
Component-based CPS Verification: A Recipe
for Reusability

Andreas Müller
Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

andreas.mueller@jku.at

1 Overview

Cyber-physical systems (CPS) are today pervasively embedded into our lives
and increasingly act in close proximity as well as with direct impact to humans.
Because of their safety-criticality, we have to ensure correctness properties, such
as safety and liveness. Thus, formal verification techniques to analyze CPS are
of paramount importance to guarantee these properties.

Formal verification methods rest on models capturing the discrete and con-
tinuous dynamics of a CPS (i. e., hybrid system models), which abstract from im-
plementation details to facilitate verification. Since formal verification of hybrid
systems is known to be undecidable for realistic models, current methods make a
trade-off between full automation (model checking and reachability analysis re-
stricted to certain classes of hybrid systems, e. g., [5]) and model expressiveness
(deductive verification of complex models mixing automated and human guided
proofs, e. g., [7]). To make human guidance feasible despite complex continuous
dynamics, CPS practically mandate for techniques to reduce system complexity.

We study decomposing a model into smaller components, which can be
proven separately before re-composing them to a fully verified model. With
current deductive verification techniques for CPS, however, the price for such
component-based development is full re-verification on every composition step,
which is a nuisance if human guidance is required each time.

Vision: reduce modeling and verification effort and complexity, and
increase reusability by component-based CPS development.

Although component-based software engineering in general has seen exten-
sive research, only few approaches explicitly deal with CPS, like Damm et al. [3],
who propose a design methodology for hybrid systems based on sequential com-
position of components using alarms.

A field closely related to component-based verification is assume-guarantee
reasoning (AGR), which was originally intended as a device to counteract the
state explosion problem in model checking by decomposing a verification task
into subtasks. In AGR, individual components are analyzed together with as-
sumptions about their context and guarantees about their behavior (i. e., a com-
ponent’s “contract”). Benvenuti et al. [1] propose an approach to check these
contracts for hybrid automata with non-linear dynamics, using the reachabil-
ity toolbox Ariadne. AGR is often used along with abstraction/refinement ap-

proaches (e. g., [2]) and the rules are often circular in the sense that one compo-
nent is verified in the context of the other and vice-versa (e. g., [5]).

Summarizing, current component-based approaches are often limited to lin-
ear dynamics (e. g., [2,3]), need to abstract away continuity (e. g., [5]) or rely on
reachability analysis, over-approximation and model checking (all of the above).
In the next section we will propose a component-based modeling and verification
approach based on deductive verification.

2 Research Approach

We will follow a three-step research approach, where we (i) conduct initial
case studies, to gain insight into decomposition options in deductive verification,
(ii) develop component-based modeling and verification for hybrid systems and
(iii) evaluate our findings with case studies.

For this work, we use differential dynamic logic (dL), which is a first-order
dynamic logic that has a notation for hybrid systems as hybrid programs and its
hybrid deductive verification tool KeYmaera [7] that allows proving correctness
properties of these hybrid programs. Hybrid programs allow sequential composi-
tion, non-deterministic choice, repetition and assignment, deterministic assign-
ments, state checks and continuous evolution. Here a hybrid interpretation of
time is used, where time evolves continuously and without discretization during
continuous evolution and in discrete steps otherwise. The hybrid programs can
be embedded into dL formulas using the modalities [a] and 〈a〉 to reason about
all runs of a hybrid program a or at least one run of a respectively.

The ultimate goal is a framework that provides a set of composition oper-
ations that transfer verified properties of the internal and external behavior of
components to composites. Users then have to decompose a system into compo-
nents, verify their internal and external behavior in isolation according to our
framework and use the composition operations to recreate the overall system.
The properties of the composed system can be derived from its components.

2.1 Initial Compositional Modeling and Verification Case Studies

Based on prior experience with road traffic1 we will introduce compositional
modeling and verification of road networks. Road network capacity analysis in-
volves highly repetitive parts, such as traffic lights or merging roads. On that
account, we coarsely approximate traffic flow using linear water tank models.
These limitations allow studying component interfaces, continuous dynamics
and composition in a restricted setting of a single composition operation (i. e.,
instantaneous, loss-less passing of flow) and simplified continuous dynamics (i. e.,
approximate flows with linear ordinary differential equations (ODEs)).

We will complement the macroscopic network flow study, which is highly
time-dependent, as flow accumulates over time, with a microscopic case study

1 Gained in the research project CSI (http://csi.situation-awareness.net).

on autonomous cars, which mainly have to deal with their ever changing sur-
roundings and where safety criticality is even more of an issue. Thus, we have to
extend our previous approach with multiple composition operations (e. g., noisy
measurements) and non-linear continuous dynamics (e. g., curved trajectories).

Status: Traffic Components with Maximum Flow. We modeled three
types of flow components (traffic light, two-way-merge, two-way-split) and veri-
fied that they will not exceed their capacity for some time Tlocal, when consid-
ering the maximum possible in- and outflow of a component. Furthermore, we
introduced a composition operation which results in a safe composite, if both
components follow their local safety property and a simple arithmetic compo-
sition relation holds. This condition has to be checked using designated values
when composing components to form the whole system. While deciding the valid-
ity of a safety property for the entire traffic network would be doubly exponential
in the (assumable large) number of variables [4], the evaluation of the arithmetic
condition over the reals for concrete numbers is linear in the formula size [6].
Thus, the arithmetic composition relation can be checked at scale in a model-
ing tool when building road networks. When it holds, the local safety property
transfers to the whole system, ensuring no overflow until a time Tglobal.

2.2 Component-based CPS Development

Component-based CPS development and verification requires definition and ver-
ification of components (i. e., their internal behavior) and their interfaces (i. e.,
their external behavior), as well as their verified composition. The concepts in
this section are all work in progress and the descriptions and examples illustrate
ideas rather than final contributions.

Internal Behavior. While dL is well-suited to describe hybrid systems, the
intent behind variables cannot be specified (e. g., can a controller set a cars
acceleration?). We envision a logic based on dL, extending it by a type system
for variables. For implementation it is useful to distinguish between sensors
and actuators, environmental (laws of physics) and control variables (set by
choice). For verification, it is useful to distinguish between readable, writeable,
discrete, and continuous variables. Approaches based on hybrid automata often
distinguish between input, control and output variables.

The verification of the internal behavior of a component can make use of vari-
able types, which are usually neglected when proving dL formulas.

∆, c ↓ x, c ↑ y ` φyx, Γ
∆, c ↓ x, c ↑ y ` [x := y]c φ, Γ

Fig. 1. Proof Rule

For instance, the controller is only allowed to
set certain variables to which it has write access
(e. g., set cars acceleration, but not its position).
The proof rule2 in Fig. 1 for assigning the value
of a variable y to a variable x in a component c, requires write access to x and
read access to y. Similar rules could be derived for other operations (e. g., ODEs),
to enforce type safety during proofs.

2 c ↓ x means “c has write access to x”, c ↑ y means “c has read access to y”

External Behavior. The external behavior of a component is defined by its
interface, including contracts on input and output ports. Similar to AGR, the
interface specifies a contract (e. g., ψ1 → [C1]φ1, i. e., assuming ψ1, all runs of
component C1 guarantee φ1) about what the component assumes at its input
ports (assumption ψ1) and what it guarantees at its output ports (guarantee ψ1).
The contract ψ1 and φ1 can be specified in various ways. Automata-based AGR
approaches (e. g., [5]) mostly use some kind of automaton-based specification.
In deductive verification, predicates over the input variables or timed regular
expressions are more suitable. Considering the traffic flow example introduced
initially, they provide a way of stating which flow is produced by an output for
which duration of time and thus allows a detailed interface description (e. g.,
(3 · A; 1 · B)∗ means flow A for 3 time units followed by flow B for 1 time unit
repeated indefinitely). Note, that every behavior described using timed regular
expressions can also be expressed using dL.

Verification. To ensure formally verified CPS components, two aspects must
be considered, namely, verifying that the internal behavior actually follows its
specified external behavior (e. g., ψ1 → [C1]φ1) and verifying that a component’s
external behavior is feasible for the operational area at hand and obeys a given
local safety condition (e. g., under weaker assumptions Φ1, stronger promises Ψ1

are guaranteed, i. e., (Φ1 → φ1) ∧ (ψ1 → Ψ1), cf. “dominance” in [1]).

In order to model and ensure safety of an entire CPS, we further need a way
of safely combining the aforementioned components. Since time always passes
simultaneously throughout a hybrid system, components have to be composed
in parallel. We envision composition operations that go beyond loss-less instan-
taneous value passing and propose composition operators, including (i) port
forwarding operators (i. e., loss-less and instant connection), (ii) operators that
influence the continuous evolution of components (e. g., components evolve dur-
ing communication delay), (iii) operators that affect the forwarded information
(e. g., uncertainty for measurements, noise on electrical signals), and (iv) op-
erators that perform state estimation of non-accessible values (e. g., estimate
the acceleration by measuring the change of speed). An example composition
operation is the noisy composition: �

noise
≡ x̃ := ∗; ? |x̃− x| ≤ δ.

The ultimate goal is to ensure that the composite system obeys to a global
safety condition Φ if it is started in a safe state Ψ , i. e., Ψ → [C1� C2]Φ, which
can be achieved by an assume-guarantee style rule for deductive verification us-
ing dL. If it is ensured that a component (e. g., C1) follows its external behavior
specification (i. e., it obeys its contract, e. g., ψ1 → [C1]φ1) and ensures its local
safety condition (e. g., φ1 → Φ1), it remains to ensure provably correct compo-
sition, and (if required) automatically derive composition proof obligations Θ to
ensure overall system correctness (e. g., (

∧
i Φi) ∧Θ → Φ).

In our initial case study on traffic networks, a composition operation connects
two roads allowing cars to drive from one component to another (e. g., from a
traffic light to an intersection). For a sample component (e. g., a traffic light)
the contract restricts the maximum outflow and the load (i. e., ratio between
used and available space on the road) of a component. Here, the local safety

property and the composition property are the same for all components, stating
that it should not produce a traffic breakdown for a predefined time (i. e., the
number of cars should never exceed the available space) and respectively that
the outflow of a component must not be larger than the allowed inflow of the
subsequently connected one. If these properties hold, the overall safety property
(i. e., no overflow anywhere in the network for a predefined time) can be inferred.

2.3 Evaluation

We plan to implement a software prototype, which will include a library of com-
ponents and associated composition operations. To show the applicability of the
approach, we already implemented a tool called SAFE-T3. Based on maximum-
flow components it allows combining them to larger traffic networks, while check-
ing the aforementioned arithmetic composition condition automatically. The tool
can be used to find the origin of a traffic breakdown and analyze how it will prop-
agate through the network.

Based on the implementation, we will consider existing case studies and com-
pare our compositional models to the original, monolithic ones specifically w.r.t.
model complexity and proof effort.

Acknowledgements. Work funded by BMVIT grant FFG BRIDGE 838526,
by OeAD Marietta Blau grant ICM-2014-08600 and as part of P28187-N31.

References

1. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume–
guarantee verification of nonlinear hybrid systems with Ariadne. Int. J. of Robust
and Nonlinear Control 24(4), 699–724 (2014)

2. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A.,
Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In:
Yahav, E. (ed.) Hardware and Software: Verification and Testing, LNCS, vol. 8855,
pp. 116–131. Springer (2014)

3. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design
of hybrid systems: Safety and stability. In: Manna, Z., Peled, D. (eds.) Time for
Verification, LNCS, vol. 6200, pp. 96–143. Springer (2010)

4. Davenport, J.H., Heintz, J.: Real Quantifier Elimination is Doubly Exponential. J.
Symb. Comput. 5(1-2), 29–35 (1988)

5. Frehse, G., Zhi Han, Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: 43rd IEEE Conf.
on Decision and Control, CDC. vol. 1, pp. 479–484 Vol.1 (2004)

6. Mitsch, S., Platzer, A.: ModelPlex: Verified Runtime Validation of Verified Cyber-
Physical System Models. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Veri-
fication - 5th Int. Conf., RV 2014. LNCS, vol. 8734, pp. 199–214. Springer (2014)

7. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010)

3 SAfe Flow-component Editor for Traffic networks,
available online: http://www.tk.jku.at/people/mueller/publications/itsc15/

