuples. In order to operate on relational data stored in
DBMS, real queries (e.g., SQL scripts) are derived from the
skeleton tables and can be executed on relational models.
Lechner et al. [20] follow this original approach of QBE,
but with extensions for defining scheme transformers, which
is demonstrated in the area of web application modeling
with WebML [26]. Therefore, the original QBE approach is
extended by introducing in addition to the query part (WebML
model before transformation) also a generation part (WebML
model after transformation) in the template definitions. Finally,
XSLT code is generated to transform the WebML models
which are represented within the accompanying tool WebRatio
as XML files.

Our work reuses the main idea of the aforementioned by-
example approach [20], but our work is different to this work
in that first, we propose the use of real world examples
instead of using abstract examples, second, we introduce bi-
directional mappings in contrast to uni-directional template

based examples, third, our domain for applying a by-example
approach is the modeling technical space [27], while the others
are based on relational data, and fourth, we also consider
the abstract syntax to concrete syntax mappings to tackle
the problem of implicitly defined modeling concepts and are
therefore able to make them explicit.

Other by-example based approaches related to our proposed
MTBE approach are programming by-example [28], [29], and
[30] as well as XSLT style sheet generation by-example [31].
The objective of these approaches is to facilitate the end
user to be able to perform tasks which normally need more
knowledge, e.g., knowledge about programming languages
like Visual Basic, Java or even XSLT. The way PBE tries to to
achieve this objective is to record the users actions (e.g., by a
trace model) maybe in more than one iteration, and generate
a program from the trace models to automatically perform the
afore manually performed task by the computer.

The difference to the programming by-example approaches
is that we statically define the mappings between two models
instead of the iterative adaptation of the examples to get the
resulting code, in our case the ATL code.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced a by-example approach
for defining semantic correspondences between domain mod-
els (M1) shown in their concrete notation, that allows the
derivation of model transformation code. This approach tackles
concept hiding in metamodels, which results in complex query
and generation parts of model transformation rules. Further-
more, the user can reason about semantic correspondences in
a notation and with concepts the user is familiar with. Hence,
complex details of the metamodel resulting from the need for



efficient API and repository implementations are hidden from
the user when defining transformations.

We have presented relevant issues concerning MTBE, how-
ever, various extensions of this work are required in the future,
e.g., application on larger modeling languages, also from other
modeling domains and full elaboration of the so far gained
insights. In particular, MTBE requires proper tool support
and methods guiding the mapping and transformation code
generation tasks in order to fulfill the requirements for the
user-friendly application of MTBE. Therefore, the next step is
the implementation of a prototype in order to further evaluate
our proposed approach in the large.
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