
A Component-based Approach to
Hybrid Systems Safety Verification?

Andreas Müller1, Stefan Mitsch1, Werner Retschitzegger1, Wieland
Schwinger1, and André Platzer2

1 Department of Cooperative Information Systems
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

{andreas.mueller,stefan.mitsch,wieland.schwinger,werner.retschitzegger}@jku.at
2 Computer Science Department

Carnegie Mellon University, Pittsburgh PA 15213, USA
aplatzer@cs.cmu.edu

Abstract. We study a component-based approach to simplify the chal-
lenges of verifying large-scale hybrid systems. Component-based mod-
eling can be used to split large models into partial models to reduce
modeling complexity. Yet, verification results also need to transfer from
components to composites. In this paper, we propose a component-based
hybrid system verification approach that combines the advantages of
component-based modeling (e. g., reduced model complexity) with the
advantages of formal verification (e. g., guaranteed contract compliance).
Our strategy is to decompose the system into components, verify their
local safety individually and compose them to form an overall system
that provably satisfies a global contract, without proving the whole sys-
tem. We introduce the necessary formalism to define the structure and
behavior of components and a technique how to compose components
such that safety properties provably emerge from component safety.

Keywords: component-based development, hybrid systems, formal verification

1 Introduction

The hybrid dynamics of computation and physics in safety-critical cyber-physical
systems (CPS), such as driver assistance systems, self-driving cars, autonomous
robots, and airplanes, are almost impossible to get right without proper formal
analysis. To enable this analysis, CPS are modeled using so called hybrid system
models. At larger scales of realistic hybrid system models, formal verification
of monolithic models becomes quite challenging. Therefore, component-based
modeling approaches split large models into partial models, i. e., co-existing or
interacting components (e. g., multiple airplanes in a collision avoidance ma-
neuver). Even though this can lead to component-based models with improved

? Work partly funded by BMVIT grant FFG BRIDGE 838526, OeAD Marietta Blau
grant ICM-2014-08600, FWF P28187-N31, and ERC PIOF-GA-2012-328378.

2 Müller, Mitsch, Retschitzegger, Schwinger, Platzer

structure and reduced modeling complexity, component verification results do
not always transfer to composite systems without appropriate care.

This paper generalizes our previous work [18], which was limited to traffic
flow models (i. e., port conditions limited to maximum values, contracts limited
to load restrictions, components limited to interfaces and predefined behavior),
to a more generic approach to make hybrid system theorem proving modular on
a component level. The approach exploits component contracts to compose ver-
ified components and their safety proofs to a verified CPS. Differential dynamic
logic dL [21,22], the hybrid systems specification and verification logic we are
working with, is already compositional for each of its operators and, thus, a
helpful basis for our approach. Reasoning in dL splits models along the dL op-
erators into smaller pieces. In this paper, we build compositionality for a notion
of components and interfaces on top of dL. We focus on modeling a system in
terms of components that each capture only a part of the system’s behavior (as
opposed to monolithic models) and a way to compose components by connecting
their interfaces (as opposed to basic program composition with dL operators).
Component-based hybrid systems verification is challenging because both lo-
cal component behavior (e. g., decisions and motion of a robot) and inherently
global phenomena (e. g., time) co-occur, because components can interact vir-
tually (e. g., robots communicate) and physically (e. g., a robot manipulates an
object), and because their interaction is subject to communication delays, mea-
surement uncertainty, and actuation disturbance. Typically, our components are
open systems [11], which are described and verified in isolation from other com-
ponents, separated by interfaces with assumptions about the environment that
provide guarantees about the behavior of components. If needed, they can be
turned into a closed system [11] by including a model of a specific environment.

This paper focuses on (i) lossless and instantaneous interaction between
components (allows uncertainty and delay in dedicated “ether” components,
e. g., sense the speed of a car precisely without measurement error), (ii) com-
ponents without physical entanglement (allows separated continuous dynamics,
e. g., robots drive on their own, but do not push each other), and (iii) compo-
nents without synchronized communication (parallel composition of continuous
dynamics, simplification to any sequential interleaving for discrete dynamics,
e. g., robots can sense their environment, but not negotiate with each other).

With this focus in mind, we define the structure and behavior of a notion
of components and a technique how to compose components such that safety
properties about the whole system emerge from component safety proofs (e. g.,
robots will not collide when staying in disjoint spatial regions). We illustrate our
approach with a vehicle cruise control case study.

2 Preliminaries: Differential Dynamic Logic

For specifying and verifying correctness statements about hybrid systems, we use
differential dynamic logic (dL) [21,22], which supports hybrid programs as a pro-
gram notation for hybrid systems. dLmodels can be verified using KeYmaera X [8],

A Component-based Approach to Hybrid Systems Safety Verification 3

which is open source and has been applied for verification of several case studies.3

The syntax of hybrid programs is generated by the following EBNF grammar:

α ::= α;β | α ∪ β | α∗ | x := θ | x := ∗ | {x′1 = θ1, . . . , x
′
n = θn & H} | ?φ .

The sequential composition α;β expresses that β starts after α finishes. The
non-deterministic choice α∪ β follows either α or β. The non-deterministic rep-
etition operator α∗ repeats α zero or more times. Discrete assignment x := θ
instantaneously assigns the value of the term θ to the variable x, while x := ∗
assigns an arbitrary value to x. {x′ = θ & H} describes a continuous evolution
of x (x′ denotes derivation with respect to time) within the evolution domain
H. The test ?φ checks that a condition expressed by φ holds, and aborts if it
does not. A typical pattern x := ∗; ?a ≤ x ≤ b, which involves assignment and
tests, is to limit the assignment of arbitrary values to known bounds.

To specify safety properties about hybrid programs, dL provides a modal
operator [α]. When φ is a dL formula describing a state and α is a hybrid pro-
gram, then the dL formula [α]φ expresses that all states reachable by α satisfy
φ. The set of dL formulas relevant for this paper is generated by the following
EBNF grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expres-
sions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | [α]φ .

Notation: Variables. In dL (and thus throughout the paper) all variables are
real-valued. We use V to denote a set of variables. FV (.) is used as an operator on
terms, formulas and hybrid programs returning only their free variables, whereas
BV (.) is an operator returning only their bound variables.4 Similarly, V (.) =
FV (.) ∪BV (.) returns all variables (free as well as bound).
Notation: Indices. Throughout this paper, subscript indices represent enu-
merations (e. g., xi). Superscript indices are used to further specify the kinds
of items described by the respective variables (e. g., vout represents an output
variable). If needed, a double (super- and subscript) one-letter index is used for
double numeration (e. g., xji represents element j of the vector xi).

3 Modeling and Verification Steps

In this section we present the modeling and verification steps in our component-
based verification approach (cf. Fig. 1). To illustrate the steps, we will use an
example of a vehicle cruise control system, which consists of an actuator compo-
nent adapting the vehicle speed according to a target speed chosen by a cruise
control component. The vehicle moves continuously, while the control behavior
is described by a discrete control part (e. g., choose velocity and acceleration).
The goal is to keep the actual velocity in some range [0, V], where V denotes
a maximum velocity. Note that we model components fully symbolically, which
means that each component represents actually a family of concrete components.

3 cf. http://symbolaris.com/info/KeYmaera.html
4 Bound variables of a hybrid program are all those that may potentially be written

to, while free variables are all those that may potentially be read [23].

4 Müller, Mitsch, Retschitzegger, Schwinger, Platzer

C
o
n
t
r
a
c
t
D

e
fi
n
i-

t
io

n
a
n
d

V
e
r
if
ic

a
t
io

n

(1) identify global contract
Φ → [CPS]Ψ

(2) model components and interfaces
(C1, I1) , (C2, I2) , ..., (Cn, In)

(3) identify contracts

φi, ψ
safe
i

, and πout
i

such that Φ →
∧
i φi and

∧
i

(
ψ
safe
i

∧ πout
i

)
→ Ψ

(4) verify contract compliance

φi → [Ci]
(
ψ
safe
i

∧ πout
i

)

(5) compose and check compatibility
(C1, I1)‖(C2, I2)

compatible

not compatible

|= Φ → [C1‖C2]Ψ and thus |= Φ → [CPS]Ψ

Fig. 1: Steps for component-based modeling and verification

The approach consists of the following steps:

(1) identify global contract: Before decomposing the system, it is important
to learn what properties the system as a whole should fulfill (e. g., supported
by domain experts). The global contract specifies the initial state of the
whole system (Φ, e. g., initially the velocity is 0) as well as its overall safety
property (Ψ , e. g., the velocity will stay in the desired range).

(2) model components and interfaces: Find recurring parts or natural split-
ting points for implementations (e. g., we split our cruise control system in
a cruise controller and an actuator). The number of different components
should be kept small, so that the verification effort remains low; still, there
have to be sufficiently many components that can be instantiated to assem-
ble the system. Modeling components and their interfaces is a manual effort
(e. g., by modeling experts). A component has a behavior, while its interface
defines public input ports and output ports, see Def. 2 and Def. 3 later.

(3) identify contracts: For each component and its interface, we identify ini-

tial states φi (e. g., initial target velocity is 0), a safety property ψsafe
i (e. g.,

actual velocity does not exceed V), as well as an output contract πout
i (e. g.,

target velocity is always in the desired range), see Def. 4 later. These prop-
erties have to be chosen such that the global contract follows by refinement
or dominance [4]: Φ→

∧
i φi and

∧
i(ψ

safe
i ∧ πout

i)→ Ψ .
(4) verify contract compliance: Verify that components satisfy their con-

tracts formally, in our case (hybrid programs and dL), with KeYmaera X.
(5) compose and check compatibility: Construct the system by connecting

component ports to compose verified components in parallel, see Def. 5 later.
Any component can be instantiated multiple times in the whole system (e. g.,

A Component-based Approach to Hybrid Systems Safety Verification 5

instantiate maximum velocity parameters of a cruise control with actual val-
ues; connect the controller with the actuator). In order to transfer proofs
about components to a global system proof, the compatibility of the compo-
nents must be checked (see Theorem 1 in Section 4.2, which is proved under
these compatibility assumptions). Intuitively, the compatibility check ensures
that the values provided for symbolic parameters of an output port of one
component instance are compatible with the values required on a connected
input port of the next instance, see Def. 6 later (e. g., the controller cannot
demand target speeds outside the target range).

The main result of this process is that the component safety proofs—done
for compatible components in isolation—transfer to an arbitrarily large system
built by instantiating these components (cf. Theorem 1).

4 Component-based Modeling

In this section we introduce essential modeling idioms and definitions for the
presented steps. Section 4.1 introduces components (cf. step (2)) and their con-
tracts (cf. step (3)). Similarly, Bauer et al. [3] show how a contract framework
can be built generically. Section 4.2 introduces composition (cf. step (5)) and
ensures that the local properties transfer to the overall system.

4.1 Components and Contracts

Components can observe a shared global state, and modify their internal state.

Definition 1 (Global Variables). The global variables V global are a set of
variables shared by all components. It contains the variable t, which represents
the system time, is initially set to 0, and increases linearly with rate 1. None of
the global variables can ever be bound in any part of any component.

In the following paragraphs, we define components, which have a behavior
(e. g., how a cruise controller chooses a target velocity), and interfaces, which
consist of input ports (e. g., the current velocity received by cruise control) and
output ports (e. g., the new target velocity as provided by cruise control). We
define the behavior of a component in the canonical order of a control part
followed by a plant, which enables the definition of a structured composition
operation for components and interfaces.

Definition 2 (Component). A component C is defined as a tuple

C = (ctrl,plant) , where

– ctrl is the discrete control part of a hybrid program (HP) and does not contain
continuous parts (i. e., differential equations), and

– plant is the continuous part of the form {x′1 = θ1, ..., x
′
n = θn&H} for n ∈ N

i. e., an ordinary differential equation with evolution domain constraint H.

6 Müller, Mitsch, Retschitzegger, Schwinger, Platzer

vac
aac

vtrac vac

requirement: 0 ≤ vtrac ≤ V

guarantee: 0 ≤ vac ≤ V

(a) Actuator illustration

ctrlac ≡ aac :=
vtrac − vac

ε
; t0ac := t (1)

plantac ≡ {v′ac = aac & t− t0ac ≤ ε} (2)

πin
ac(vtrac) ≡ 0 ≤ vtrac ≤ V (3)

πout
ac (vac) ≡ 0 ≤ vac ≤ V (4)

(b) Formal component/interface

Fig. 2: Actuator component/interface example (Cac , Iac)

The interface of a component consists of input and output ports, which can
have contracts (i. e., πin and πout , e. g., value range for the target velocity).

Definition 3 (Interface). An interface I is defined as a tuple

I =
(
V in, πin,V out, πout

)
, where

– V in is a set of input variables, V out is a set of output variables,
– πin : V in → P specifies an input predicate (P represents the set of all logical

formulas) representing input requirements and assumptions, exactly one per
input variable (i. e., input port), accordingly for πout : V out → P,

– ∀v ∈ V in : V (πin(v)) ⊆
(
V \V in

)
∪ {v}, i. e., no input predicate can

mention other input variables, which lets us reshuffle port ordering.

An interface I is called admissible for a component C, if (BV (ctrl)∪BV (plant))∩
V in = ∅, i. e., none of the input variables are bound in ctrl or plant.

Consider our running example of the vehicle cruise control, where the actua-
tor component chooses the acceleration according to a target velocity (cf. Fig. 2).
As illustrated in Fig. 2a, the component has a single input port to receive a target
velocity and a single output port to provide the current velocity.

Fig. 2b describes this component and interface formally: The actuator re-
ceives a target speed between 0 and V on its single input port vtrac , cf. (3). It is
a time-triggered controller with sampling period ε. The controller chooses the
acceleration of the vehicle such that it will not exceed the target velocity until
the next run and stores the current system time, cf. (1). The plant adapts the
velocity accordingly and runs for at most ε time to enforce the sampling period,
cf. (2). The single output port yields the resulting actual velocity, which still has
to be in range between 0 and V , cf. (4).

Definition 4 (Contract). Let C be a component, I be an admissible interface
for C, and φ be a formula over the component’s variables V, which determines the
component’s initial state. Let ψsafe be a predicate over the component’s variables
V, i. e., a property describing the desirable target system state (i. e., a safety

A Component-based Approach to Hybrid Systems Safety Verification 7

property). We define ψ
def≡ ψsafe ∧ Πout, where Πout ≡

∧
v∈V out πout(v) is the

conjunction of all output guarantees. The contract of a component C with its
interface I is defined as

Cont(C, I) ≡ t = 0 ∧ φ→ [(in; ctrl; {t′ = 1,plant})∗]ψ

with input in
def≡
(
v1 := ∗; ?πin(v1)

)
; ...;

(
vr := ∗; ?πin(vr)

)
for all vi ∈ V in .

As the input predicates are not allowed to mention other inputs, the order of
inputs in in is irrelevant. We call a component with an admissible interface that
provably satisfies its contract to be contract compliant. This means, if started in
a state satisfying φ, the component only reaches states that satisfy safety ψsafe

and all output guarantees πout when all inputs satisfy πin .
In our running example of Fig. 2, the actuator component has an output

guarantee πout ≡ (0 ≤ vac ≤ V) (i. e., the speed must always be in range), and
when starting from the initial conditions φ ≡ (vac = 0 ∧ ε > 0 ∧ V > 0) (i. e.,
vehicle initially stopped) it can provably guarantee safety5 ψsafe ≡ 0 ≤ vac ≤ V .

4.2 Composition of Components

Now that we have defined the structure and behavior of single components and
their interfaces, we specify how to compose a number of those components by
defining a syntactic composition operator for components. Differential dynamic
logic follows the common assumption in hybrid systems that discrete actions do
not consume time, i. e., multiple discrete actions of a program can happen in-
stantaneously at the same real point in time. Time only passes during continuous
evolution measured through t′ in plant . Hence, if we disallow direct interaction
between the controllers of components,6 we can compose the discrete ctrl of
multiple components in parallel by executing them sequentially in any order,
while keeping their plants truly parallel through {x′1 = θ1, . . . , x

′
n = θn & H}.

Interaction between components is then possible by observing plant output.
Such interaction, which exchanges information between components, will be

defined by connecting ports when composing components through their inter-
faces. The port connections are represented by a mapping function X , which
assigns an output port to an input port for some number of input ports. In
this paper, we focus on instantaneous lossless interaction, where the input vari-
able v instantaneously takes on the value of the output port it is connected
to, cf. v := X (v) in Def. 5. Other interaction patterns can be modeled by
adapting Def. 5. For example, measurement with sensor uncertainty ∆ is v :=
∗; ? (X (v)−∆ ≤ v ≤ X (v) +∆), which yields a modified compatibility check.

As we do not require all ports to be connected, the mapping function is a
partial function. Ports which are not connected become ports of the composite,
while ports which are connected become internal variables.

5 Note that in this case the output property and the safety property coincide. This is
not necessarily always the case.

6 Def. 5 restricts how variables between components can be shared.

8 Müller, Mitsch, Retschitzegger, Schwinger, Platzer

Definition 5 (Parallel Composition). Let Ci denote one of n components

Ci = (ctrli,planti) for i ∈ {1, ..., n}

with their corresponding admissible interfaces

Ii =
(
V in

i , π
in
i ,V

out
i , πout

i

)
for i ∈ {1, ..., n}

where
(
V in

i ∪V out
i ∪V(ctrli) ∪V(planti)

)
∩
(
V in

j ∪V out
j ∪V(ctrlj) ∪V(plantj)

)
⊆

V global for i 6= j, i. e., only variables in V global are shared between components,
and let

X :
(⋃

1≤j≤n V in
j

)
⇀
(⋃

1≤i≤n V out
i

)
be a partial (i. e., not every input must be mapped), injective (i. e., every output
is only mapped to one input) function, connecting inputs to outputs. We define
IX as the domain of X (i. e., all variables x ∈ V in such that X (x) is defined)
and OX as the the image of X (i. e., all variables y ∈ V out such that y = X (x)
holds for some x ∈ V in).

(C, I)
def≡ ((C1, I1)‖...‖(Cn, In))X

is defined as the composite of n components and their interfaces (with respect to
X), where

– the sensing for non-connected inputs remains unchanged

in ≡ vk := ∗; ?πin(vk); . . . ; vs := ∗; ?πin(vs)︸ ︷︷ ︸
open inputs

for {vk, . . . , vs} = V in \ IX

– the order in which the control parts (and the respective port mappings) are
executed is chosen non-deterministically (considering all the n! possible per-
mutations of {1, ..., n}), so that connected ports become internal behavior of
the composite component

ctrl ≡ (ports1; ctrl1; ports2; ctrl2; ...; portsn; ctrln)∪
(ports2; ctrl2; ports1; ctrl1; ...; portsn; ctrln)∪
...

(portsn; ctrln; ...; ports2; ctrl2,ports1; ctrl1)

with portsi
def≡ vj :=X (vj); . . . ; vr :=X (vr)︸ ︷︷ ︸

connected inputs

for {vj , . . . , vr} = IX ∩V in
i ,

– continuous parts are executed in parallel, staying inside all evolution domains

plant ≡
{
x
(1)′
1 = θ

(1)
1 , . . . , x

(k)′
1 = θ

(k)
1︸ ︷︷ ︸

component C1

, . . . , x(1)′n = θ(1)n , . . . , x(m)′
n = θ(m)

n︸ ︷︷ ︸
component Cn

& H1 ∧ . . . ∧Hn

}
,

A Component-based Approach to Hybrid Systems Safety Verification 9

vcc vtrcctarget veloc-
ity vtrcc

requirement: 0 ≤ vcc ≤ V

guarantee: 0 ≤ vtrcc ≤ V

(a) Cruise controller illustration

ctrlcc ≡ vtrcc := ∗; ?
(
0 ≤ vtrcc (5)

∧
∣∣vtrcc − vcc∣∣ ≤ δV) (6)

πin
cc (vcc) ≡ 0 ≤ vcc ≤ V (7)

πout
cc (vtrcc) ≡ 0 ≤ vtrcc ≤ V (8)

(b) Formal component/interface

Fig. 3: Cruise controller component/interface example (Ccc , Icc)

– the respective sets of variables are merged, where V in =
⋃

1≤i≤n V in
i \IX ,

V out =
⋃

1≤i≤n V out
i \OX , i. e., ports not connected within the composite

component remain input and output variables of the resulting interface,
– input port requirements of all interfaces are preserved, except for connected

inputs, i. e., πin : V in → P becomes πin(v), accordingly for πout(v):

πin(v) ≡

πin
1 (v) if v ∈ V in

1 \ IX

. . .

πin
n (v) if v ∈ V in

n \ IX
πout(v) ≡

πout
1 (v) if v ∈ V out

1 \ OX

. . .

πout
n (v) if v ∈ V out

n \ OX
.

To demonstrate parallel composition in our running example, we first in-
troduce a cruise controller component (cf. Fig. 3). The cruise control selects a
target velocity from the interval, but keeps the difference between the current
(received) velocity and the chosen target velocity below δV (cf. (5)–(6)). That
way, the acceleration set by the actuator component is bounded by δV /ε (i. e.,
the vehicle does not accelerate too fiercely). We connect this cruise controller
component to the actuator component (cf. Fig. 2), as illustrated in Fig. 4.

Remark 1. Note that verifying the hybrid program for a composite according
to Def. 5 would require a proof of each of the n! branches of ctrl individually,
as they all differ slightly. For a large number of components, this entails a huge
proof effort. Previous non-component-based case studies (e. g., [13,16,17]), there-
fore, chose only one specific ordering. Our component-based approach verifies all
possible orderings at once, because the permutations are all proven correct as
part of proving Theorem 1 below in this paper.

Remark 2. This definition of parallel composition uses a conjunction of all evo-
lution domains, which resembles synchronization on the most restrictive compo-
nent (i. e., as soon as the first and most restrictive condition is no longer fulfilled
all plants have to stop and hand over to ctrl). A more liberal component might
be forced to execute its control part because the evolution domain of a more
restrictive component did no longer hold. For example a component increasing
a counter on every run of its control is then forced to count although its own

10 Müller, Mitsch, Retschitzegger, Schwinger, Platzer

vtrac := vtrcc

vcc := vac
vac
aac

Composite component: Cruise Control

Fig. 4: Cruise control composed of a cruise controller and an actuator by Def. 5.
The port connections X = {(vcc , vac), (vtrac , v

tr
cc)} replace the input port vtrac :=

∗; ?(0 ≤ vtrac ≤ V) with an internal port assignment vtrac := vtrcc , provided the
compatibility check [vtrac := vtrcc]

(
πout
cc (vtrcc)→ πin

ac(vtrac)
)

succeeds, cf. Def. 6, and
accordingly for the second port.

evolution domain might have allowed it to postpone control. If this is undesired,
a component’s control can be defined as ctrl i ∪ ?true, which would allow the
component to skip when forced to run its control part.

Remark 3. We define this composition operation for any number of components,
since it is not associative, because the composition of three components results
in 3! = 6 possible execution orders, whereas composing two components and
adding a third yields only 2! + 2! = 4 of the possible 6 execution orders.

Note that Def. 5 replaces the non-deterministic input guarded by a test from
Def. 2 with a deterministic assignment that represents instantaneous and lossless
interaction between components (i. e., portsi), as illustrated in Fig. 4. Hence, the
respective output guarantees and input assumptions must match. For instance,
a cruise controller component demanding velocities 0 ≤ vtrcc ≤ 70 is compatible
with an actuator 0 ≤ vtrac ≤ 100, but not the other way around.

Definition 6 (Compatible Composite). The composite of n components with
interfaces ((C1, I1)‖...‖(Cn, In))X is a compatible composite iff

CPO(Ii) ≡ [v :=X (v)]
(
πout
j (X (v))→ πin

i (v)
)

is valid for all input ports v ∈ IX ∩ V in
i , for all interfaces Ii and where Ij is

the interface containing the port that is connected to the input port v of Ii. We
call CPO(Ci) the compatibility proof obligation for the interfaces Ii and say the
interfaces Ii are compatible (with respect to X) if CPO(Ii) holds.

In other words, ((C1, I1)‖...‖(Cn, In))X is a compatible composite if all inter-
nal port connections are appropriate, i. e., if the guarantee of the output port
implies the requirements of the respective input port to which it is connected.

Composite Contracts. Now that we have defined components and interfaces,
their contracts, and how to compose them to form larger composites, we prove
that the contracts of single components transfer to composites if compatible.

A Component-based Approach to Hybrid Systems Safety Verification 11

Theorem 1 (Composition Retains Contracts). Let C1 and C2 be compo-
nents with admissible interfaces I1 and I2 that are contract compliant (i. e., their
contracts are valid)

|= t = 0 ∧ φ1 → [(in1; ctrl1; {t′ = 1,plant1})
∗
] (ψ1) and (9)

|= t = 0 ∧ φ2 → [(in2; ctrl2; {t′ = 1,plant2})
∗
] (ψ2) (10)

and compatible with respect to X (i. e., compatibility proof obligations are valid)

|= [v :=X (v)]
(
πout
1 (X (v))→ πin

2 (v)
)

and (11)

|= [v :=X (v)]
(
πout
2 (X (v))→ πin

1 (v)
)

(12)

for all input ports v ∈ IX ∩V in
1,2 .

Then, the parallel composition C3, I3 = ((C1, I1)‖(C2, I2))X satisfies the contract

|= t = 0 ∧ (φ1 ∧ φ2)→ [(in3; ctrl3; {t′ = 1,plant3})
∗
](ψ1 ∧ ψ2) (13)

with in3, ctrl3, and plant3 according to Def. 5.

The proof for Theorem 1 can be found in [19], along with a generalization
to n components. This central theorem allows us to infer how properties from
single components transfer to their composition. As such, it suffices to prove the
properties for the components and conclude that a similar property holds for the
composite, without explicitly having to verify it. The composite contract states
that, considering both pre-conditions hold (i. e., φ1∧φ2), all states reached by the
parallel execution of the components, both post-conditions hold (i. e., ψ1 ∧ ψ2).

5 Case Study: Vehicle Cruise Control

To illustrate our approach, we used a running example of a simple vehicle cruise
control system. The overall system requirement was to keep the velocity vac in a
desired range [0, V] at all times, i. e., 0 ≤ vac ≤ V → [CruiseControl]0 ≤ vac ≤
V . We split the system into two components, cf. Fig. 4: an actuator component
adapts velocity according to a target vtrac provided by a cruise control component
as vtrcc . If the cruise control component (Fig. 3) provides a valid target velocity to
the actuator (i. e., 0 ≤ vtrac ≤ V), the actuator component (Fig. 2) ensures to keep
the actual velocity in the desired range (i. e., 0 ≤ vac ≤ V), thus ensuring the
overall system property. Additionally, the actuator provides the current velocity
on an output port that is read by the controller, acting as a feedback loop.

Following Def. 4, we derive contracts for each component, which consists of
initial conditions φ (cf. (14)–(15)), safety conditions ψsafe (cf. (16)) and the port
conditions (cf. (4) and (8)). Maximum speed V > 0 and cycle time ε > 0 must be
known. Additionally, the controller initializes vtrcc = 0 and δV > 0. The actuator
restricts the initial velocity to 0 ≤ vac ≤ V .

φcc ≡ vtrcc = 0 ∧ ε > 0 ∧ V > 0 ∧ δV > 0 (14)

φac ≡ 0 ≤ vac ≤ V ∧ ε > 0 ∧ V > 0 (15)

ψsafe
ac ≡ 0 ≤ vac ≤ V (16)

12 Müller, Mitsch, Retschitzegger, Schwinger, Platzer

The set of global variables follows accordingly (cf. Def. 1): Vglobal = {ε, V, t}.
After verifying7 both contracts Cont(Ccc , Icc) and Cont(Cac , Iac), we want

to compose the components to get the overall system, using the mapping func-
tion X = {(vcc , vac), (vtrac , v

tr
cc)}. Therefore, we have to check the compatibility

proof obligations for both connected ports (cf. Fig. 4). Then the overall system
property directly follows from the contract of the actuator component.

Splitting a system into components reduces the model complexity consider-
ably, since a component needs to know neither about the differential equation
systems of other components, nor about their control choices. In combined mod-
els, we have to analyze all the possible permutations of control choices, while
in the component-based approach, by Theorem 1 we can guarantee correctness
for all possible sequential orderings, without the proof effort entailed by listing
them explicitly.

The benefit of component-based verification becomes even larger when re-
placing components in a system. For example, we can easily replace the cruise
control from Fig. 3 with a more sophisticated controller that takes the target
velocity as user input from an additional input port. After verifying the user
guided cruise control component, we only have to re-check the compatibility
proof obligations. In a monolithic model, in contrast, the whole system includ-
ing the actuator component must be re-verified.

6 Related Work

CPS Verification. Hybrid automata [2] are popular for modeling CPS, and
mainly verified using reachability analysis. Unlike hybrid programs, hybrid au-
tomata are not compositional, i. e., for a hybrid automaton it is not sufficient to
establish a property about its parts in order to establish a property about the
automaton. Techniques such as assume-guarantee reasoning or hybrid I/O au-
tomata [14], which are an extension of hybrid automata with input- and output-
ports, address this issue. Our approach here shares some of the goals with hybrid
I/O automata and also uses I/O ports. But we target compositional reasoning
for hybrid programs, where the execution order of statements is relevant, so that
our approach defines how parallel composition results in interleaving of hybrid
programs. Furthermore, we define compositional modeling for hybrid programs
such that theorem proving of the entire system is reduced to proving properties
about the components and simple composition checks. Hybrid process algebras
(e. g., Hybrid χ [24], HyPA [20]) are specifically developed as compositional mod-
eling formalisms to describe behavior and interaction of processes using algebraic
equations. For verification purposes by simulation or reachability analysis, trans-
lations from Hybrid χ into hybrid automata and timed automata exist, so even
though modeling is compositional, verification still falls back to monolithic anal-
ysis. We, in contrast, focus on exploiting compositionality in the proof.
Component-based CPS Modeling. Damm et al. [5] present a component-
based design framework for controllers of hybrid systems with a focus on reac-

7 All proofs were done in KeYmaera X [8].

A Component-based Approach to Hybrid Systems Safety Verification 13

tion times. The framework checks connections when interconnecting components:
alarms propagated by an out-port must be handled by the connected in-ports.
We, too, check component compatibility, but for contracts, and we focus on
transferring proofs from components to the system level.

Focusing on architectural properties, Ruchkin et al. [26] propose a component-
based modeling approach for hybrid-systems. Although they do not transfer ver-
ification results from components to composites, their definitions have been an
inspiration for our notion of components. Ringert et al. [25] model CPS as Com-
ponent and Connector (C&C) architectures using automata to describe solely
the discrete behavior. They verify the translated models of single components,
but do not provide guarantees about verified compositions.

Interface algebras (cf. [1,9]) are formalisms that separate component-based
models into interface models and component models. Similar to our approach,
the component model describes what a component does, while the interface
model defines how the component can be used. It is often distinguished between
interfaces with and without state, where stateful interfaces are usually viewed
as concurrent games. Our approach is similar to a stateless interface algebra [1].
Similarly, Bauer et al. [3] show how a contract framework can be built generically.
While useful for inspiration, these approaches focus on modeling aspects and do
not consider verification.

Verification. Madl et al. [15] model real-time event-driven systems. Their mod-
els can be transformed to UPPAAL (cf. [12]) timed automata, restricting the
continuous part of their models to time instead of arbitrary physical behav-
ior (e. g., movement). Moreover, their analysis targets the entire composition of
timed automata, thus defeating the advantages of components for verification.

A field closely related to component-based verification is assume-guarantee
reasoning (AGR, e. g., [7,10]), which was originally developed as a device to coun-
teract the state explosion problem in model checking by decomposing a verifica-
tion task into subtasks. In AGR, individual components are analyzed together
with assumptions about their context and guarantees about their behavior (i. e.,
a component’s contract). AGR rules need to exercise care for circularity in the
sense that the approaches verify one component in the context of the other and
vice-versa, like Frehse et al. [7] (using Hybrid Labeled Transition Systems as ab-
straction for Hybrid I/O-Automata) and Henzinger et al. [10] (using hierarchical
hybrid systems based on hybrid automata). However, existing approaches are of-
ten limited to linear dynamics, cannot handle continuity or use corresponding
reachability analysis or model checking techniques. In dL, in contrast, we can
handle non-linear dynamics and focus on theorem proving.

In summary, only few component-based approaches handle generic CPS with
both discrete and continuous aspects (e. g., [5,15,26]), but those do not yet focus
on the impact on formal verification. Related techniques for CPS and hybrid
systems verification focus mainly on timed automata, hybrid process algebras,
and hybrid automata with linear dynamics or end up in monolithical verification.

14 Müller, Mitsch, Retschitzegger, Schwinger, Platzer

7 Conclusion and Future Work

We presented an approach for component-based modeling and verification of
CPS that (i) splits a CPS into components, (ii) verifies a contract for each of
these components and (iii) composes component instances in a way that transfers
the component contracts to a composite contract. Our approach makes hybrid
system verification more modular at the scale of components, and combines the
advantages of component-based modeling approaches (e. g., well structured mod-
els, reduced model complexity, simplified model evolution) with the advantages
of formal verification (e. g., guaranteed contract compliance).

Currently, our approach is limited to global properties that are stated rel-
ative to the initial system state. Port conditions are only allowed to mention
global variables and the port variable itself, which prevents conditions on the
change of a port since the last measurement (e. g., how far has a vehicle moved
since the beginning vs. how far has it moved since the last measurement). This
restriction can be removed with ports that remember their previous value and
relate measurements over time. Additionally, we plan to (i) introduce further
composition operations (e. g., sensing with measurement errors), (ii) provide fur-
ther component extensions (e. g., multi-cast ports), and (iii) provide tool support
to instantiate and compose components, and to generate their hybrid programs.

References

1. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) Embedded Software, First Int. Workshop, EM-
SOFT 2001, Oct., 8-10, 2001, Proc. LNCS, vol. 2211, pp. 148–165. Springer (2001)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algorith-
mic approach to the specification and verification of hybrid systems. In: Grossman,
R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS, vol. 736,
pp. 209–229. Springer (1992)

3. Bauer, S.S., David, A., Hennicker, R., Larsen, K.G., Legay, A., Nyman, U., Wa-
sowski, A.: Moving from specifications to contracts in component-based design. In:
de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering
(FASE), Mar. 24 - Apr. 1, 2012. Proc. LNCS, vol. 7212, pp. 43–58. Springer (2012)

4. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-
guarantee verification of nonlinear hybrid systems with Ariadne. Int. Journal of
Robust and Nonlinear Control 24(4), 699–724 (2014)

5. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design
of hybrid systems: Safety and stability. In: Manna, Z., Peled, D.A. (eds.) Time for
Verification. LNCS, vol. 6200, pp. 96–143. Springer (2010)

6. Felty, A.P., Middeldorp, A. (eds.): Automated Deduction - CADE-25 - 25th Int.
Conf. on Autom. Deduction, Aug. 1-7, 2015, Proc., LNCS, vol. 9195. Springer (2015)

7. Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid i/o-automata
by over-approximation of continuous interaction. In: Decision and Control, 2004.
CDC. 43rd IEEE Conf. on. vol. 1, pp. 479–484 (Dec 2004)

8. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: KeYmaera X: an axiomatic
tactical theorem prover for hybrid systems. In: Felty and Middeldorp [6], pp. 527–
538

A Component-based Approach to Hybrid Systems Safety Verification 15

9. Graf, S., Passerone, R., Quinton, S.: Contract-based reasoning for component sys-
tems with rich interactions. In: Sangiovanni-Vincentelli, A., Zeng, H., Di Natale,
M., Marwedel, P. (eds.) Embedded Sys. Dev., vol. 20, pp. 139–154. Springer (2014)

10. Henzinger, T.A., Minea, M., Prabhu, V.S.: Assume-guarantee reasoning for hierar-
chical hybrid systems. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.)
Hybrid Systems: Computation and Control, 4th Int. Workshop, HSCC 2001, Mar.
28-30, 2001, Proc. LNCS, vol. 2034, pp. 275–290. Springer (2001)

11. Kurki-Suonio, R.: Component and interface refinement in closed-system specifica-
tions. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM’99 - Formal Methods,
Sept. 20-24, 1999, Proc. LNCS, vol. 1708, pp. 134–154. Springer (1999)

12. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997)

13. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed,
and now formally verified. In: Butler, M., Schulte, W. (eds.) FM’11 - Formal Meth-
ods. LNCS, vol. 6664, pp. 42–56. Springer (2011)

14. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput.
185(1), 105–157 (2003)

15. Madl, G., Abdelwahed, S., Karsai, G.: Automatic verification of component-based
real-time CORBA applications. In: Proc. of the 25th IEEE Real-Time Systems
Symp. (RTSS), 5-8 Dec. 2004. pp. 231–240. IEEE Computer Society (2004)

16. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for au-
tonomous robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.) Robotics:
Science and Systems IX, Technische Universität Berlin, June 24-28, 2013 (2013)

17. Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic
control. In: ICCPS. pp. 171–180. IEEE/ACM (2012)

18. Müller, A., Mitsch, S., Platzer, A.: Verified traffic networks: Component-based
verification of cyber-physical flow systems. In: 18th IEEE Intelligent Transportation
Systems Conf. (ITSC). pp. 757–764. IEEE (2015)

19. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A
component-based approach to hybrid systems safety verification. Tech. Rep. CMU-
CS-16-100, Carnegie Mellon (2016)

20. Pieter J. L. Cuijpers, Reniers, M.A.: Hybrid process algebra. J. Log. Algebr. Pro-
gram. 62(2), 191–245 (2005)

21. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010)

22. Platzer, A.: The complete proof theory of hybrid systems. In: Proc. of the 27th
Annual IEEE Symp. on Logic in Computer Science, LICS 2012, June 25-28, 2012.
pp. 541–550. IEEE Computer Society (2012)

23. Platzer, A.: A uniform substitution calculus for differential dynamic logic. In: Felty
and Middeldorp [6], pp. 467–481

24. Ramon R. H. Schiffelers, D. A. van Beek, Man, K.L., Reniers, M.A., Rooda, J.E.:
Formal Semantics of Hybrid Chi. In: Larsen, K.G., Niebert, P. (eds.) Formal Model-
ing and Analysis of Timed Systems. LNCS, vol. 2791, pp. 151–165. Springer (2003)

25. Ringert, J.O., Rumpe, B., Wortmann, A.: From software architecture structure
and behavior modeling to implementations of cyber-physical systems. In: Wagner,
S., Lichter, H. (eds.) Software Engineering 2013 - Workshopband, 26. Feb. - 1. Mar.
2013. LNI, vol. 215, pp. 155–170. GI (2013)

26. Ruchkin, I., Schmerl, B.R., Garlan, D.: Architectural abstractions for hybrid pro-
grams. In: Kruchten, P., Becker, S., Schneider, J. (eds.) Proc. of the 18th Int. ACM
SIGSOFT Symp. on Component-Based Software Engineering, CBSE 2015, May 4-8,
2015. pp. 65–74. ACM (2015)

