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Abstract: Ontology and schema matching are well established techniques, which
have been applied in various integration scenarios, e.g., web service composition and
database integration. Consequently, matching tools enabling automatic matching of
various kinds of schemas with various matching techniques are available. In the field
of model-driven engineering, in contrast to schema and ontology integration, the in-
tegration of modeling languages relies on manual tasks such as writing model trans-
formation code, which is tedious and error-prone. Therefore, we propose the applica-
tion of ontology and schema matching techniques for automatically exploring seman-
tic correspondences between metamodels, which are currently the modeling language
definitions of choice. The main focus of this paper is on reporting preliminary results
and lessons learned by evaluating currently available ontology matching tools for their
metamodel matching potential.

1 Introduction

The rise of the Semantic Web [BLHL01] influences many areas of computer science. Not
only the web engineering community feels the need for semantically enhanced technolo-
gies to increase the World Wide Web’s machine processability but also researchers from
a variety of fields follow this stream. Ontologies, which originate from knowledge rep-
resentation, have experienced their renaissance and have become a mainstream research
area. Nowadays, they are considered a very promising approach to handle any kind of in-
formation. They provide a vocabulary to describe a domain of interest and a specification
of the used terms’ meaning. Much effort is spent on the development of tools to efficiently
process ontologies, including ontology creation tools, query tools, matching tools, and
reasoning tools.
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At about the same time the notion of ”The Semantic Web” was born, a new software
approach was officially launched — the Model Driven Architecture (MDA) — intended
to support Model Driven Engineering (MDE). As indicated by their names, models play
the key role in MDA and MDE and become first-class citizens in the software develop-
ment process. Models provide a very hight level of abstraction on the one hand, on the
other hand they are very well suited for visualization. With the rise of MDA the land-
scape of available tools for model-driven software development is growing steadily. These
tools support a wide range of tasks like model creation, simulation, checking, and code
generation. Coming along with the multitude of tools, the heterogeneity increases too
which complicates or even prevents tool interoperability due to different syntax, seman-
tics, exchange formats, etc. But the efficient exchange of models constitutes an important
prerequisite for effective software development processes based on MDE. Unfortunately,
the transformation of one model to another model and the development of integration so-
lutions is a very cumbersome, error-prone, and repetitive task if performed manually. An
approach to attack this problem at least semi-automatically is to consider the metamodels
of the modeling languages, to identify correspondences between them in order to iden-
tify concrete mappings of metamodel concepts. To the best of our knowledge, there is no
explicit tool support for matching metamodels.

If we take a look at the field of ontology engineering and semantic web, we find a multitude
of techniques developed for various integration purposes like ontology matching that try
to identify semantic correspondences between ontologies. Ontology matching supports
handling of heterogeneous ontologies. The approach originates from former application
domains of matching systems like database or XML schema integration. As metamodels
and ontologies are closely related, it seems obvious to use those tools for the identification
of semantic correspondences between the metamodels.

Thus, we propose a novel application domain for traditional ontology and schema match-
ing systems: the integration of modeling languages via their metamodels. The contribu-
tions of this paper are twofold: (1) we provide a collection of metamodels represented
as ontologies, namely the metamodels of the UML class diagram (version 1.4 and 2.0),
the modeling language of Eclipse’s modeling framework (Ecore), the extended entity-
relationship language (EER), and a web modeling language (WebML). (2) We report on
our experiences when applying a set of ontology machtching tools. We focus especially
on the suitability of ontology matching tools for metamodel matching.

The remainder of this paper is structured as follows: The next section gives an overview of
the model-driven engineering and ontology engineering technical spaces, and covers the
description of our proposed Metamodel Matching Framework. Section 3 describes setup
and results of our metamodel matching experiment. Section 4 summarizes our lessons
learned of the experiment. Finally, conclusions and future work concerning specific ex-
tensions for metamodel matching are given.



2 On Models, Metamodels, Ontologies, and how they match

We propose a framework based on ontologies for the mapping of metamodels. The in-
tention behind the usage of ontologies as means for representing metamodels is to benefit
from the wide range of tools available for ontology processing. Roughly speaking, our
framework consists of 2 components: (1) the ModelWare and (2) the OntoWare, namely
the part which deals with models and metamodels and the part which is about the ontolo-
gies. Before going into the details of our framework, we introduce some basic terminology
and concepts.

2.1 ModelWare and OntoWare

Recently, Model Driven Engineering (MDE) [AK03] has received considerable attention
and is well on the way to become the new paradigm for software engineering. In MDE,
models replace code as the primary artefacts in the software development process. Now
developers are forced to focus on modeling the problem domain and not on programming
one possible (platform-specific) solution. Thus, the abstraction from specific program-
ming platforms by modeling at a platform-independent level and the definition of model
transformations allow for the generation of platform-specific implementations. The Model
Driven Architecture (MDA) [Gro03] by the Object Management Group (OMG) is a very
prominent example of MDE. MDA is based on the OMG’s modeling language, The Unified
Modeling Language (UML) [Gro05], and the OMG’s meta-modelling languages, namely
the Meta Object Facility (MOF) [Gro04].

The usage of diverse domain specific modeling languages and even the usage of diverse
versions of the same language rise the need for language integration in order to ensure
interoperability between different tools. The first task in the integration process consists
of finding semantic equivalent modeling concepts between two languages, i.e., finding
equivalent metamodel elements. This task is known as model weaving and is typically
done manually. The result of the model weaving task is a weaving model which incorpo-
rates all semantic equivalent links between elements of the metamodels. These weaving
models can be used as input for deriving model transformations to realize the operational
integration of models. Still, there are no approved attempts for the automation of the model
weaving task and the derivation of model transformation code.

In the last few years ontologies have gained enormous attention as they are considered
as a very promising element in the creation of semantic enhanced technologies. The no-
tion ontology subsumes a variety of terms and definitions. Ontologies aim to capture the
consensual knowledge of a given domain in a generic and formal way [CFLGP06].

As the same domain knowledge can be modeled in various manners by different ontolo-
gies, it is necessary to find ways to detect and to express similarities. Ontology matching is
the task of manually, automatically or semi-automatically find the semantic equivalent el-
ements between two ontologies. It can be seen as a set of rewriting rules which associates
the elements of a source ontology with the elements of the target ontology. The result of



the matching process is called ontology mapping. And this is our starting point – we want
to use those tools for the machting of metamodels.

And what exactly is the difference between an ontology and a metamodel? Eventhough a
detailed discussion of this question is out of scope of this paper, we will shortly reflect our
point of view. Confusion between the terms ”ontology” and ”model” or ”ontology” and
”metamodel” arises easily as on the first glance the differences between those concepts do
not appear very severe. One possible way to arrange the terms ”ontology” and ”model”
is based on Lassila’s and McGuinness’ spectrum of ontologies [LM01] and the 3D matrix
by A. Gruber et. al. [ARE06]. According to those authors ontologies range from simple
informal catalogs over more formal schema representations to heavy weight logic based
ontologies. Modeling languages like UML, ER, etc. can be seen as formal schemas and so
they can be treated as ontologies. The difference lies in the expressiveness of the formal-
ism. Due to this difference it is possible to make a more fine grained distinction between
ontologies.

Metamodels, which are used to define modeling languages, can also be expressed in dif-
ferent formalisms. It is possible to express UML in OWL, but it is not possible to express
every OWL ontology in UML. Ontologies and metamodels can be distinguished from their
domain of discourse. Ontologies are mostly used for modeling real world domains or sys-
tems by means of a schema and describing real world entities by means of individuals. In
contrast, metamodels are used for defining modeling languages which are used to describe
real world domains or systems. This means that the instances of metamodels are not real
world entities, instead the instances are models.

2.2 Bridging Modelware and Ontoware

As we have discussed the integration of modeling languages is an absolutely must in the
technical space of the ModelWare. However, there are no automatic matching techniques
available and therefore, the integration task is manually done. Before implementing new
methods for metamodel matching, which we see as a special kind of schema or ontology
matching, we want to explore the already existing matching techniques of the ontoware
technical space. Thus, we propose a metamodel matching framework which is based on
a transition from ModelWare to OntoWare by means of transforming ecore-based [FB03]
metamodels into OWL based ontologies. After achieving this transition we can reuse the
ontology matching tools which process the ontologies actually representing the metamod-
els. After performing the matching task we translate the ontology mapping into a weaving
model. From this weaving model, we are able to derive the actually needed transformation
rules to transform models of type A into models of type B. Note that the OntoWare layer
is completely transparent to the user who can simply focus on the ModelWare.

Figure 1 illustrates the architecture of our framework on the left-hand side and provides
a concrete example on the right-hand side where the lifting of a concrete metamodel
(namely, the metamodel of the UML class diagram) to an ontology is shown. When com-
paring the metamodel to the resulting ontology, we notice that they look very similar.
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Figure 1: Metamodel Matching Framework

Detailed information on the lifting process can be found in [KKK+06].

3 Metamodel Matching Experiment

This work is focused on the evaluation of ontology matching tools on metamodels. The
metamodels are lifted from the ModelWare technical space to the OntoWare technical
space. We discuss the selected matching systems, the kind and structure of the used meta-
models and how we measure the quality of the matching results.

3.1 Selected Matching Systems

In this work we concentrate on evaluating schema-based matching tools, i.e, we do not
consider instance-based matching techniques. This is due to the fact that we are using the
data provided by metamodels (schema-level) and not data from models (instance-level)
for finding equivalences between metamodel elements. The comprehension of instance-
based matching techniques that is, the reasoning about models conforming to metamodels,
remains a subject to future work. Another requirement the matching tools must fulfill is
that they must at least provide simple one-to-one equivalences between two Ontologies.
The last requirement is that the tools must be capable of reading in OWL input files, in
particular, which OWL version is supported. Currently, most tools support OWL Lite,
only, which is not sufficient for metamodels represented in OWL. Especially, OWL DL is
needed when using enumerations and cardinality restrictions greater than 1 in the meta-
models. External information resources, such as dictionaries, thesaurus or taxonomies,



are very promising and help to increase the quality of the automatically computed map-
pings. However, for our experiments we do not take advantage of domain-specific external
information resources.

As with the instance-based matching techniques, the definition of such external resources
and the application as well as user interaction during the matching task is left to future
work. In view of this criteria the four below listed matching tools were chosen.

• Alignment API [Euz04]

• COMA++ [ADMR05]

• CROSI [KHRS05]

• FOAM [ES05]

3.2 Measures for the Quality of Matching

To measure the quality of the matching tools we reuse measures stemming from the field
of information retrieval for comparing the manually determined matches M (also called
relevant matches) to the automatically found matches A. The primary measures are preci-
sion and recall [SM87], whereas these measures are negatively correlated. Thus, we use a
common combination of the primary measures, namely F-measure [vR79].

These measures are based on the notion of true positives (tp) (A ∩ M), false positives (fp)
(false matches, fp = A ∩ M̄ where M̄ = |tn| + |fp|), and false negatives (fn) (missed
matches, fn = M ∩ Ā where Ā = |fn| + |tn|). tn stands for true negatives. Based on
the cardinalities of these sets the aforementioned measures are defined in [SM87], [vR79]
as follows:

• Precision = |tp|
|A| = |tp|

|tp|+|fp|

• Recall = |tp|
|M | = |tp|

|tp|+|fn|

• F-Measure = 2∗|tp|
(|fn|+|tp|)+(|tp|+|fp|) = 2 ∗ Precision∗Recall

Precision+Recall

Precision reflects the share of relevant matches among all the automatically retrieved
matches given by A. This measure can also be interpreted as the conditional probability
P (M/A). A higher precision means, that the matches found, are more likely to be correct.
If the number of false positives equals zero, all matches are to be considered correct.

Recall gives the frequency of relevant matches compared to the set of relevant matches
M. Again this measure can be expressed as a conditional probability which is given by
P (A/M). A high recall states that nearly all relevant matches have been found. Nothing
is said about wrong matches contained in A.



F-measure takes both Precision and Recall into account to overcome some over- or un-
derestimations of the two measures. Formally the F-measure is in our case the equally
weighted average of the precision and recall measure.

3.3 A Testset of Structural Modeling Languages

For the elaborate evaluation of the selected matching tools we developed a testset which
consists of five structural modeling languages. These are frequently used in software en-
gineering, namely UML 2.01 (class diagram part), UML 1.42 (class diagram part), Ecore3,
WebML4 (content model part) and EER5. Table 1 summarizes the main characteristics of
the modeling languages by means of counting the metamodel elements according to their
types. As the numbers depict, the metamodels can be categorized by their size in large,
middle and small. Furthermore, Table 1 summarizes the main characteristics of the tax-
onomy expressed in the metamodels. UML 1.4, UML 2.0 and Ecore are heavily using
inheritance relationships resulting in a large inheritance depth, in contrast to WebML and
EER, which are only using some inheritance relationships resulting in a maximum inheri-
tance depth of one. Furthermore, the UML metamodels make use of multiple inheritance.
Finally, Table 1 states the origin of the terminology which is used for naming the meta-
model elements. Here it must be mentioned, that the UML metamodels and Ecore use
object-oriented terminology, in contrast to WebML and EER, which use database termi-
nology.

Table 1: Testset: Structural Modeling Languages

UM
L

2.0
CD

UM
L

1.4
CD

Eco
re

W
eb

M
L

EER

#Class 40 33 18 6 7
#Attribute 18 31 31 8 5
#Containment 23 8 9 3 4
#Reference 52 29 25 4 7
#Enumeration 3 6 0 2 0
#EnumLiteral 11 18 0 15 0
#AllModelElements 158 143 83 53 23
Size large large middle small small
Taxonomy
#SuperClass 17 11 7 1 1
#SubClass 36 28 16 4 2
#Multiple Inheritance 9 3 0 0 0
Inheritance Depth 6 5 5 1 1
Terminology OO OO OO DB DB

These five metamodels are automatically transformed into OWL ontologies by our meta-
model lifter component [KKK+06]. The metamodels (expressed in Ecore) and the cor-

1available at http://www.omg.org/technology/documents/modeling spec catalog.htm#UML
2available at http://www.omg.org/technology/documents/modeling spec catalog.htm#UML
3available at http://www.eclipse.org/emf
4available at http://www.big.tuwien.ac.at/projects/webML
5based on [Che76]



EClass
abstract:Boolean [1..1]
eAttributes:EAttribute [0..*]

isID:Boolean [1..1]
eReferences:EReference [0..*]

containment:Boolean [1..1]
eOpposite: EReference [0..*]

Ecore
Class

isAbstract:Boolean [1..1]
ownedAttributes:Property [0..*]

aggregation:{none,shared,composite} [1..1]
opposite:Property [0..1]

Association
memberEnd:Property [2..*]

aggregation:{none,shared,composite} [1..1]
opposite:Property [0..1]

UML 2.0
a
b
c

d

e
f

Ecore

EClass

EAttribute

EReference
containment : Boolean

abstract : Boolean
0..*

eOpposite
0..1

1

isID : Boolean

0..*1

UML 2.0

Class

Association

Property
aggregation: {none, shared, composite}isAbstract : Boolean

opposite
0..10..*0..1

{xor}

eReferences

eAttributes

2..*

0..1

memberEnd

ownedAttributes
U

M
L-

V
ie

w
Tr

ee
-V

ie
w

Figure 2: Mapping Example: Ecore to UML 2.0

responding ontologies (expressed in OWL) can be found at our ModelCVS 6 project web
site. After establishing the metamodels and ontologies, we defined 10 matching scenarios
(each scenario matches two different metamodels) and furthermore, we developed manual
mappings for each scenario. In addition to the metamodels and ontologies, the mappings
between the ontologies expressed in INRIA Alignment Format [Euz04] can be also found
at our ModelCVS project site.

Figure 2 shows an excerpt of the Ecore and UML 2.0 metamodel in UML class diagram
notation (cf. upper half of Figure 2) and as trees (cf. lower part of Figure 2). In addition
to the metamodel elements, the lower part of Figure 2 illustrates the mappings between
the two metamodels (cf. mapping a to mapping f ). In Ecore EClasses can be abstract or
concrete (cf. attribute abstract) and own a collection of EAttributes and a collection of
EReferences. While EAttributes represent intrinsic attributes of classes, EReferences rep-
resent relationships between classes and may be composition relationships (cf. attribute
containment). In UML Classes own Properties representing intrinsic attributes. However,
Properties can also be owned by Associations. In such cases Properties represent associa-
tion ends also called roles. Associatons may be of type simple, aggregation or composition
depending on the attribute aggregation of the contained Properties. The xor-constraint be-
tween ownedAttributes and memberEnd ensures that a property is either am attribute or an
association end and not both at the same time. This xor-constraint leads to the duplication
of the class Property in the tree-based view.

Mappings a and b in Figure 2 represent clear one-to-one correspondences. Mapping a
specifies the equivalence between EClass in Ecore and Class in UML. Mapping b defines
that the attribute abstract of EClass is equivalent to the attribute isAbstract of Class, in par-
ticular also data types and multiplicities of the two attributes match exactly. Mapping c de-
fines that the reference eAttribute of EClass is equivalent to the reference ownedAttributes
of Class. However, the attributes of the classes EAttribute and Property do not match at
all. Mapping d defines that the reference eReferences is equivalent to memberEnd. In this

6http://www.modelcvs.org/



case the features of the classes EReference and Property are mappable (cf. Mapping e
and f ). However, two problems are associated with mapping d and e. First, the attribute
containment of EReference is of type Boolean and the attribute aggregation of Property is
of type Enumeration with the values none, shared and composite. This mapping requires
a special integration rule, namely how the boolean values true and false are mapped to the
three enumeration literals. Second, there is no mapping from Ecore to the class Associa-
tion of UML 2.0 resulting in the problem of missing container objects, when transforming
eReferences to memberEnds, because properties which are memberEnds must be owned
by an association. This circumstance further leads to the problem that the generated model
is not conform to whose associated metamodel.

In general, the Ecore and the UML 2.0 metamodel offer nearly equivalent modeling con-
cepts, but in particular some heterogeneities, e.g., linguistic and structural, are exist-
ing. Furthermore, this simple mapping example already points out that zero-to-one map-
pings are quite common between metamodels. Particulary, these kind of existing (or non-
existing) mappings complicate the derivation of model transformation considerable. Fur-
ther information on zero-to-one mappings and solutions for deriving transformations in the
field of schema integration may be found in [LN07].

3.4 Experimental Results

Due to lack of space Figure 3 shows only the results of the ontology matching tools used
with their default settings. However, we have also experimented with modified settings
which partially improved the matching results. All experimental results are available at
our ModelCVS project web site.

Figure 3 gives a detailed overview of the results gained with the default settings of the tools
illustrated as a star glyph. Each axis of the glyph represents a mapping of two metamodels.
The three axis represent precision, recall and F-measure. Figure 3 allows for an easy
comparision of the matching quality of the four tools and furthermore can identify which
integration tasks delivers good or bad results. Some tools did not find any results for some
matching tasks, therefore some axis of the star glyph are empty. The inner gray ring in
Figure 3 describes the value of 0.5, which is in particular the most interesting value for
the F-measure - so to say the break-even point. A F-measure higher than 0.5 indicates a
positive benefit, a value lower than 0.5 means a negative benefit.

In the following we discuss the best and worst cases for our three measures when using
the tools with their default settings. The highest precision value was achieved with Align-
mentAPI for UML1.4 to UML2.0 (precision=0.96; recall=0.40; F-measure=0.57). The
best recall and F-measure value was achieved with COMA++ for UML1.4 to UML2.0
(precision=0.63; recall=0.58, F-measure=0.61).

To calculate an average value of precision, recall and F-measure we set the measurement
values to zero for the cases when the tools did not deliver results. The average is calculated
as the geometric mean by summarizing all values and divide it by the number of possible
matching results (10). Each measure has a range between zero and one therefore the
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Figure 3: Matching results (standard settings)

assumption of zero for the tools which did not find any result is passable.

The best average precision was achieved by CROSI (precision=0.33; recall=0.15; F-
measure=0.18) and FOAM (precision=0.33; recall=0.09; F-measure=0.14). 33% of found
mappings of CROSI and FOAM are correct but CROSI found 15% of the possible map-
pings instead of FOAM with 9%. Therefore the benefit (F-measure) of CROSI is bet-
ter with 0.18 instead of 0.14 from FOAM. The best average recall and F-measure was
achieved by COMA++ (precision=0.26; recall=0.25; F-measure=0.25). With the preci-
sion of 0.26 and recall of 0.25 we have a balanced result.

In our evaluation we have also experimented with modified settings of the tools resulting in
13 different tool settings (four tools with standard settings + nine modifications). The best
precision of the nine modifications was achieved for UML1.4 to UML2.0 with modified
CROSI (precision=1; recall=0.29; F-measure=0.45). Compared to the results of CROSI



with standard settings (precision=0.27; recall=0.32; F-measure=0.30) we can say that the
changes result in a much better result. All found mappings are correct and we found only
3% less as with CROSI with its default settings. The best recall and also the best F-
measure was achieved with modified COMA++ for UML1.4 to UML2.0 (precision=0.69;
recall=0.57; F-measure=0.62). This results do not differ so much from the results of
COMA++ with default settings (precision=0.63; recall=0.58; F-measure=0.61).

If we examine the average of the three measures of the 13 tool versions, the best preci-
sion over all integration scenarios was achieved with modified settings in CROSI (preci-
sion=0.83). But the recall and F-measure is very low (recall=0.12 and F-measure=0.20).
The found mappings are mostly correct, but there are many mappings left that were not
found by the tool. The best recall was achieved with a modified version of COMA++
(recall=0.33). Although the low precision (precision=0.37), it leads also to the best F-
measure (F-measure=0.34). The benefit of the matching results of COMA++ is much
higher as the benefit of CROSI with its high precision. Summarizing, it can be said that
modifying the settings often leads to a better precision but the higher the precision gets the
lower is the value of the recall, i.e., it is hard to increase the F-measure value considerable.

3.5 Experiment Conclusion

Besides the different modifications and combinations of different matching techniques
which produce higher precision values but at the same time lower the recall values, the
metamodels must fulfill some requirements in order that matching tools are worth using.
The 10 integration scenarios showed that the metamodels must have a common terminol-
ogy and taxonomy. This is the fact when matching UML 1.4, UML 2.0 and Ecore. These
combinations leads to the best results even though they are the bigger metamodels in term
of their size. Furthermore, good results are produced when matching WebML with EER.
These two metamodels also have a common terminology and both do not heavily use in-
heritance relationships. In contrast, matching WebML or EER with UML 1.4, UML 2.0 or
Ecore results in a very low precision and in a very poor recall which is mostly below 0, 10.
These results lead to the insight that ontology matching tools are not always appropriate
for matching metamodels. Instead, the metamodels must fulfill some common properties
which is not always the case when matching real-world metamodels.

4 Lessons Learned

This section discusses our lessons learned of the metamodel matching experiment pre-
sented in the previous chapter. In particular we discuss on the one hand which problems
we have faced with the input schemas, produced mappings and matching tools and on
the other hand how useful the generated mappings are for deriving the executable model
transformation rules.

No Support for Enumerations: Enumerations frequently occur in metamodels, represent-



ing a domain of constants (expressed as Literals) which are used for typing attributes.
However, Enumerations are only supported in OWL DL and not in OWL Lite. Currently,
most matching tools support OWL Lite, only, thus ignoring Enumerations, Literals and
the type information of Enumeration-typed attributes. The matching scenarios showed,
that mappings between Literals of Enumerations are very helpful for deriving the required
model transformation rules, because it must be exactly specified how the data is actually
transformed. Furthermore, the mappings between Literals are often straight forward, i.e.,
simple one-to-one correspondences. Typically, in the UML 1.4 to UML 2.0 mapping sce-
nario many correspondences between Literals and Enumerations are present.

Different Modeling Styles for boolean-typed Attributes: Especially, in the UML 1.4 to UML
2.0 matching scenario the mapping between boolean-typed attributes and enumeration-
typed attributes is often required. This is due to the fact, that in general two-valued enu-
merations can be represented as a boolean and vice versa. For instance, the enumeration
ordering = {unordered, ordered} is used for the type of the order attribute in UML 1.4.
In UML 2.0 the equivalent attribute isOrdered is defined as a boolean. In such cases the
mappings between the possible values of the attributes must be also considered, i.e., the
right value combinations must be identified. For example, the Literal unordered is mapped
to false and the Literal ordered to true.

Need for Value Correspondences: The mapping examples showed that it is not possible
to derive all necessary information for the model transformations based on the metamodel
information, only. Besides metamodel definitions, instance values must be considered
which are required for defining the model transformation rules. The following problem
case exemplifies this requirement. In Ecore the upper cardinality has the value -1 if the
upper cardinality (of an association end) is unrestricted. In WebML the upper cardinality
is defined as N for representing a unrestricted upper cardinality. Consequently, for the
transformation rules not only the equivalent attributes are necessary. In addition, also the
equivalent values of the semantically equivalent attributes are required for transforming
the models. However, metamodels are not including such technical encoding conventions,
hence there is no way to reason about equivalent values on metamodel level. These values
are contained in the models, only. Hence, instance-based approaches are very interesting
for deriving such value correspondences. Such an approach must reason about instances of
the metamodels, i.e., comparing elements of models which conform to their metamodels.

Metamodel Versioning is the Winner: The matching scenario UML 1.4 to UML 2.0 is a
special scenario, namely an example for Model Evolution. This task offers the best match-
ing quality in terms of used measures due to the high degree of name similarities between
UML 1.4 and UML 2.0, one can say both share a common terminology. Especially for
transforming UML 1.4 models (UML 1.4 is the smaller metamodel) into UML 2.0 models
(UML 2.0 is the larger metamodel) most of the transformation rules can be automatically
derived from the ontology mappings. Consequently, only a few complex transformation
rules which are manually established are necessary for the integration.

Mappings between different Types: The production of the manually mappings also showed
that not only mappings between the same types (e.g., Class 2 Class, Attribute 2 Attribute)
occur, in addition, mappings between different types (e.g., Attributes 2 References) are
quite common. The last mentioned kind of mappings are one of the most challenging prob-



lems regarding to transforming this kind of mappings into executable model transforma-
tion code. For instance, when deriving a transformation rule from an Attribute 2 Reference
mapping, one must reason about how the value of the attribute is transformed to an object
reference and how the value of the attribute is expressed within the referenced object. For
instance, such a mapping is needed in the UML 1.4 to UML 2.0 integration scenario. In
UML 1.4 the default value of an attribute is described as an attribute of the class Attribute.
In contrast, in UML 2.0 the default value is not modeled as an attribute, instead it is mod-
eled as a reference to the class ValueSpecification.

Name equivalence is not mandatory equate with conceptual equivalence: When build-
ing our manual mappings, we found out that in some cases metamodel elements have the
same name, but they semantics of the elements is quite different and the elements should
not be mapped by equivalence links. One prominent example is the class EnumLiteral
of the Ecore metamodel. EnumLiteral has an attribute value and also an attribute name.
In the WebML metamodel a class DomainValue is present which is semantically equiva-
lent with EnumLiteral and has an attribute value. However, the mapping between Enum-
Literal.value and DomainValue.value is not correct, instead EnumLiteral.name should be
mapped to DomainValue.value. This is due to the fact that EnumLiteral.value is only a
running counter for the literals. Instead, EnumLiteral.name and DomainValue.value both
present constant values of an Enumeration. This case is not solvable without additional
knowledge or exploring instances of the metamodels, i.e., the models.

No common Taxonomy of Modeling Concepts: Building the manual mappings showed, that
it is not a high heterogeneity between the concrete classes of metamodels, but between the
abstract classes. Moreover, the design of the taxonomies in metamodels is mostly arti-
ficial and not based on a common ground resulting in different design possibilities. A
very interesting case is the following example. When mapping Ecore to UML 2.0 both
metamodels have a abstract class StructuralFeature (in Ecore called EStructuralFeature,
because Ecore uses always an ’E’ as prefix for class names). When looking at the at-
tributes of the two classes, it is easily identifiable that these two classes share not even one
semantically equivalent attribute. This problem raises two important questions. First, is
it appropriate to flatten the taxonomy hierarchy, duplicate all properties in the subclasses
and delete the abstract classes before doing the matching task. This is possible, because
abstract classes have no instances on the model level and this means there are no transfor-
mation rules required for this kind of classes. Second, should we map classes with name
equivalences as semantically equivalent or at least as semantically related when they do
not share the same properties? This means, is the terminology more important than the
structural properties, or vice versa? For model transformations the structural properties
are more important, because they must be set in the transformation rules. However, from
an ontological viewpoint this question might have a different answer.

Are Metamodels no typical Ontologies? Summarized, it can be said that metamodels are
composed of much more relationships between concepts and less attributes compared to
typical input schemas for ontology matching tasks. Typical input schemas consists of a big
taxonomy of concepts with attributes. However, relationships are often not present or only
in a minimal extend. Our metamodel matching experiments showed that finding equivalent
relationships is the hardest task, however, the differentiation of containment and reference



relationships in the reasoning tasks are promising, because metamodels make heavy use
of containment references which are also very important for the model transformation
definitions. Furthermore, our matching experiments showed that the similarity between
the different metamodels, even though they are in the same domain, is much lower than
for typical matching scenarios such as used in the ontology matching contest 7.

5 Conclusion and Future Work

In this paper we have reported on our experience using ontology matching tools for pro-
ducing semantic correspondences between metamodels. Summarizing it can be said, that
the metamodels must have some common properties when matching tools should be used
for the integration task, such as a common terminology or taxonomy. For the evaluation
of currently existing ontology matching tools, we have developed a framework for mea-
suring the quality of automatically produced mappings which consists of five real-world
metamodels (expressed in Ecore and OWL), mappings between them and a tool for com-
puting the match quality in terms of well-established measures. This framework is freely
available on our project site and we hope that this would stimulate further research in the
field of metamodel matching. This means, the framework should be reused from third par-
ties to evaluate their ontology matching tools. The only precondition is an adapter which
convert the produced results into the INRIA Alignment Format [Euz04]. The objective is
that the most promising technique can then be implemented in the modelware technical
space and directly executed on the metamodels.

Moreover, we have presented several lessons learned and open issues which are subject to
future work for us in order to improve the metamodel matching potential. In particular,
three questions are of special interest. (1) How to produce a reasoning graph for meta-
model definitions? Is the resulting graph of the OWL definitions enough or do we need
other types, e.g., are the lost containment relationships needed for deriving important map-
pings (2) Why are the results of the ontology matching contest much better then our results.
Is there a big difference in the method or in the testsets? The last question would further
lead to another, more general question: (3) Is there a structural difference between ontolo-
gies and metamodels? One concrete action for us is the evaluation of ontology matching
tools which support the flexible combination of different matching techniques, such as
COMA++ supports. Here is the goal to look at different possibilities of combinations and
find out which one is performing best for our testset.
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