
Leveraging Model-Based Tool Integration by

Conceptual Modeling Techniques

Gerti Kappel1, Manuel Wimmer1,
Werner Retschitzegger2, and Wieland Schwinger3

1 Business Informatics Group
Vienna University of Technology, Austria
{kappel,wimmer}@big.tuwien.ac.at

2 Department of Business Information Systems
University of Vienna, Austria

werner.retschitzegger@univie.ac.at
3 Department of Telecooperation

Johannes Kepler University Linz, Austria
wieland.schwinger@jku.ac.at

Abstract. In the context of model-based tool integration, model trans-
formation languages are the first choice for realizing model exchange
between heterogenous tools. However, the lack of a conceptual view on
the integration problem and appropriate reuse mechanisms for already
existing integration knowledge forces the developer to define model trans-
formation code again and again for certain recurring integration problems
in an implementation-oriented manner resulting in low productivity and
maintainability of integration solutions.

In this chapter, we summarize our work on a framework for model-
based tool integration which is based on well-established conceptual mod-
eling techniques. It allows to design integration models on a conceptual
level in terms of UML component diagrams. Not only the design-time is
supported by conceptual models, but also the runtime, i.e., the execu-
tion of integration models, is represented by conceptual models in terms
of Coloured Petri Nets. Furthermore, we show how reusable integration
components for resolving structural metamodel heterogeneities, which
are one of the most frequently recurring integration problems, can be
implemented within our framework.

1 Introduction

With the rise of Model-Driven Engineering (MDE) [25] models become the main
artifacts of the software development process. Hence, a multitude of modeling
tools is available supporting different tasks, such as model creation, model sim-
ulation, model checking, model transformation, and code generation. Seamless
exchange of models among different modeling tools increasingly becomes a cru-
cial prerequisite for effective MDE. Due to lack of interoperability, however, it
is often difficult to use tools in combination, thus the potential of MDE cannot
be fully utilized. For achieving interoperability in terms of transparent model

Kaschek/Delcambre (Eds.): The Evolution of Conceptual Modeling, LNCS 6520, pp. 254–284, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Leveraging Model-Based Tool Integration 255

exchange, current best practices (cf., e.g. [28]) comprise creating model transfor-
mations based on mappings between concepts of different tool metamodels, i.e.,
the metamodels describing the modeling languages supported by the tools.

We have followed the aforementioned approach in various projects such as
the ModelCVS1 project [13] focusing on the interoperability between legacy case
tools (in particular CA’s AllFusion Gen) with UML tools and the MDWEnet2

project [29] trying to achieve interoperability between different tools and lan-
guages for web application modeling. The prevalent form of heterogeneity one
has to cope with when creating such mappings between different metamodels is
structural heterogeneity, a form of heterogeneity well-known in the area of feder-
ated and multi database systems [2,14]. In the realm of metamodeling structural
heterogeneity means that semantically similar modeling concepts are defined
with different metamodeling concepts leading to differently structured meta-
models. Current model transformation languages, e.g., the Object Management
Group (OMG) standard Query/View/Transformation (QVT) [21], provide no
appropriate abstraction mechanisms or libraries for resolving recurring kinds
of structural heterogeneities [18]. Thus, resolving structural heterogeneities re-
quires to manually specify partly tricky model transformations again and again
which simply will not scale up having also negative influence on understanding
the transformation’s execution and on debugging.

In this work, we summarize our work on a framework for realizing model-based
tool integration which is based on well-established conceptual modeling tech-
niques. In particular, the framework allows to build so-called metamodel bridges
on a conceptual level by using UML component diagrams [19]. Furthermore, such
a metamodel bridge allows the automatic transformation of models since for each
mapping operator, which is expressed as a component, the operational semantics
is specified on basis of Colored Petri Nets [7]. Colored Petri Nets provide a uni-
form formalism not only for representing the transformation logic together with
the metamodels and the models themselves, but also for executing the trans-
formations, thus facilitating understanding and debugging. To demonstrate the
applicability of our approach we apply the proposed framework for defining a
set of mapping operators subsumed in our mapping language called CAR. This
mapping language is intended to resolve typical structural heterogeneities oc-
curring between the core concepts usually used to define metamodels, i.e., class,
attribute, and reference, as provided by the OMG standard Meta Object Facility
(MOF) [20]. Finally, we present an inheritance mechanism for reusing applied
mappings within a single metamodel bridge. The framework has been applied in
several modeling tool integration projects where structural modeling languages
as well as behavioral modeling languages have been integrated.

The rest of the paper is structured as follows. In Section 2 we introduce our
framework for defining mapping operators for establishing metamodel bridges.
In Section 3, the mapping language CAR is presented for which an inheritance
mechanism for reusing mappings within a single metamodel bridge is introduced

1 ModelCVS—Concurrent Versioning System for Models.
2 MDWEnet—Model-Driven Web Engineering Network.

256 G. Kappel et al.

in Section 4. While an evaluation of the framework is presented in Section 5,
Section 6 discusses related work. Finally, in Section 7 a conclusion and a discus-
sion on future research issues is given.

2 Metamodel Bridging at a Glance

In this section, we describe the conceptual architecture of the proposed Meta-
model Bridging Framework in a by-example manner. The proposed framework
provides two views on the metamodel bridge, namely a mapping view and a
transformation view as illustrated in Figure 1.

On the mapping view level, the user defines mappings between elements of
two metamodels (cf. M2 in Figure 1). Thereby a mapping expresses also a rela-
tionship between model elements, i.e., the instances of the metamodels [3]. In our
approach, we define these mappings between metamodel elements with mapping
operators standing for a processing entity encapsulating a certain kind of trans-
formation logic. A mapping operator takes as input elements of the source model
and produces as output semantically equivalent elements of the target model.
Thus, it declaratively describes the semantic correspondences on a high-level of
abstraction. A set of applied mapping operators defines the mapping from a left
hand side (LHS) metamodel to a right hand side (RHS) metamodel further on
subsumed as mapping model.

For actually exchanging models between different tools, the mapping models
have to be executed. Therefore, we propose, in addition to the mapping view, a
transformation view which is capable of transforming models (cf. M1 in Figure 1)
from the LHS to the RHS on basis of Colored Petri Nets [7].

2.1 The Mapping View

For defining mapping operators and consequently also for building mapping mod-
els, we are using a subset of the UML 2 component diagram concepts. With this
formalism, each mapping operator can be defined as a dedicated component, rep-
resenting a modular part of the mapping model which encapsulates an arbitrary
complex structure and behavior, providing well-defined interfaces to the envi-
ronment. The resulting components are collected in a mapping operator library
which can be seen as a domain-specific language for bridging metamodels. The
user can apply the mapping operators expressed as components in a plug&play
manner, i.e., only the connections to the provided and required interfaces have
to be established manually.

Our motivation for using UML 2 component diagrams for the mapping view
is the following. First, many software engineers are likely to be familiar with the
UML component diagram notation. Second, the provided and required interfaces
which can be typed, enable the composition of mapping operators to resolve more
complex structural heterogeneities. Third, the clear separation between black-box
view (i.e., the component’s externals) and white-box view (i.e., the component’s
internals) of components allows switching between a high-level mapping view

Leveraging Model-Based Tool Integration 257

RHSBridgingLHS RHSBridgingLHS
Target MMMapping ModelSource MM 1

EntityTypename : String

Class
C2C

A2A

ew

M
2 name : String

attributes
R2RownedAttributes

A2A

in
g
Vi

name : String

Attribute

C2Cname : String

Property

M
ap

p

A2A

M

Transform

Class EntityTypeC2C

Source Places Target PlacesTransformation Logic

Transform Transform 22 4

Class EntityTypeC2C

2 2history

Class_name
EntityType_nameA2A

ew

M
2

2 2

history

on
Vi
e

Class_ownedAttributes
EntityType attributesR2R

1
+
M

rm
at
io EntityType_attributes

M
1

an
sf
or

Property Attribute
C2C

2

history

2

Tr
a C2C

2
history

2

Property_name Attribute_name
A2A

Execution Export 75

2 2

history

6

UML Model ER ModelToken Model Token Model

Execution ExportImport 75

o1 o2 o1 o2

m

o1:Class o2:Class

3
o1 o2

“Professor“

“Student“ 8
o1:EntityType o2:EntityType

o1 o2

“Student“

“Professor“

M
1

Tr
an

sf
or
mname=“Professor” name=“Student”

ra
ns
fo
rm

name=“Professor” name=“Student”
o esso

o3:Property o4:Property

name=“ssn” name=“studentnr” “studentnr“

Tr

o3:Attribute o4:Attribute

name=“ssn” name=“studentnr”

o3 o4o3 o4

“studentnr“

“ssn“

studentnr

“ssn“

studentnr

Fig. 1. Metamodel Bridging Framework by-example

258 G. Kappel et al.

and a detailed transformation view, covering the operational semantics, i.e., the
transformation logic, of an operator.

Anatomy of a mapping operator. Each mapping operator (as for example
shown in the mapping model of Figure 1) has input ports with required interfaces
(left side of the component) as well as output ports with provided interfaces (right
side of the component). Because each mapping operator has its own trace model,
i.e., providing a log about which output elements have been produced from
which input elements, an additional providedContext port with a corresponding
interface is available on the bottom of each mapping operator. This port can be
used by other operators to access the trace information for a specific element via
requiredContext ports with corresponding interfaces on top of the operator.

In the mapping view of Figure 1 (cf. step 1), an example is illustrated where
a small part of the metamodel of the UML class diagram (cf. source metamodel)
is mapped to a part of the metamodel of the Entity Relationship diagram (cf.
target metamodel). In the mapping view, source metamodel elements have pro-
vided interfaces and target metamodel elements have required interfaces. This
is due to the fact that in our scenario, models of the LHS are already avail-
able whereas models of the RHS must be created by the transformation, i.e., the
elements of the LHS must be streamed to the RHS according to the mapping op-
erators. Consequently, Class and Property of the source metamodel are mapped
to EntityType and Attribute of the target metamodel with Class2Class (C2C)
operators, respectively. In addition, the C2C operator owns a providedContext
port on the bottom of the component which shall be used by the requiredCon-
text ports of the appropriate Attribute2Attribute (A2A) and Reference2Reference
(R2R) operators to preserve validity of target models. In particular, with this
mechanism it can be ensured that values of attributes are not transformed before
their owning objects has been transformed and links as instances of references
are not transformed before the corresponding source and target objects have
been transformed.

2.2 The Transformation View

The transformation view is capable of executing the defined mapping models.
For this, so called transformation nets [12,23,34] are used which are a special
kind of Colored Petri Nets consisting of source places at the LHS and target
places at the RHS. Transitions between the source and target places describe
the transformation logic located in the bridging part of the transformation net
as shown in Figure 1.

Transformation nets provide a suitable formalism to represent the operational
semantics of the mapping operators, i.e., the transformation logic defined in the
white-box view of the component due to several reasons. First, they enable the
execution of the transformation thereby generating the target model out of the
source model, which favors also debugging of a mapping model. Second, it allows
a homogeneous representation of all artefacts involved in a model transforma-
tion (i.e., models, metamodels, and transformation logic) by means of a simple

Leveraging Model-Based Tool Integration 259

formalism, thus being especially suited for gaining an understanding of the in-
tricacies of a specific metamodel bridge.

In the next paragraphs, we discuss rules for assembling metamodels, models,
and mapping models into a single transformation net and how the transformation
can actually be executed.

Places represent Metamodels. First of all, places of a transformation net are
used to represent the elements of the source and target metamodels (cf. step 2 in
Figure 1). In this respect, we currently focus on the three major building blocks
of metamodels (provided, e.g. by meta-metamodels such as MOF), namely class,
attribute, and reference. In particular, classes are mapped onto one-colored places
whereby the name of the class becomes the name of the place. The notation used to
visually represent one-colored places is a circle or oval as traditionally used in Petri
Nets. Attributes and references are represented by two-colored places, whereby
the name of the containing class plus the name of the reference or of the attribute
separated by an underscore becomes the name of the place (cf. e.g. Class name
and Class ownedAttributes in Figure 1). To indicate that these places contain two-
colored tokens, the border of two-colored places is double-lined.

Tokens represent Models. The tokens of the transformation net are used
to represent the source model which should be transformed according to the
mapping model. Each element of the source model is expressed by a certain token,
using its color as a means to represent the model element’s identity in terms of a
String (cf. step 3 in Figure 1). In particular, for every object, a one-colored token
is produced, whereby for every link as an instance of a reference, as well as for
every value of an attribute, a two-colored token is produced. The fromColor for
both tokens refers to the color of the token that corresponds with the containing
object. The toColor is given by the color of the token that corresponds with
the referenced target object or the primitive value, respectively. Notationally,
a two-colored token consists of a ring (carrying the fromColor) surrounding an
inner circle (depicting the toColor).

Considering our example shown in Figure 1, the objects o1 to o4 of the
UML model shown in the M1-layer are transformed into one-colored tokens.
Each one-colored token represents an object identity, pointed out by the object
name beneath the token. E.g., the tokens with the inner-color ”Student” and
”Professor” have the same outer-color as their containing objects and the token
which represents the link between object o1 and o3 has the same outer-color
as the token representing object o1 and the inner-color corresponds to the one-
colored token representing object o3.

Transitions represent Mapping Models. The mapping model is expressed
by the transformation logic of the transformation net connecting the source and
the target places (cf. Step 4 in Figure 1). In particular, the operational semantics
of the mapping operators are described with transitions, whereby the behavior of
a transition is described with the help of preconditions called query-tokens (LHS
of a transition) and postconditions called generator-tokens (RHS of a transition).
Query-tokens and generator-tokens can be seen as templates, simply visualized

260 G. Kappel et al.

as color patterns, describing a certain configuration of tokens. The pre-condition
is fulfilled and the transitions fires, if the specified color pattern described by
the query-tokens matches a configuration of available input tokens. In this case,
the postcondition in terms of the generator-tokens produces the required output
tokens representing in fact the necessary target model concepts.

In the following, the most simple mapping operators used in our example are
described, namely C2C, A2A, and R2R.

C2C. The white-box view of the C2C operators as shown in the transformation
view of Figure 1 ensures that each object instantiated from the class connected
to the input port is streamed into the mapping operator, the transition matches
a single token from the input port, and streams exactly the same token to the
output port. This is expressed in the transition by using the most basic query-
token and generator-token combination, both having the same color pattern. In
addition, every input and output token combination is saved in a history place
representing the trace model which is connected to the providedContext port and
can be used as trace information by other operators.

A2A. The white-box view of the A2A operator is also illustrated in the bridging
part of the transformation view in Figure 1. Two-colored tokens representing
attribute values are streamed via the input port into the mapping operator.
However, a two-colored token is only streamed to the output port if the owning
object of the value has been already transformed by a C2C operator. This is
ensured in that the transition uses the same color pattern for the one-colored
query-token representing the owning object streamed from the requiredContext
port and for the outer color of the two-valued query-token representing the
containing object of the attribute value. Only, if a token configuration matches
this pre-condition, the two-colored token is streamed via the generator-token to
the output port. Again, the input tokens and the corresponding output tokens
are stored in a history place which is connected to the providedContext port.

R2R. The white-box view of the R2R operator shown in the transformation
view of Figure 1 consists of three query-tokens, one two-colored query-token
representing the link and two one-colored query-tokens for accessing trace infor-
mation from C2C operators. The two-colored query-token must have the same
inner and outer colors as provided by the C2C trace information, i.e., the source
and target objects must be already transformed. When this precondition is sat-
isfied by a token configuration, the two-colored token representing the link is
streamed via the generator-token to the output port.

Execution of the transformation logic. As soon as the metamodels are
represented as places, which are furthermore marked with the respective colored
tokens depicting the concepts of the source model (cf. step 5 in Figure 1), the
transformation net can be started. Now, tokens are streamed from the source
places over the transitions into the target places (cf. step 6 in Figure 1).

Considering our running example, in a first step only the transitions of the
C2C operators are able to fire due to the dependencies of the A2A and R2R
operators. Hence, tokens from the places Class and Property are streamed to

Leveraging Model-Based Tool Integration 261

the appropriate places of the RHS and all combinations of the queried input
and generated output tokens are stored in the trace model of the C2C operator.
As soon as all necessary tokens are available in the trace model, dependent
operators, i.e., the A2A and R2R operators, are also able to fire.

Generation of the target model. After finishing the transformation, the
tokens from the target places can be exported (cf. step 7 in Figure 1) and trans-
formed back into instances of the RHS metamodel (cf. step 8 in Figure 1).

In our example, the one-colored tokens o1 to o4 contained in the target places
are transformed back into objects of type EntityType and Attribute. The two-
colored tokens which represent attribute values, e.g., ”Professor” and ”Student”,
are assigned to their containing objects, e.g., o1 and o2 whereas ”ssn” and
”studentnr” are assigned to o3 and o4. Finally, the two-colored tokens which
represent links between objects are transformed back into links between o1 and
o3, as well as between o2 and o4.

3 Mapping Operators of the CAR Mapping Language

3.1 Motivating Example

Based on experiences gained in various interoperability projects [10,11,35,36] it
has been shown that although most meta-metamodels such as MOF offer only
a core set of language concepts for defining metamodels, numerous structural
heterogeneities occur when defining modeling languages.

LHS-MM RHS-MM

Package Package

c

Package Package

*

name : String

subClassesCl
d

name : String {id}

*

Class

name : String
Class Generalization

*
Cl

subClasses
*

superClasses
*

name : String

Attribute
*

superClasses
g

package : String {idref} *

Attribute
: kind

Multiplicity

1..1
name : String

name : String a
DesAtt IdAtt minCard : Integer

maxCard : Integer
b

isID : Boolean
minCard : Integer
maxCard : Integer

Fig. 2. Structural Heterogeneities Between Metamodels - Example

As an example for structural metamodel heterogeneity consider the example
shown in Figure 2. Two MOF-based metamodels represent semantically equiva-
lent core concepts of the UML class diagram in different ways. Whereas the LHS
metamodel uses only a small set of classes, the RHS metamodel employs a much
larger set of classes thereby representing most of the UML concepts which are
in the LHS metamodel implicitly defined as attributes or references explicitly as

262 G. Kappel et al.

first class citizens. More specifically, four structural metamodel heterogeneities
can be found (cf. Subsection 3.3 - 3.6) which require mapping operators going
beyond the simple one-to-one mappings provided by the mapping operators in
Section 2.

3.2 CAR Mapping Language at a Glance

For resolving structural metamodel heterogeneities, we provide nine different
core mapping operators as depicted in Figure 2. These nine mapping opera-
tors result from the possible combinations between the core concepts of meta-
metamodels, namely class, attribute, and reference, which also led to the name
of the CAR mapping language. These mapping operators are designed to be
declarative and bi-directional and it is possible to derive executable transforma-
tions based on transformation nets. One important requirement for the CAR
mapping language is that it should be possible to reconstruct the source models
from the generated target models, i.e., any loss of information during transfor-
mation should be prevented. In Figure 3, the mapping operators are divided
according to their functionality into the categories Copier, Peeler, and Linker
which are explained in the following.

Class Attribute Reference

Class C2C C2A C2R

Att ib t A2C A2A A2R
… Copier

Legend

Attribute A2C A2A A2R

Reference R2C R2A R2R
… Peeler
… Linker

Fig. 3. CAR Mapping Operators and their categorization

Copier. The diagonal of the matrix in Figure 3 depicts the symmetric mapping
operators of the CAR mapping language which have been already discussed in
Section 2. The term symmetric means that the input and outport ports of the
left side and the right side of the mapping operators are of the same type. This
category is called Copier, because these mapping operators copy one element of
the LHS model into the RHS model without any further manipulations.

Peeler. This category consists of mapping operators which create new objects by
”peeling”3 them out of values or links. The A2C operator bridges heterogeneities
which are resulting from the fact that a concept is expressed as an attribute in
one metamodel and as a class in another metamodel. Analogously, a concept can
be expressed on the LHS as a reference and on the RHS as a class which can be
bridged by a R2C operator.

Linker. The last category consists of mapping operators which either link two
objects to each other out of value-based relationships (cf. A2R and R2A operator)
3 Note that the term ”peeling” is used since when looking at the white-box view the

transformation of an attribute value into an object requires in fact to generate a
one-colored token out of a two-colored token.

Leveraging Model-Based Tool Integration 263

or assign values or links to objects for providing the inverse variants of the A2C
and R2C operators (cf. C2A and C2R operator).

To resolve the structural heterogeneities depicted in Figure 2, in the following
subsections the necessary mapping operators are discussed in detail, comprising
besides a variation of the C2C operator mainly mapping operators falling into
the above mentioned peeler and linker category. The solution for the integration
example is shown in Figure 4 and Figure 5 on the mapping view and on the
transformation view, respectively.

RHSBridgingLHS RHSBridgingLHS
Target MMMapping ModelSource MM

PackageC2C

Package

name : String

name : String
A2A

superClasses

C2C

A2R

Class

superClasses

* name : String
package : String

Class

*

St i
Generalization

subClasses

*
A2A

classes

package : String *name : String *
superClasses

R2R

R2C

C2C

R2R

{inv: true}

ib *

*

Attribute

1 1
name : String

C2C attributes *

multiplicity
attributes

Attribute

name : String
isID : Boolean

DesAtt

: kind

minCard : Integer
maxCard : Integer

Multiplicity

1..1

A2A

C2C

isID=false

multiplicity

minCard : Integer
maxCard : Integer

DesAtt

IdAtt

maxCard : Integer

C2C

isID=ftrue

A2CA2C

Fig. 4. Integration Example solved with CAR (Mapping View)

3.3 Conditional C2C Mapping Operator

Problem. In MOF-based metamodels, a property of a modeling concept can
be expressed via a discriminator of an inheritance branch or with an additional
attribute. An example for this kind of heterogeneity can be found in Figure
2(a), namely between Attribute.isID on the LHS and the subclasses of the class
Attribute on the RHS. This heterogeneity is not resolvable with a primitive C2C
operator per se, because one class on the LHS corresponds to several classes
on the RHS whereby each mapping is only valid under a certain condition. On
the model level, this means that a set of objects has to be splitted into several
subsets based on the object’s attribute values.

264 G. Kappel et al.

RHSBridgingLHS
Source Places Target PlacesTransformation Logic

Package PackageC2C

A2A
history

Package_name
Package_name

A2A

history

y

y

ClassC2C

hi t
Class

history

Class_name

A2A

Package_classes

Class_name
A2A

history

Class_package

A2R

y

_p g

history

Generalization_subClasses

history

Class_superClasses
R2C Generalization

R2R
history

Generalization_superClasses

Class_attributes

Class_attributes
history

Attribute
Attribute C2C <<abstract>>

C2C

Attribute_name

DesAtt
IdAtt

C2C

history
isID=false

Attribute_nameC2C

s a se

Attribute_isID

Attribute multiplicity

history
isID=true

A2A

Attribute_multiplicity

history

Attribute_minCard Multiplicity

Attribute_maxCard

A2C Multiplicity_minCard

_

Multiplicity_maxCard

history

Fig. 5. Integration Example solved with CAR (Transformation View)

Leveraging Model-Based Tool Integration 265

Solution. To cope with this kind of heterogeneity, the C2C operator has to be
extended with the capability of splitting a set of objects into several subsets. For
this we are annotating the C2C operator with OCL-based preconditions assigned
to ports as depicted in Figure 6(a). These preconditions supplement the query-
tokens of the transitions by additionally allowing to specify constraints on the
source model elements. The reason for introducing this additional mechanism is
that the user should be able to configure the C2C operator without having to
look into the white-box view of the operator, realizing its basic functionality.

Example Application. In the example shown in Figure 4, we can apply two
C2C mapping operators with OCL conditions, one for mapping Attribute to De-
sAtt with the precondition Attribute.isID = false, and one for mapping Attribute
to IdAtt with the precondition Attribute.isID = true. In addition, this example
shows a way how mappings can be reused within a mapping model by allowing in-
heritance between mappings. This mechanism allows to define certain mappings
directly between superClasses and not for each subClass combination again and
again (cf., e.g., the A2A mapping between the Attribute.name attributes), as
described in more detail in Section 4.

3.4 A2C Mapping Operator

Problem. In Figure 2(b), the attributes minCard and maxCard, which are part
of the class Attribute at the LHS, are at the RHS part of a dedicated class
Multiplicity. Therefore, on the instance level, a mechanism is needed to ”peel”
objects out of attribute values and to additionally take into account the struc-
ture of the LHS model in terms of the attribute’s owning class when building
the RHS model, i.e., instances of the class Multiplicity must be connected the
corresponding instances of class Attribute.

Solution. The black-box view of the A2C mapping operator as illustrated in
Figure 6(b) consists of one or more required interfaces for attributes on the LHS
depending on how many attributes are contained by the additional class, and has
in minimum three provided interfaces on the RHS. The first of these interfaces is
used to mark the reference which is responsible to link the two target classes, the
second is used to mark the class that should be instantiated, and the rest is used
to link the attributes of the LHS to the RHS. Additionally, an A2C operator
has a required interface to a C2C, because the source object is splitted into two
target objects, thereby only one object is created by the A2C, the other has to
be generated by a C2C operator which maps the LHS class to its corresponding
target RHS class.

The white-box view of the A2C operator shown in Figure 6(b) comprises a
transition consisting of at least two query-tokens. The first query-token guar-
antees that the owningObject has been already transformed by a C2C opera-
tor. The other query-tokens are two-colored tokens representing the attribute
values which have as fromColor the same color as the first query-token. The

266 G. Kappel et al.

C2C

C2C

c2c

object :
Class

object :
Class

object :
Class

object :
Class

pre: OCL-Exp

History

c2c

pre: OCL-Exp

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

(a) Conditional C2C operator

A2C

A2C

a2c

valueObject :
Class

a2c

value1 :
Attribute

link2OwningObj :
Reference

value1 :
Attribute

owningObject : c2c

owningObject: c2c

value1 :
Attribute

valueObject :
Class

link2OwningObj :
Reference

value1 :
Attribute

valueN :
Attribute

…

valueN :
Attribute

…

valueN :
Attribute

valueN :
Attribute

…

… …

History

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w
(b) A2C operator

R2C

History

R2C

r2c

link2SourceObj :
Reference

r2c

link :
Reference

linkObject :
Class

link2TargetObj :
Reference

sourceObject : c2c

sourceObject : c2c

link :
Reference

link2SourceObj :
Reference

linkObject :
Class

link2TargetObj :
Reference

targetObject : c2c

targetObject : c2c

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

(c) R2C operator

A2R

a2r

link :
Reference

keyValue :
Attribute

link :
Reference

a2r

keyRefValue :
Attribute

keyValue :
Attribute

keyRefValue :
Attribute

targetObject : c2csourceObject : c2c

sourceObject : c2c targetObject : c2c

A2R

History

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

(d) A2R operator

Fig. 6. Black-box and white-box views of CAR mapping operators

post-condition of the transition consists of at least three generator-tokens. The
second generator-token introduces a new color, i.e., this color is not used in the
pre-condition part of the transition, and therefore, the generator-token produces
a new object with a unique identity. The first generator-token is used for linking
the newly created object appropriately into the target model and the other two-
colored generator tokens are used to stream the values into the newly generated
object by changing the fromColor of the input values.

Example Application. In Figure 4, the attributes minCard and maxCard are
mapped to attributes of the class Multiplicity. Furthermore, the reference be-
tween the classes Attribute and Multiplicity is marked by the A2C mapping as
well as the class Multiplicity. To assure that the generated Multiplicity objects
can be properly linked to Attribute objects, the A2C mapping is in the context
of the C2C mapping between the Attribute classes.

Leveraging Model-Based Tool Integration 267

3.5 R2C Mapping Operator

Problem. In Figure 2(c), the reference superClasses of the LHS metamodel
corresponds to the class Generalization of the RHS metamodel. This kind of
heterogeneity requires an operator which is capable of ”peeling” an object out
of a link and to additionally preserve the structure of the LHS in terms of the
classes connected by the relationships at the RHS.
Solution. The black-box view of the R2C mapping operator, as depicted in
Figure 6(c), has one required interface on the left side for pointing to a reference.
On the right side it has three provided interfaces, one for the class which stands
for the concept expressed as reference on the LHS and two for selecting the
references which are responsible to connect the object which has been peeled out
of the link of the LHS into the RHS model. To determine the objects to which
the peeled object should be linked, two additional required interfaces on the top
of the R2C operator are needed for determining the corresponding objects of the
source and target objects of the LHS.

The white-box view of the R2C mapping operator, as illustrated in
Figure 6(c), consists of a pre-condition comprising three query-tokens. The in-
put link is connected to a two-colored query-token, the fromColor corresponds to
the query-token standing for the source object and the toColor corresponds to a
query-token standing for the target object. The post-condition of the transition
introduces a new color and is therefore responsible to generate a new object.
Furthermore, two links are produced by the other generator-tokens for linking
the newly generated object with the corresponding source and target objects of
the LHS.
Example Application. In Figure 4, the reference superClasses in the LHS
metamodel is mapped to the class Generalization by an R2C operator. In ad-
dition, the references subClasses and superClasses are selected for establishing
an equivalent structure on the RHS as existing on the LHS. For actually deter-
mining the Class objects which should be connected via Generalization objects,
the R2C operator has two dependencies to C2C mappings. This example can be
seen as a special case, because the reference superClasses is a reflexive reference,
therefore both requiredContext ports of the R2C operator point to the same
C2C operator.

3.6 A2R Mapping Operator

Problem. The attribute vs. reference heterogeneity shown in Figure 2(d) resem-
bles the well-known difference between value-based and reference-based relation-
ships, i.e, corresponding attribute values in two objects can be used to ”simulate”
links between two objects. Hence, if the attribute values in two objects are equal,
a link ought to be established between them.

Solution. For bridging the value-based vs. reference-based relationship hetero-
geneity, the A2R mapping operator as shown in Figure 6(d) provides on the LHS
two interfaces, one for marking the keyValue attribute and another for marking

268 G. Kappel et al.

the keyRefValue attribute. On the RHS, the operator provides only one inter-
face for marking the reference which corresponds to the keyValue/keyRefValue
attribute combination.

The white-box view of the operator comprises a transition which has four
query-tokens. The first two ensure that the objects which are referencing each
other on the LHS have been already transformed. The last two are the key-
Value and keyRefValue query-tokens whereby the inner-color (representing the
attribute values) is the same for both tokens. The generator-token of the transi-
tion produces one two-colored token by using the outer-color of the keyRefValue
query-token as the outer-color and the outer-color of the keyValue query-token
as the inner-color.

Example Application. In Figure 4, the A2R operator is used to map the
Package.name attribute as the key attribute and the Class.package attribute as
the keyRef attribute of the LHS metamodel to the reference between Package
and Class on the RHS metamodel.

After presenting how common structural metamodel heterogeneities are re-
solved with CAR mapping operators, we proceed with discussing how mapping
reuse within a single mapping model may be achieved. This is especially needed
for large metamodels which consists of extensive class hierarchies such as the
UML 2 metamodel. For example, as reported in [16], the number of single in-
heritance meta-classes in UML 2 is 209. Therefore, in the next section, an in-
heritance mechanism for CAR mapping operators for achieving reuse within a
single mapping model is presented.

4 An Inheritance Mechanism for CAR Mappings

Why is an inheritance mechanism needed? Metamodeling languages such
as MOF allow to define class hierarchies in metamodels through generaliza-
tion which is frequently used in practice. Consequently, when one defines map-
pings between metamodels which heavily use generalizations leading to huge
taxonomies, it should be possible to reuse previously defined mappings between
general classes for mappings between subclasses.

Required reuse mechanisms. To facilitate the definition of mapping models
between MOF-based metamodels, reuse may be achieved in three ways:

(1) Reuse of feature mappings : Mappings between features of superclasses may
be defined once for the superclasses and may be inherited by mappings between
subclasses which may define additional feature mappings between the subclasses.
This reuse mechanism is comparable with code reuse through implementation
inheritance supported by common object-oriented programming languages.

(2) Reuse for indirect instances: The following mapping situation frequently
occurs when two metamodels have to be integrated. Assume, we have on the
LHS a superclass which has a multitude of subclasses. In contrast, on the RHS
the class hierarchy on the LHS is collapsed into a single class inhibiting all
features of the LHS class hierarchy at the RHS, which is equivalent to the LHS

Leveraging Model-Based Tool Integration 269

superclass and also to its subclasses. To avoid that for each subclass a mapping
to the RHS class must be defined, it should be possible to apply the mapping
between the LHS superclass and the RHS class also for indirect instances of the
LHS superclass.

(3) Refinement of mappings : A refinement mechanism is needed to define
for certain subclasses specific mappings, which refine the mapping between the
superclasses. For example, instances of a LHS subclass should be transformed
into instances of a RHS subclass and not into instances of the RHS superclass.
Of course, the feature mappings between the superclasses should be also applied
for such submappings.
In the following subsections, we elaborate on how the CAR mapping language
is extended in order to provide these three reuse features.

4.1 Inheritance for C2C Mappings

For reusing existing feature mappings (first reuse mechanism), we introduce the
possibility to define generalization relationships between C2C mappings. This
means, the user defines general mappings between superclasses called supermap-
pings and more specific mappings between subclasses called submappings which
may be used to refine the supermappings (third reuse mechanism). As concrete
syntax for generalization relationships between C2C mappings, we reuse the no-
tation of UML generalization relationships between classes, i.e., a line with a
hollow triangle as an arrowhead. Concerning the second reuse mechanism, it has
to be noted that there are also cases in that the mentioned behavior of applying
a supermapping for indirect instances is not desired. Sometimes it is required
that only direct instances should be transformed and not indirect instances.
Therefore, certain configuration parameters for mappings are required in order
to express such integration details in the mapping model.

C2CR

superMappings *

C2C

isAbstract: boolean
isApplicable4Subclasses: boolean

C
A

R

subMappings

*

Class

isAbstract: boolean

LHSClass RHSClass1 1

M
O

F

subClasses

superClasses *
*superClasses *

Fig. 7. C2C Operator Extended with Generalization Relationships

We allow generalization relationships only for C2C mappings for inheriting
feature mappings which are dependent on C2C mappings such as symmetric
mappings (A2A, R2R), or asymmetric mappings (A2C, R2C, A2R, and their
inverse operators). This is due to the fact that C2C operators are responsi-
ble for providing the context information for all other CAR mapping opera-
tors. The introduction of generalization relationships between C2C mappings

270 G. Kappel et al.

results in an extension of the C2C operator as shown in Figure 7. In this fig-
ure, the class C2C, representing the C2C mapping operator, is extended for
defining generalization relationships by setting the references superMappings
and subMappings accordingly. Furthermore, for allowing different kinds of su-
permappings, i.e., if a mapping is itself executable or if it is applicable for un-
mapped subclasses, two additional boolean attributes, namely C2C.isAbstract
and C2C.isApplicable4SubClasses, are defined for the C2C class. These two at-
tributes enable the user to configure the behavior of the mappings in more detail.

One important constraint for generalization relationships between C2C op-
erators is that if a generalization between two C2C operators is defined, the
participating LHS classes of the supermappings and the submappings must be
either in a generalization relationship or it must be actually the same class.
Of course, the same constraint must hold on the RHS. These two constraints
must be ensured, because the submappings inherit the feature mappings of the
supermappings and therefore, the features of the superclasses must be also avail-
able on instances which are transformed according to the submappings. The OCL
constraints shown in Listing 1.1 validate a mapping model with respect to the
correct usage of generalization relationships between C2C mappings.

Listing 1.1. Well-formedness Rules for C2C Generalizations

context C2C
inv : s e l f . superMappings −> f o rA l l (supMap | supMap . LHSClass . subClasse s −>

union (supMap . LHSClass) −> con ta in s (s e l f . LHSClass)) ;
inv : s e l f . superMappings −> f o rA l l (supMap | supMap . RHSClass . subClasse s −>

union (supMap . RHSClass) −> con ta in s (s e l f . RHSClass)) ;

The default configuration of the C2C operator for each mapping situation
specifies that the supermapping itself is executable and applicable for indirect
instances. In order to give the user more possibilities to explicitly define other
interpretations of supermappings, we furthermore allow three non-default su-
permapping configurations, thereby the first configuration allows to define ab-
stract supermappings with the capability to be applied for indirect instances, and
the other two configurations allow reuse of depending mappings of supermap-
pings without applying the supermappings on indirect instances.

For further explanations how to use generalization between C2C operators,
we assume that the mapping problem is symmetric, i.e., the same generalization
structure is available on the LHS and on the RHS, and that only single inheri-
tance is used for defining the metamodels. In particular, we assume that on the
LHS and on the RHS a superclass with various subclasses exists. For asymmet-
ric mapping problems, i.e., one side has a taxonomy and the other has not, and
integration scenarios where metamodels use multiple inheritance the interested
reader is kindly referred to [32].

4.2 Representing Inheritance within Transformation Nets

In this subsection we discuss how C2C generalization relationships influence
the generation of transformation nets and consequently the execution of the

Leveraging Model-Based Tool Integration 271

transformation logic. An overall design goal is naturally to express new language
concepts at the black-box view – such as mapping generalizations in this case –
as far as possible by means of existing transformation net mechanisms.

Basic Idea. When we take a closer look on supermappings with a standard
configuration, we see that these mappings must provide the context, i.e., the
trace model information, for all dependent mappings. This means, the supermap-
pings must also provide context information about the transformation of indirect
instances, e.g., for assigning attribute values of indirect instances when the at-
tribute is contained by the superclass. Consequently, for a supermapping a trans-
formation component is derived which contains the union of its own trace model
for logging the transformation of direct instances of the superclass and the trace
models of its submappings for logging the transformation of indirect instances.
Therefore, the corresponding transformation components of the submappings are
nested into the transformation component of the supermapping. For construct-
ing the union of trace models of nested transformation components, each nested
component gets an arc from its own trace model to the union trace model of the
outer component. Mappings which depend on the supermapping are connected
to the union trace model available on the outer component and mappings which
are dependent on submappings are directly connected to the individual trace
models of the nested components.

C2C1

Mapping Model Transformation Net

1

C2C2.1

history
C2C1

C2C3.1

C2C3.2

C2C2.1 C2C2.2

…
C2C2.2

…

union(2.1, 3.1, 3.2, …)
C2C3.1 C2C3.2

union(1, 2.1,2.2)

Fig. 8. Representing Inheritance Structures with Nested Transformation Components

Figure 8 illustrates the derivation of generalization relationships into transfor-
mation net components. For describing the basic mapping rule how generaliza-
tion relationships are represented in transformation nets, it is assumed that all
mappings are concrete mappings and it is not considered if a mapping is appli-
cable for subclasses or not. The mapping C2C1 of the mapping model shown on
the LHS of Figure 8 is transformed into the outer component C2C1, which con-
sists of a transition for transforming direct instances and of two subcomponents
C2C2.1 and C2C2.2. In addition, the outer component provides a union trace
model of the transformation components C2C1, C2C2.1, and C2C2.2. Because

272 G. Kappel et al.

C2C1
pre: oclIsTypeOf(C1|C3)

C2C2

history

C2C1.isAbstract = false

C2C1.isApplicable4SubClasses = true

Config 1:
Rule1

C2C1pre: oclIsTypeOf(C3)

C2C2

C2C1.isAbstract = true

C2C1.isApplicable4SubClasses = true

historyConfig 2:

C1 C1‘

RHS_MMLHS_MM

Mapping Model
Rule2

C2C1

C2C1pre: oclIsTypeOf(C1)

C1

C3 C2

C1

C2‘C2C2

1

C2C2

C2C1.isAbstract = false

C2C1.isApplicable4SubClasses = false

historyConfig 3:
C3 C2 C2

Rule3

2

C2C1

C2CC2C i Ab t t t

Config 4:
R l 4 C2C2C2C1.isAbstract = true

C2C1.isApplicable4SubClasses = false
Rule4

Fig. 9. Representing Supermapping Configurations in Transformation Components

the mapping C2C2.1 has two submappings, the corresponding transformation
component has also two subcomponents C2C3.1 and C2C3.2. In addition, the
component C2C2.1 provides a union trace model of itself and the subcompo-
nents C2C3.1 and C2C3.2.

Mapping Rules for Supermapping Configurations. In addition to the
derivation of inheritance structures to nested transformation components, spe-
cific derivation rules for the configuration variants of the supermappings are
needed to represent abstract and concrete mappings in transformation nets as
well as the applicability of supermappings for subclasses. In particular, the fol-
lowing four rules, which are summarized in Figure 9, are sufficient to generate
transformation nets for all possible supermapping configurations. The mapping
model shown in Figure 9 is used as an example input mapping model for de-
scribing the mapping rules and comprises a mapping between the superclasses
C1 and C1’ of the LHS and RHS metamodels and between the subclasses C2
and C2’, whereby the subclass C3 of the LHS remains unmapped.

Rule 1 - Concrete/Applicable Supermapping: When a supermapping is con-
crete, a transition is available in the outer transformation component for trans-
forming direct instances of the superclass and indirect instances for which no
specific mappings are available. Because only direct and indirect instances of
subclasses without specific mappings should be transformed by the transition of
the outer component, an OCL condition is attached on the inputPort which leads
to the transition in order to reject tokens for which more specific mappings are
available. Such constraints can be defined with the OCL function oclIsTypeOf

Leveraging Model-Based Tool Integration 273

which gets as parameters the superclass and all subclasses for which no spe-
cific mappings have been defined in the mapping model (cf. OCL condition
oclIsTypeOf(C1 |C3)). If there is a more specific mapping between subclasses, a
nested component is produced and the tokens are not streamed via the super-
class mapping, instead the subplace generated from the LHS subclass gets an
additional arc which leads to a more specific transformation component.

Rule 2 - Abstract/Applicable Supermapping: Although the supermapping is
abstract, a transition resides directly in the outer component, which is not ap-
plicable for direct instances but for transforming all indirect instances for which
no specific mapping has been applied (cf. OCL condition oclIsTypeOf(C3)).

Rule 3 - Concrete/Non-Applicable Supermapping: If a supermapping is de-
fined as concrete and non-applicable for unmapped subclasses then an outer
component is produced which consists of a transition for transforming direct
instances of the superclass (cf. OCL condition oclIsTypeOf(C1)).

Rule 4 - Abstract/Non-Applicable Supermapping: When a supermapping is
abstract and non-applicable for unmapped subclasses only the outer compo-
nent is generated for providing a union trace model for its submappings. This
is sufficient, because neither direct instances nor indirect instances have to be
transformed by such a component.

Design Alternatives. The following three design alternatives exist for trans-
formation nets to model the applicability of the supermapping transition on
subPlaces. First, we could extend the place modeling constructs with tags such
as “superTransition is applicable”. However, the introduction of such a trans-
formation net feature would violate our design goal that the transformation net
formalism should not be changed. The second possibility is to generate for each
unmapped class an additional arc from the corresponding source place to the
outer component generated for the supermapping. This variant would lead to
much more complicated transformation nets and to a huge amount of duplicated
arcs, which simply does not pay off the information gain for the user. Therefore,
we decided for a third variant, namely the usage of OCL constraints as explained
for Rule 1 to 3.

Example. To summarize this section, a concrete integration example, as shown
in Figure 10, is discussed on the mapping view and on the transformation view.
In the LHS metamodel, a class Person is specialized into Supplier, Employee,
and Customer classes. The RHS metamodel consists also of a superclass Person,
and of Client, Staff, and ShareHolder subclasses. Each LHS class can be mapped
to a RHS class, except the class Supplier. Hence, the LHS class Person is mapped
with a C2C mapping operator to the RHS class Person. The properties of this
C2C are set to isAbstract=FALSE and Applicable4SubClasses=TRUE. Conse-
quently, each instance of the LHS class Person is transformed into an instance
of the RHS class Person, as well as each instance of a subclass which has no fur-
ther refinement mapping is also transformed into an instance of the RHS Person
class. For example, each instance of the class Supplier becomes an instance of
the class Person. Additionally, the name attribute of the LHS class Person is

274 G. Kappel et al.

RHSBridgingLHS
Target MMMapping ModelSource MM

g
Vi
ew

C2C

Person

name:String

Person

name:String
A2A

M
ap

pi
ng C2C

C2C

Supplier Employee

Customer

cuNr:int

Client

clNr:int

Staff Share Holder

Transform

M

Transform Transform

Supplier

suNr:int

p y

emNr:int stNr:int

Share Holder

shNr:int
A2A

A2A

Source Places Target PlacesTransformation Logic

Person Person

C2C

history

Supplier CustomerEmployee Client Share Holder
Staff

C2C

history

n
Vi
ew C2C

history

rm
at
io
n

A2A

Person_name Person_name

Tr
an

sf
o

history

A2A

Employee_emNr Staff_stNr

A2A

history

Customer_cuNr Client_clNr

A2A

history

Supplier_suNr ShareHolder_shNr

Fig. 10. Inheritance between C2C Mappings - Example

mapped by an A2A mapping operator to the name attribute of the RHS class
Person.

The subclasses Employee and Customer of the class Person on the LHS are
mapped by C2C mappings to Staff and Client of the RHS, respectively. Addi-
tionally, the attributes of these classes, namely Customer.cuNr, Employee.emNr,
and Client.clNr, Staff.stNr, are mapped by A2A mappings, respectively. Due to
the fact that each of the subclasses inherit the attributes of the superclass –
the attribute Person.name – the A2A mapping between the superclasses is also
inherited by the C2C mappings by setting the superMappings reference to the
C2C mapping which resides between the Person classes.

Leveraging Model-Based Tool Integration 275

The corresponding transformation net for the presented mapping model is
depicted in the Transformation View of Figure 10. The Person classes become
places which comprise for each subclass an inner place. As subclass places are
nested in superclass places, the inheriting submappings are nested in the trans-
formation component which corresponds to the supermapping. The outer trans-
formation component, corresponding to the supermapping, contains a transition,
because the isAbstract property of the C2C mapping is set to FALSE. Further-
more, due to the isApplicable4SubClasses property of the C2C mapping, which
is set to TRUE, the outer transformation component of the transformation net
owns an additional OCL constraint, namely oclTypeOf(Person|Supplier). Due
to readability purposes, we refrain from displaying these features in Figure 10.
Consequently, each direct instance of type Person from the LHS is transformed
into an instance of class Person on the RHS. Furthermore, this OCL constraint
ensures that each instance of subclasses of the class Person, which has no re-
fined mapping, is also transformed by the supermapping into an instance of type
Person on the RHS.

The attribute Person.name can be transformed only if the containing instance
which can be of type Person, Employee, or Customer has been already trans-
formed. Consequently, the A2A transformation component for name values must
be in the context of three C2C transformation components. This is achieved by
the trace model provided by the black port in the middle of the bottom of the
outer C2C transformation component. This trace model unifies the individual
trace models of the C2C transformation components. The other A2A operators
are connected to the gray ports which link directly to individual trace models of
the nested components.

This example shows the value of using an explicit notion of trace models
together with a union of trace models for automatically synchronizing transfor-
mation net components. With the automatic synchronization provided by the
Petri Net semantic, the streaming of dependent elements such as attribute values
and links comes for free. Thus, no additional control structures and OCL con-
straints are required, and the derivation of transformation nets from mapping
models is straightforward.

5 Evaluation

In this section, we discuss the applicability of our approach by (1) elaborating
on how additional tool integration requirements, namely roundtrip capabilities,
may be supported by our approach and by (2) comparing the efforts of building
such roundtrip transformations using the proposed mapping approach and using
model transformation languages.

Roundtrip Transformations. In case modeling languages of two different tools
are not entirely overlapping, i.e., some modeling concepts are available in one
modeling language which cannot be expressed in the other modeling language,
a transformation may be lossy. Thus, although transformations from tool A
to tool B and vice versa are available, the initial model Ma of tool A may be

276 G. Kappel et al.

different from the roundtrip result M ′
a which is computed by translating Ma into

Mb via the transformation Ta2b and the application of Tb2a on Mb to produce
M ′

a. The main reason for not roundtripping transformations is the fact that
bijective mappings are not always possible to establish between metamodels as
for example reported in [27]. Here the challenging question arises, how to deal
with such cases in order to ensure roundtripping transformations.

In the ModelCVS project4, besides other integration efforts, we have bridged
the Domain Specific Language (DSL) for defining database schemas of the All-
Fusion Gen5 (AFG) modeling tool to the class diagram concepts of the UML
Rational Software Modeler6 tool. Thereby, the first case study was to bridge
structural modeling, i.e., the AFG Data Model with the UML Class Diagram.
The first attempt was to bridge AFG with plain UML. The resulting bridge was
not appropriate for using the tools in combination. Because, although we have
defined for each AFG modeling concept a specific mapping to UML, a lot of
information was lost during roundtrip or even though after the first step when
moving from the AFG to UML. Table 1 summarizes the roundtrip scenario by
depicting some model metrics for each step in the roundtrip.

Table 1. Model Metrics for Data Model/Class Diagram RoundTrip (RT)

Metrics Initial AFG Model UML Model AFG Model after RT Diff in %

#Objects 156 165 156 0
#Values 1099 156 156 85,8
#Links 44 54 36 18,2

#Containment Links 155 164 155 0
File Size 32,8 KB 16 KB 14,6 KB 55,5

The main reason for the massive loss of information was the fact that on the
attribute level only a minimal overlap between the languages exists. In most
cases, only the name attribute of the modeling concepts may be bridged, but
all platform specific attributes of the AFG modeling language such as database
optimization information may not. When we take a look at the model metrics
in Table 1, the initial AFG model and the generated UML model have nearly
the same amount of objects and containment links, only some derived objects
are additionally instantiated in the UML model. This means, the same model
structure can be reproduced on the UML side. However, when we compare the
amount of values, we see that a huge amount of information gets lost in the first
step. In particular, when comparing the number of values of the initial AFG
model and the resulting AFG model after roundtrip, 85,8 % of values are lost
during the roundtrip. For links which are not containment links we see that more
links exist in the generated UML model compared to the initial AFG model. This
is due to the fact, that also derived links are generated for the aforementioned

4 http://www.modelcvs.org
5 http://ca.com/us/products/product.aspx?ID=256
6 http://www-306.ibm.com/software/awdtools/modeler/swmodeler

http://www.modelcvs.org
http://ca.com/us/products/product.aspx?ID=256
http://www-306.ibm.com/software/awdtools/modeler/swmodeler

Leveraging Model-Based Tool Integration 277

additionally derived objects. Therefore, even though we have more links and
objects on the UML side, less information is expressed and some links cannot be
reconstructed when transforming the UML models back to AFG models. Finally,
the information loss has of course an effect on the file size, namely the resulting
file after roundtrip has only half the size of the initial file.

Table 2. Model Metrics for Data Model/Class Diagram Roundtrip Revisited

Metrics Initial AFG Model UML Model AFG Model after RT Diff in %

#Objects 156 165 156 0
#Values 1099 156 1099 0
#Links 44 54 44 0

#Containment Links 155 164 155 0
File Size 32,8 KB 58,5 KB 32,8 KB 0

#Annotations - 156 - -
#Key/Value Pairs - 951 - -

In Table 2, the model metrics are again presented, however, now for unmapped
features (i.e., attributes and references) dedicated annotations are created on the
UML side by using an enhanced transformation generation from mapping models
tailored to preserving information during roundtrip. As one can see in the most
right column of the table, no difference regarding the number of model elements
between the initial AFG model and the AFG model after roundtrip exists. The
information can be preserved by applying for each corresponding object an ap-
propriate annotation allowing to use key/value pairs for saving attribute values
which otherwise would be lost. This specific logic can be easily introduced in
the transformation generation thanks to the declarative nature of the mapping
models. Furthermore, a comparison of the initial AFG model and the resulting
AFG model using the comparison facility of EMF Compare7 demonstrated that
both were equivalent, thus no information has been lost during roundtrip.

Metrics for Mapping Model and corresponding Model Transformations. In ad-
dition to the evaluation of the roundtrip capability of the generated bridge, the
number of model elements of the manually created mapping model compared
to the number of elements needed for the corresponding model transformations
defined in the de-facto model transformation standard in Eclipse, namely the AT-
LAS Transformation Language (ATL) [8], is presented. This comparison should
give an indication on how much effort requires the creation of the mapping model
in contrast to building the integration artifacts manually from scratch by using
a textual model transformation language such as ATL.

Table 3 summarizes some metrics for the mapping model and for the cor-
responding ATL model transformations. We decided to use as metrics for the
mapping model, first, the number of applied MOPs, and second, how many
non-default property values (e.g., for setting inheritance relationships between
MOPs) have to be set by the user, because this is exactly the work the user has

7 www.eclipse.org/modeling/emft

www.eclipse.org/modeling/emft

278 G. Kappel et al.

to do for creating the mapping model. For the transformation code we simply
use lines of code (LOC) as metric, just to give an indication how much effort the
manual implementation of the transformations for both directions (AFG2UML,
UML2AFG) would cause.

Table 3. Metrics Overview: Mapping Model vs. ATL Code

Mapping Model Metrics Model Transformation Metrics

Mapping Operator User Actions ATL File Lines of Code

C2C 6
AFG2UML

120 overall

A2A 1 75% declarative
R2R 7 25% imperative

Properties 7
UML2AFG

100 overall

86% declarative
14% imperative

For realizing model exchange between AFG and UML, in total 220 lines of
ATL code are necessary, where most parts are declarative rules. However, for
using annotations within the transformation for saving unmapped values, im-
perative code is needed, e.g., for applying annotations and for setting key/value
pairs when moving from AFG to UML as well as for assigning key/value pairs as
attribute values when we are going back from UML to AFG. Instead, using the
presented mapping approach, we are able to develop the same bridge using only
14 MOPs and setting 7 properties of the applied MOPs from which the transfor-
mations in both directions are derived. For dealing with annotations for setting
unmapped values, the generator for the transformations is capable of produc-
ing this dedicated logic without requiring the user to define mappings for this
aspect. Only the generator has been extended with one additional generation
rule which can be turned on/off as required. Compared to the manual authoring
of model transformations where this aspect is intermingled with the rest of the
code, the presented mapping approach allows for a faster and more systematic
development of tool integrations.

6 Related Work

With respect to our approach of defining reusable mapping operators for resolv-
ing metamodel heterogeneities as a kind of mapping between metamodels we
distinguish between three broad categories of related work: first, related work
concerning our goal to design a framework for building reusable mapping op-
erators in the field of MDE, and second, related work concerning our solution
approach in the field of ontology integration. In addition, we elaborate on re-
lated approaches which employ Petri Nets as conceptual modeling language for
defining model transformations.

6.1 Reusable Model Transformations

Generic Model Transformations. Typically model transformation languages,
e.g., ATL [8] and QVT [21], allow to define transformation rules based on types

Leveraging Model-Based Tool Integration 279

defined as classes in the corresponding metamodels. Consequently, model trans-
formations are not reusable and must be defined from scratch again and again
with each transformation specification. One exception thereof is the approach
of Varró et al. [30] who propose a notion of specifying generic transformations
within their VIATRA2 framework, which in fact resembles the concept of tem-
plates in C++ or generics in Java. VIATRA2 also provides a way to implement
reusable model transformations, although it does not foster an easy to debug ex-
ecution model as is the case with our proposed transformation nets. In addition,
there exists no explicit mapping model between source and target metamodel
which makes it cumbersome to reconstruct the correspondences between the
metamodel elements based on the graph transformation rules, only.

Transformation Patterns. Very similar to the idea of generic transformations
is the definition of reusable idioms and design patterns for transformation rules
described by Karsai et al. [1]. Instead of claiming to have generic model trans-
formations, the authors propose the documentation and description of recurring
problems in a general way. Thus, this approach solely targets the documenta-
tion of transformation patterns. Realization issues how these patterns could be
implemented in a generic way remain open.

Mappings for bridging metamodels. Another way of reuse can be achieved
by the abstraction from model transformations to mappings as is done in our ap-
proach or by the ATLAS Model Weaver (AMW) [6]. AMW lets the user extend
a generic so-called weaving metamodel, which allows the definition of simple
correspondences between two metamodels. Through the extension of the weav-
ing metamodel, one can define the abstract syntax of new weaving operators
which roughly correspond to our mapping operators. The semantics of weaving
operators are determined by a higher-order transformation that take a weaving
model as input and generates model transformation code. Compared to our ap-
proach, the weaving models are compiled into low-level transformation code in
terms of ATL which is in fact a mixture of declarative and imperative language
constructs. Thus, it is difficult to debug a weaving model in terms of weaving
operators, because they do not explicitly remain in the model transformation
code. Furthermore, the abstraction of mapping operators from model transfor-
mations expressed in ATL seems more challenging compared to the abstraction
from our proposed transformation net components.

6.2 Ontology Mapping for Bridging Structural Heterogeneities

In the field of ontology engineering, several approaches exist which make use
of high-level languages for defining mappings between ontologies (cf. [9] for an
overview). For example, in Maedche et al. [17], a framework called MAFRA
for mapping two heterogeneous ontologies is proposed. Within this framework,
the mapping ontology called Semantic Bridge Ontology usually provides differ-
ent ways of linking concepts from the source ontology to the target ontology.
In addition to the Semantic Bridge Ontology, MAFRA provides an execution
platform for the defined mappings based on services whereby for each semantic

280 G. Kappel et al.

bridge type a specific service is available for executing the applied bridges. In
[24], Scharffe et al. describe a library of so called Ontology Mediation Patterns
which can be seen as a library of mapping patterns for integrating ontologies.
Furthermore, the authors provide a mapping language which incorporates the
established mapping patterns and they discuss useful tool support around the
pattern library, e.g., for transforming ontology instances between different on-
tology schemas.

The main difference to our approach is that ontology mapping approaches are
based on Semantic Web standards, such as OWL and RDFS, and therefore con-
tain mapping operators for typical description logic related mapping problems,
e.g., union or intersection of classes. We are bridging metamodels expressed in
MOF, a language which has only a partial overlap with OWL or RDFS, leading
to different mapping problems. Furthermore, in contrast to the ontology mapping
frameworks, we provide a framework allowing to build new mapping operators
by using well-known modeling techniques not only for defining the syntax but
also for the operational semantics of the operators.

6.3 Petri Nets and Model Transformations

The relatedness of Petri Nets and graph rewriting systems has also induced some
impact in the field of model transformation. Especially in the area of graph
transformations some work has been conducted that uses Petri nets to check
formal properties of graph production rules. Thereby, the approach proposed in
[31] translates individual graph rules into a place/transition net and checks for
its termination. Another approach is described in [5], which applies a transition
system for modeling the dynamic behavior of a metamodel.

Compared to these two approaches, our intention to use Petri Nets is to-
tally different. While these two approaches are using Petri Nets as a back-end
for automatically analyzing properties of transformations by employing place/-
transition nets, we are using Colored Petri Nets as a front-end for debuggability
and understandability of transformations. In particular, we are focussing on how
to represent model transformations as Petri Nets in an intuitive manner. This
also covers the compact representation of Petri Nets to eliminate the scalability
problem of low-level Petri nets. Finally, we introduce a specific syntax for Petri
Nets used for model transformations and integrate several high-level constructs,
e.g., colors, inhibitor arcs, and pages, into our language. However, it has to be
noted that the higher expressivity gained from high-level constructs comes with
a negative impact on the analyzability of the Petri Nets.

7 Conclusion and Future Research Issues

In this paper we have presented a framework allowing the definition of map-
ping operators and their application for building metamodel bridges. Metamodel
bridges are defined by the user on a high-level mapping view which represents
the semantic correspondences between metamodel elements and are tested and

Leveraging Model-Based Tool Integration 281

executed on a more detailed transformation view which also comprises the trans-
formation logic of the mapping operators. The close integration of these two
views and the usage of models during the whole integration process further
enhances the debugging of the defined mappings in terms of the mapping op-
erators. The applicability of the framework has been demonstrated by imple-
menting mapping operators for resolving structural metamodel heterogeneities8.
The proposed framework is expressive enough to define advanced composition
mechanisms such as inheritance between mapping operators. This is achieved by
the explicit notion of trace models for mapping operators in combination with
the automatic synchronization provided by the Petri Net semantic.

The presented framework has been applied in several modeling tool inte-
gration projects (for more details the interested reader is kindly referred to
www.modelcvs.org and www.modeltransformation.net). It has to be mentioned
that the presented approach is not only applicable for integrating structural
modeling languages, but also for integrating behavioral modeling languages. For
example, we have integrated the dialog flow modeling language of CA’s AllFu-
sion Gen with UML state machines as well as with UML activity diagrams. The
most interesting point of this case study was that we explored nearly the same
metamodel heterogeneities as we explored when integration structural modeling
languages. Thus, the presented metamodel heterogeneities seem to be modeling
domain independent.

The work presented in this chapter leaves several issues open for further re-
search. In the following, we present four research issues that we believe are most
important for the success of model-based tool integration.

(1) Bridging Technical Spaces. Several modeling languages are not described
with MOF-based metamodels as proposed by the OMG. Instead, text-based
languages such as EBNF, DTD, or XML schema are employed. In order to
use model-based integration frameworks which require MOF-based metamodels,
converters are needed. In particular, not only the language definition must be
converted into a MOF-based metamodel, also the models have to be transformed
into instances conforming to the generated metamodels. This raises the question
of how to produce such converters for bridging different technical spaces [15]
with reasonable effort also in the light of the evolution of these languages.

(2) Automatic Creation of Mapping Models. Another issue is the automatic
creation of mapping models between two metamodels. With the rise of the se-
mantic web and the emerging abundance of ontologies, several matching ap-
proaches and tools for automatically creating mapping models have been
proposed, for an overview see [22,26]. The typical output of such tools are sim-
ple one-to-one correspondences. However, these correspondences cannot cope
with structural heterogeneities between MOF-based metamodels as presented
in this work. Therefore, a novel matching approach is needed which is capable
to automatically generate mappings expressed with a more powerful mapping
language.

8 For more details about the implementation, we kindly refer the interesting reader to
www.modeltransformation.net

www.modeltransformation.net

282 G. Kappel et al.

(3) Formal Verification of Mapping Models. As the correctness of the auto-
matically generated target model fully depends on the correctness of the speci-
fied mapping model, formal underpinnings are required to enable verification of
mapping models by proving certain properties like confluence and termination,
to ease debugging of mapping models. The formal underpinning of CPNs enables
simulation of mapping models and exploration of the state space, which shows
all possible firing sequences of a CPN. In the future, it has to be determined how
generally accepted behavioral properties, characterizing the nature of a certain
CPN, e.g., with respect to confluence or termination, as well as custom functions,
e.g., to check if a certain target model can be created with the given transforma-
tion logic, can be applied for interactive debugging and automatic verification
of mapping models [33].

(4) The Role of Semantics. An open research problem in MDE is how to ex-
plicitly and formally specify the semantics of modeling languages. In the last
decade several diverse approaches inspired from programming language engi-
neering have been proposed. However, in contrast to syntax, currently there
is no commonly approved or standardized approach as well as tool support for
defining the semantics of modeling languages. Thus, often the semantics are only
informally specified in terms of natural language—the most prominent example
is UML—or the semantics are hard-coded in code generators, simulators, or in-
terpreters. However, for bridging modeling tools, an explicit notion of semantics
would be of paramount importance. For example, when integrating tools for
modeling state machines, it can happen that the modeling tools provide com-
pletely the same syntax definition, but the execution of the same model in tool
A can differ from the execution in tool B, as is for example reported in [4].
Thus, one of the biggest challenges in MDE is how to provide explicit semantic
definitions for modeling languages and how to use these definitions to build and
verify integration solutions.

References

1. Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G.: Reusable
Idioms and Patterns in Graph Transformation Languages. In: Proceedings of the
International Workshop on Graph-Based Tools (GraBaTs 2004) (2004)

2. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Survey 18(4), 323–364 (1986)

3. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, China (2007)

4. Crane, M.L., Dingel, J.: UML vs. classical vs. rhapsody statecharts: not all models
are created equal. Software and System Modeling 6(4), 415–435 (2007)

5. de Lara, J., Vangheluwe, H.: Translating Model Simulators to Analysis Models.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 77–92.
Springer, Heidelberg (2008)

6. Fabro, M.D.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic
model weaver. In: Proceedings of the 1re Journe sur l’Ingnierie Dirige parles Mo-
dles, IDM 2005 (2005)

Leveraging Model-Based Tool Integration 283

7. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Springer, Heidelberg (1992)

8. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

9. Kalfoglou, Y., Schorlemmer, W.M.: Ontology mapping: The state of the art. In:
Dagstuhl Seminar Proceedings: Semantic Interoperability and Integration (2005)

10. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting Metamodels to Ontologies: A Step to
the Semantic Integration of Modeling Languages. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 528–542. Springer,
Heidelberg (2006)

11. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M.,
Wimmer, M.: Matching Metamodels with Semantic Systems - An Experience Re-
port. In: Workshop Proceedings of Datenbanksysteme in Business, Technologie und
Web (BTW 2007) (2007)

12. Kappel, G., Kargl, H., Reiter, T., Retschitzegger, W., Schwinger, W., Strommer,
M., Wimmer, M.: A Framework for Building Mapping Operators Resolving Struc-
tural Heterogeneities. In: Proceedings of 7th Int. Conf. on Information Systems
Technology and its Applications (2008)

13. Kapsammer, E., Kargl, H., Kramler, G., Kappel, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: On Models and Ontologies - A Semantic In-
frastructure Supporting Model Integration. In: Proceedings of Modellierung 2006
(2006)

14. Kashyap, V., Sheth, A.P.: Semantic and schematic similarities between database
objects: A context-based approach. VLDB Journal 5(4), 276–304 (1996)

15. Kurtev, I., Aksit, M., Bézivin, J.: Technical Spaces: An Initial Appraisal. In: Meers-
man, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS,
vol. 2519. Springer, Heidelberg (2002)

16. Ma, H., Shao, W.-Z., Zhang, L., Ma, Z.-Y., Jiang, Y.-B.: Applying OO Metrics to
Assess UML Meta-models. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J.
(eds.) UML 2004. LNCS, vol. 3273, pp. 12–26. Springer, Heidelberg (2004)

17. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA – A MApping FRAmework
for Distributed Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW
2002. LNCS (LNAI), vol. 2473, p. 235. Springer, Heidelberg (2002)

18. Olsen, G.K., Aagedal, J., Oldevik, J.: Aspects of Reusable Model Transformations.
In: Proceedings of the 1st European Workshop on Composition of Model Trans-
formations (CMT 2006) (2006)

19. OMG: UML Superstructure Specification, version 2.0 formal/05-07-04 edition
(2005)

20. OMG: Meta Object Facility (MOF) 2.0 Core Specification, version 2.0 formal/2006-
01-01 edition (2006)

21. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
version 1.0 formal/2008-04-03 edition (2008)

22. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

23. Reiter, T., Wimmer, M., Kargl, H.: Towards a runtime model based on colored
Petri-nets for the execution of model transformations. In: 3rd Workshop on Models
and Aspects, in conjunction with ECOOP 2007 (2007)

24. Scharffe, F., de Bruijn, J.: A language to specify mappings between ontologies.
In: Proceedings of the 1st International Conference on Signal-Image Technology &
Internet-Based Systems (SITIS 2005) (2005)

284 G. Kappel et al.

25. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

26. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-
capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

27. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

28. Tratt, L.: Model transformations and tool integration. Software and System Mod-
eling 4(2), 112–122 (2005)

29. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigós, I., Gómez,
J., Kappel, G., Knapp, A., Matera, M., Meliá, S., Moreno, N., Pröll, B., Reiter,
T., Retschitzegger, W., Rivera, J.E., Schauerhuber, A., Schwinger, W., Wimmer,
M., Zhang, G.: MDWEnet: A Practical Approach to Achieving Interoperability of
Model-Driven Web Engineering Methods. In: Workshop Proceedings of 7th Inter-
national Conference on Web Engineering (ICWE 2007) (2007)

30. Varró, D., Pataricza, A.: Generic and Meta-transformations for Model Transfor-
mation Engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

31. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination
Analysis of Model Transformations by Petri Nets. In: Corradini, A., Ehrig, H.,
Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp.
260–274. Springer, Heidelberg (2006)

32. Wimmer, M.: From Mining to Mapping and Roundtrip Transformations - A Sys-
tematic Approach to Model-based Tool Integration. PhD thesis, Vienna University
of Technology (2008)

33. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W.: Right or Wrong? - Verification of Model Transformations using Colored Petri
Nets. In: Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM 2009) (2009)

34. Wimmer, M., Kusel, A., Reiter, T., Retschitzegger, W., Schwinger, W., Kappel,
G.: Lost in Translation? Transformation Nets to the Rescue! In: Proceedings of 8th
Int. Conf. on Information Systems Technology and its Applications (2009)

35. Wimmer, M., Schauerhuber, A., Schwinger, W., Kargl, H.: On the Integration of
Web Modeling Languages: Preliminary Results and Future Challenges. In: Work-
shop Proceedings of 7th International Conference on Web Engineering (ICWE
2007) (2007)

36. Wimmer, M., Schauerhuber, A., Strommer, M., Schwinger, W., Kappel, G.: A
Semi-automatic Approach for Bridging DSLs with UML. In: Workshop Proceedings
of 7th OOPSLA Workshop on Domain-Specific Modeling (DSM 2007) (2007)

	Leveraging Model-Based Tool Integration by Conceptual Modeling Techniques
	Introduction
	Metamodel Bridging at a Glance
	The Mapping View
	The Transformation View

	Mapping Operators of the CAR Mapping Language
	Motivating Example
	CAR Mapping Language at a Glance
	Conditional C2C Mapping Operator
	A2C Mapping Operator
	R2C Mapping Operator
	A2R Mapping Operator

	An Inheritance Mechanism for CAR Mappings
	Inheritance for C2C Mappings
	Representing Inheritance within Transformation Nets

	Evaluation
	Related Work
	Reusable Model Transformations
	Ontology Mapping for Bridging Structural Heterogeneities
	Petri Nets and Model Transformations

	Conclusion and Future Research Issues
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

