
Framing Situation Prediction as a Sequence
Prediction Problem: A Situation Evolution Model

Based on Continuous-Time Markov Chains

Andrea Salfinger
Department of Cooperative Information Systems

Johannes Kepler University Linz
Altenberger Strasse 69

4040 Linz, Austria
andrea.salfinger@cis.jku.at

Abstract—Following the acknowledged JDL data fusion model,
a situation can be characterized as a set of objects in relations.
Considering that this object-relational composition may change
over time, as the monitored objects may alter their states (such
as changing their event type and position), we can summarize a
situation’s evolution in a high-level fashion by the sequence of
object-relational states it has evolved through, i.e., the sequence of
its situation states. Thus, we propose to discretize the continuous
evolution of the monitored real-world objects into a sequence
of their different joint relational states (e.g., defined by the
topological or qualitative distance relations holding between those
objects), representing our alphabet, and consequently treat the
problem of predicting a monitored situation’s further qualitative
evolution as a sequence prediction problem. We examine this
approach on real-world data from the domain of road traffic
incident management, in which situations are characterized by
a changing aggregate of different event types, denoting the
distinct phases of the monitored road traffic incidents. For the
problem of predicting the monitored situation’s next discrete
state, we propose a predictive situation evolution model based
on a first-order Continuous-Time Markov Chain. Our proposed
structured situation prediction approach is applicable to all
problem domains in which situations can be formulated as
sequences of discretized states.

I. INTRODUCTION

Motivation. According to the widely adopted JDL data fusion
model [1], a situation is defined as a set of objects in relations,
representing high-level information summarizing the relational
pattern of the underlying low-level object observations. Var-
ious mature situation assessment techniques have been de-
veloped, which detect the currently on-going situation(s) by
fusing the object observations sensed from the monitored
environment, for instance [2]–[4]. Situation (evolution) predic-
tion, however, i.e., predicting a monitored situation’s expected
future evolution, represents a less-studied issue up to now. As
opposed to low-level fusion (JDL level 1), for which tracking
and predicting an object’s evolution represents a well-defined
objective, typically focusing on predicting spatial evolution
(i.e., movement) researched in the field of target/object track-
ing (e.g., using Bayesian tracking approaches, such as Kalman
or Particle Filtering), the problem of situation prediction is
hampered by the fact that the prediction goals for this high-
level, aggregate information are not as inherently clear.
Reformulating the Problem. Therefore, we aim to approach
this problem from a novel perspective, by formulating situation

prediction as a sequence prediction problem, drawing inspi-
rations from Natural Language Processing (NLP) and event
sequence prediction problems: Considering that a situation’s
object-relational composition may change over time, as the
monitored objects may alter their states (such as changing
their event type and position), we can summarize a situation’s
evolution in a high-level fashion by the sequence of object-
relational states it has evolved through, i.e., the sequence of its
situation states, as proposed in our previous work on situation
evolution modeling and tracking [5], [6]. Thus, we propose to
discretize the continuous evolution of the monitored real-world
objects into the sequence of their different joint relational
states (e.g., defined by the topological or qualitative distance
relations holding between those objects). In the present work,
we aim to study how this sequence-based formulation supports
situation prediction: We propose to regard the set of distinct
object-relational states identified in our situation database as
our alphabet, and consequently treat the problem of predict-
ing a monitored situation’s further qualitative evolution as a
sequence prediction problem.

Contributions. For tackling this sequence prediction problem,
we propose an explicit (i.e., white-box) model based on rep-
resenting evolving situations as time-homogeneous first-order
Continuous-Time Markov Chains (CTMCs). We contribute
an approach for learning such situation evolution prediction
models from recorded situation datasets, thereby extending our
previous work on inductive situation evolution modeling [6],
and demonstrate its feasibility based on a case study from the
domain of road traffic incident management. Our proposed
approach is applicable to all problem domains in which
situations can be formulated as sequences of discretized states.

Structure of the Paper. In the next section, we motivate the
problem by providing the relevant background on the con-
ducted case study. Section III introduces the formal notation
required for the latter sections, recapping our previous work on
situation evolution modeling and tracking. Section IV presents
the developed predictive model, which is practically examined
in a real-world case study in Section V. Section VI compares
related work on situation prediction and road traffic incident
prediction. Finally, Section VII draws conclusions and presents
ideas for future work.

II. MOTIVATION AND BACKGROUND

In the following, we will introduce the motivational background of
our case study in the domain of road traffic incident management. The
analyzed road traffic incident records have been obtained from AS-
FINAG

1, the company that maintains and operates Austria’s highway
network, and are conceptually based upon the “Data Exchange for
Traffic Management and Travel Information” standard, DATEX II

2,
developed by the European Committee for Standardization. DA-
TEX II describes road traffic incident data in form of situations:
The complex type Situation groups causally related road traffic
objects and events, denoted as SituationRecords3. Since the
described situation may evolve over time, this element is versioned
and has unique identifier. Naturally, also the SituationRecord
element may evolve over time, which is thus also versioned and has
unique identifier. In the following, we will use the term Object
instead of SituationRecord, in order to comply with the domain
agnostic and thus more widely adopted JDL data fusion terminology,
which defines a situation as a set of objects in relations [1]. The
comprised Objects can be of different categories, notably traffic
elements (events not planned by the traffic operator, which are
affecting, or have the potential to affect traffic flow, including events
planned by external organizations such as exhibitions, sports events
etc.)4, operator actions (actions that a traffic operator can decide
to implement to prevent or help correct dangerous or poor driving
conditions, including maintenance of the road infrastructure)5, as well
as non-road event information (information about an event which is
not on the road, but which may influence the behavior of drivers
and hence the characteristics of the traffic flow)6. Our data set
has been compiled from real-time recording of such real-time road
traffic Situation publications, as ASFINAG provided us with a
list of currently observed road traffic Objects in roughly three-
minute update intervals, which comprised information on the current
states of observed traffic Objects, including their event types, as
characterized by DATEX DOB (object code defining the type of event)
and PHR codes (phrase code defining the type of event) [7], their
begin times, locations on the road network, and the messages shown
to approaching motorists on Variable (Traffic) Message Signs (VMS).

But how can we summarize the recorded DATEX II situations’
evolutions in a high-level fashion, in order to compare similar
situations? First of all, a situation’s most defining information are
the different types of objects is it composed of. Hence, we will use
the DATEX PHR codes as symbols for representing the different object
types occurring in a specific situation. Next, we order a situation’s
comprised object updates by their begin time, and group object states
active at the same time interval into sets, representing a particular
situation state, for instance shown for one of our recorded real-world
situations in Fig. 1, which comprises three distinct situation states.

Based on this temporal grouping, we can represent these DATEX II

situations as sequences of the object state sets (represented by their
DATEX PHR codes) we encountered in each of these situation states,
as in the following examples:

• {ACI,LS1} → {ACX,LS1} → {LS2}
This sequence of object state sets would summarize the situation
evolution outlined in Fig. 1. The situation starts in state {ACI,LS1},
i.e., we are observing a situation comprising an object state of type
ACI (“accident”) and an object state of type LS1 (“stationary traffic”)
co-occurring on the specified road segment. It then evolves to state

1www.asfinag.at
2www.datex2.eu
3http://d2docs.ndwcloud.nu/level2user/

level2PayloadPublication.html
4different types of abnormal traffic, activity, accident, conditions, equipment

or system fault, obstruction
5different types of roadworks, sign setting, network management, roadside

assistance
6different types of transit information, information about other transport

means, e.g., cancellation, or delay, on a tram, train, plane, etc. journey; service
disruption (rest area closed, no diesel etc.), road service disruption (no patrol,
emergency call out of order, etc.)

Situation ID: 5111623

begin time: 2015-03-27 15:49:00

object ID: 5111669, PHR: ACI (accident)
object ID: 5111621, PHR: LS1 (stationary traffic)

begin time: 2015-03-27 16:21:00

object ID: 5111669, PHR: ACX (accident cleared)
object ID: 5111621, PHR: LS1 (stationary traffic)

begin time: 2015-03-27 16:42:00

object ID: 5111621, PHR: LS2 (slow-moving traffic)

}

update

update

}
}

1s
t
st
at
e

2n
d
st
at
e

3r
d
st
at
e

Figure 1: Situation evolution outlined.

{ACX,LS1}: Upon checking the object state’s Object IDs, we
see that ACX (“accident site cleared”) is an update to our object
previously in state ACI, i.e., the accident site has meanwhile been
cleared. After the next update, leading to state {LS2} (“queuing
traffic”), we see that the traffic jam is slowly resolving now that
the road has been cleared. Thus, we note that a situation is defined
upon the joint evolution of its comprised objects – whereas its
objects evolve individually (i.e., LS1 → LS1 → LS2 and ACI
→ ACX), the situation summarizes the joint evolution of the sets of
related objects, i.e., is a sequence of sets of object states.

• {LS2} → {ACI,LS1} → {ACX,LS1}
This situation, also taken from our real-world dataset, starts in state
{LS2}, i.e., only comprising an object state of type LS2 (“queuing
traffic”). It then evolves to state {ACI,LS1}, i.e., another object
state has appeared - ACI (“accident”), indicating that an accident has
happened in the jam area, and the traffic jam has worsened. After the
next update, the accident has been cleared, which is now in state
ACX (“accident cleared”), whereas the traffic jam still persists. This
situation shares events and states with the previous one, but defines
a different course of events, i.e., situation evolution. Thus, we see
that this representation allows us to capture commonalities in the
evolutions of different situations.

As we observe, this sequence-based, symbolic situation evolution
representation allows us to focus the high-level event evolution
patterns in terms of the associated event sequence patterns. For real-
time situation monitoring, given a situation which is currently in a
particular state (e.g., {ACI,LS1}), to allow for predictive Situation
Management (SM) [8], we would require a realistic prediction on the
next state the situation might evolve to, and when this transition will
happen, thus turning situation prediction into a sequence prediction
problem, for instance:
{LS2} → {ACI,LS1} → ?
Consequently, the question arises whether we can learn typical evo-

lution patterns from recorded situations represented in this sequence-
based fashion. Thus, in the following sections, we will try to answer
the following question: Can we learn predictive situation evolution
models from recorded situations, which allow us to project how a
currently monitored situation will evolve?

III. PROBLEM FORMULATION

After having illustrated the problem on our motivational
examples, we will abstract from the peculiarities of our case
study to provide a domain-agnostic problem formulation. As
a prerequisite for the subsequent sections, we will recap and
extend the formal notation for representing evolving situations
in a sequence-based fashion, as developed in our previous
work [5], [6].

A. Prerequisites
We assume we are given a dataset of situation instances SI ,

i.e., each recorded situation has been labeled with a unique ID

(I). Each situation comprises one or multiple objects. Situa-
tion instances might have been recorded by human operators

responsible for their situation life-cycle management, who
handled the corresponding case. Note that in the following,
we will use super-scripts to notationally distinguish instance-
level (I) from type-level (T) information.

We further require that also each encompassed object record
is identified by a unique ID, and of a particular object type
(OT). Objects might evolve, i.e., we receive updates on this
object - in this case, we observe a new object state record with
the same ID but different begin time, i.e., we can reconstruct
this object’s evolution as a sequence of its object states, which
are temporally ordered by their begin times. An object’s type
OT might change throughout its evolution, for instance, we
might observe the following change of OT s between two
object states: LS1 → LS2, meaning that an object starting
in an object state of type LS1 (“stationary traffic”) evolved
to LS2 (“queuing traffic”), or ACI → ACX, meaning that an
object starting as type “accident” evolved to a state of type
“accident cleared”.

B. Representing Evolving Situations by Sequences
Formalizing these requirements, we denote the evolution of

an object OI by a sequence of observations7 of its different
object states oIt :

OI :=< oI[t1,t2[, o
I
[t2,t3[

. . . , oI[tn,tn+1]
>, (1)

where n denotes the number of observed object states (starting
at time instants t = t1 to tn), i.e., updates. The total lifetime
of the monitored object can be computed from the interval
[t1, tn+1]. An object may spend variable amounts of time in
its states oI[tj ,tj+1[

, whereby the duration dj spent in a state

can be computed from the interval [tj , tj+1[. We note index
variable j on the update time stamps tj only specifies their
sequential position in the sequence of update time stamps
< t1, . . . , tn, tn+1 >, hence should not be understood as a
fixed time step-size.

We simplify notation by only referring to the states’ begin
times:

OI :=< oIt1 , . . . , o
I
tn > (2)

Analogously to formulating object evolution, a situation’s
evolution over its entire situation life-cycle would be formal-
ized as

SI :=< sI[t1,t2[, . . . , s
I
[tn,tn+1]

>, (3)

whereby SI denotes a particular situation instance, which can
be expressed as a sequence of n situation state updates, in
simplified notation written as

SI :=< sIt1 , . . . , s
I
tn > (4)

Each situation state instance sIt simply represents a container
for the set of k object states composing the situation state:

sI[tj ,tj+1[
:= {oi[tj ,tj+1[

}, i ∈ {1, . . . , k}, j ∈ {1, . . . , n} (5)

The cardinality of a situation state instance sIt thus is the size
of its object state set, i.e., ‖sIt ‖ := ‖{oit}‖ = k, which may
vary across different situation state instances sIt , if objects join
or leave the situation. Concluding, a situation instance simply

7Notation: We denote sets by {. . .} and sequences by < . . . >.

represents a container for a changing set of related object
states. Updates of a situation (i.e., a change of its situation
state) correspond to updates of its contained objects. Note
that an object update does not necessarily lead to a new situ-
ation state, if this update do not change the object-relational
configuration of its situation state. For instance, assume we
are observing a situation state instance s110:05 comprising two
objects O5 and O9 with histories O5 =< o509:25, o

5
09:56 > and

O9 =< o910:05 >, being in the relation “spatially close” under
a given definition for spatial closeness stating a corresponding
lower and upper bound for this relation to hold. Since o91
appears at time point 10:05, the situation state instance s1

starts at time point 10:05, thus comprising the states of O5 and
O9 active in the interval [10:05, [, i.e., their time slices O5

[10:05,[

and O9
[10:05,[. Their states active at time point 10:05 are o52

(which has not changed since 09:56) and o91. Assume we are
now receiving another position update on O5 at 10:10, leading
to the object evolution sequence < o509:25, o

5
09:56, o

5
10:10 >.

This update, however, does not change the spatial closeness
relation, as both objects still remain close to each other. Thus,
s110:05 would now stretch across < o52, o

5
3 > and o91. The

situation changes with the next position update on O5 at
time point 10:17, when the objects now become very close:
Thus situation state instance s1[10:05,10:17[can now be closed,

comprising < o52, o
5
3 > and o91, and a new situation state

instance s1[10:17,[is instantiated, comprising o54 and o91. Thus,
we see that situation states span their comprised objects’
states according to the holding object-relational configurations,
i.e., comprise time slices of their objects’ evolution histories.
Hence, these may fuse multiple individual object state updates
as long as the overall object-relational configuration remains
unchanged, thereby, summarizing the joint behavior of the
monitored object set of interest in a concise manner.

C. Prior Work – Constructing the State Space from Observa-
tions

In Def. (3), we have represented a situation as a sequence
of the different “object-relational” configurations or “states”
it has evolved through. However, these individual situation
states, as for example shown in Fig. 1, are specific for
each observed situation. Analogously to the abstract evolu-
tion sequences developed for our motivational examples in
Section II, we would thus require an “abstract description”
of the observed situation states, representing the alphabet
for our evolution sequences, so that we are able to compare
different situation evolutions on a common basis. Therefore,
in our previous work, we have developed a dedicated situation
mining algorithm [6], which takes a set of human-labeled
situation instances as input, and derives abstract, type-level
representations of their situation states, which we term Situ-
ation State Types, short SST s: Thus, situation mining essen-
tially constructs an alphabet or state space for comparatively
describing our observed situation instances. SST s are formed
by analyzing which object types (OT s) have been observed
in which relation types (RT s) in the analyzed situation
states (e.g., an object of type accident and an object of type
traffic jam being in the relation “spatially co-located”), thus
representing an abstract description of the observed object-

relational configuration. Hence, SST s can be sought of as
being a descriptive rule defining the situation state, and thus
can be used for automated situation detection. Formalizing
this, SST s are defined as:

SST := (Ω, ρ), (6)

whereby Ω is a finite, non-empty set of object references
(OR). An object reference corresponds to an object type
(OT) referenced by an alias, such as Wrong-way Driver w or
Tunnel t. The alias is required to distinguish between different
objects of the same type process (e.g., different traffic jams
j1 and j2), hence an OR can be considered as a variable
(in the reasoning process for automated situation assessment,
matching object states are bound to these variables). ρ is a
set of n-ary relation types RT s that need to hold between
these ORs, i.e., ρ : Ωn → {true, false} for the situation
state to be true. Hence, an SST is defined by a set of ORs
in specific RT s, thereby characterizing a situation’s different
object-relational states.

Consequently, each individual situation state instance sIt
can now be linked to its abstract type, notably its particular
SST . Hence, we can represent an evolving situation SI by the
sequence of SST s it has evolved throughout its development.

D. Goal

Thus, upon transforming our situation dataset to the common
symbolic sequence representation introduced in the previous
section via situation mining, we can now formulate our
prediction goal as follows: We are given a situation instance
represented by the sequence of SST s it has evolved through
so far, as well as the durations d spent in each of those SST s.
We denote a situation instance which is currently in its kth

state by8:

SI :=< (sI1 : SST x, d1), . . . , , (sIk : SST y, dk) > (7)

or, in short9:

SI :=< (SST
1, d1), . . . , (SST

k, dk) > (8)

We would like to predict the next SST it will evolve into:

P (sIk+1 : SST z | < (sI1 : SST x, d1),

. . . , (sIk : SST y, dk) >) (9)

or, in short:

P (SST
k+1 | < (SST

1, d1), . . . , (SST
k, dk) >) (10)

Hence, given a situation instance expressed by the sequence
of SST s it has evolved through, and the respective durations
it has lasted in each of those states, we aim to predict the
expected duration of the present state, and the next SST of
the sequence we expect to observe.

8read: sIt1 : SST x as “sIt1 is of situation state type x”, notation borrowed
from Description logics

9We will omit the type name, when generically referring to any arbitrary
SST , and instead index SST s with respect to their position in the sequence.

IV. SITUATION PREDICTION APPROACH

For addressing such sequence prediction problems, Markov
Models have found wide-spread adoption for determining the
transition probabilities between different symbols or states [9].
In the following, we thus introduce a situation prediction
approach based on the ideas of Markov Chains (MCs). In
general, a k-order MC or Markov process represents a se-
quence of random variables for which the probability of the
next state depends only on its previous k states. In terms of our
situation prediction problem, a situation instance SI could be
considered as a Markov process, characterized by the sequence
of SST s it has evolved through. If we assume the Markov
property holds, i.e., for a memoryless approach, the probability
of the next state reduces to the following:

P (SST
k+1 | < SST

1, . . . , SST
k >) = P (SST

k+1 | SST
k), (11)

i.e., only the current state of the situation is considered as
relevant for making the prediction, corresponding to a first-
order MC.

What distinguishes our situations SI from Markov pro-
cesses in the conventional notion is that Markov processes
are considered to be infinitely running processes, whereas our
situations may potentially end in any SST . We can circumvent
this by introducing an artificial end state, which we append
to all observed sequences. In terms of the MC framework,
this end state represents an absorbing state (i.e., it does not
have outgoing transitions). Thus, whenever a situation instance
“ends” in a particular state (i.e., its last state is “closed” and
we do not receive any further updates), we implicitly regard
this as making a transition to this absorbing state, which can
be reached from any SST , meaning that this situation instance
now will remain infinitely in that “ended” state.

In the following, we will start by formulating our Situation
Evolution Model as a first-order Discrete-Time Markov Chain
(DTMC). DTMCs essentially assume a fixed observation and
prediction step-size, i.e., that our observations are taken at
equidistant time steps of length Δt, and thus are applicable in
domains with fixed update frequencies. Since this is generally
not the case for our situation instances, which may comprise
varying time lags between subsequent SST s, we will need to
correspondingly preprocess our situation evolution sequences
by splitting them into evenly sized time slices, in order to
apply the framework of DTMCs to our situation prediction
problem. In the subsequent section, we will then extend our
model to Continuous-Time Markov Chains (CTMCs), which
allow to directly model the durations spent in each state.

A. Discrete-Time Markov Chains

Since DTMCs assume a fixed observation time step-size, we
need to preprocess our sequences to satisfy this requirement.
Hence, we choose a fixed step-size k suitable for the domain
at hand (e.g., in our road traffic incident management scenario,
we may set k = 3 minutes, corresponding to our observation
update interval). Then, we convert our situation instances

SI to “unfolded” situation instances SI′
, by repeating each

SST
i �di/k� times, to transform our situation instances to an

observation sequence at equidistant time steps:

expand(SI , k) := f(SI , k) =
(
(SST

i)
�di/k�)|SI |

i=1
, (12)

whereby |SI | denotes the length of situation instance SI ,

(SST
i)

x means symbol SST
i is repeated x times, and (.)

|SI |
i=1

denotes iterating over all positions in sequence . with index
variable i.

In order to exploit the framework of MCs for our situation
prediction task, we next need to learn a DTMC characterizing

our observed situation dataset SI′
, by determining the follow-

ing quantities:

1) the state space S of the random variables our variable of

interest SI′
can take on, which represents the alphabet

of our observed sequences
2) the transition probabilities between those states

Our countable state space S is given by the set of different
SST s our situation mining algorithm [6] has identified, in
other words, the different SST s in our situation sequences.

In order to complete our model, we still require the transi-
tion probabilities between those states:

pi,j = P (sIk+1 : SST
j | sIk : SST

i), (13)

whereby pi,j denotes the probability of evolving from SST i
to SST j in the next step. The probabilities for all our |S|
states are stored in the transition probability matrix Q of
dimension |S| × |S|. Per convention, each entry pi,j in this
matrix specifies the transition probability from SST i to SST j,
thus, each row of this stochastic matrix contains the probability
distribution for the successor states of a particular SST i. We
need to estimate these conditional transition probabilities from

our data set SI′
to obtain our MC-based Situation Evolution

Prediction Model SEP:

SEP := (S, Q), (14)

In order to estimate these transition probabilities, we need
to make the following assumptions: We assume that the next
state conditionally only depends on the current state (i.e., that
the Markov property holds10). Furthermore, we assume time
homogeneity, i.e., that the transition probabilities between two
SST s remain stationary over time, irrespective from their
index position in the evolution sequence (i.e., these transition
probabilities do not change as time goes on). Under these
assumptions, we can approximate the entries of Q based on
Maximum Likelihood Estimation (MLE)11 from our observed
data [12]:

p̂MLE
i,j =

nij
∑|S|

u=1 niu

(15)

nij conforms to the number of observed transitions from SST i
to SST j,

∑|S|
u=1 niu represents the total number of 1-step

transitions originating from SST i. Thus, p̂MLE
i,j represents

an empirically determined estimate of pi,j , taken to be the

10It is impossible to determine from a finite number of samples whether
the underlying process is actually Markovian [10].

11or variations such as Laplace smoothing, which includes a stabilizing
parameter, or Maximum A-Posteriori (MAP) [11].

fraction of all observed transitions from SST i to SST j over
all observed transitions originating from SST i, the latter
representing the normalization to yield a proper probability
distribution. To complete our model, we need to include the
fact that the situation remains forever in the end state, once it
has transitioned into it: Hence, we set the last row of Q fixed
with the deterministic self-transition of the “end” state, i.e.,
append a row vector with pend,end = 1 and 0 elsewhere.

To recap our approach for predicting the next discrete
state(s) an observed situation instance might evolve into, we
have proposed fitting a DTMC to our situation dataset: First,
we perform situation mining to determine the DTMC’s state
space as the set of derived SST s, and represent the observed
situations by the sequences of SST s they have evolved
through, using a fixed observation step-size k. For predicting
a monitored situation’s next-step successor state probability
distribution, the corresponding row of its probability transition
matrix Qi,: is computed via MLE from the situation database.
n-step forward predictions, i.e., prediction across multiple time
steps, can be computed as Qn.

B. Continuous-Time Markov Chains

Instead of discretizing our continuous-time observations
SI by splitting them into chunks of fixed step-size, which
introduces the problem of finding an adequate step size, we
may also directly model the variable duration a situation
spends in each of its states, before jumping to another state,
thus directly allowing to input our SI as given in Def. (9). This
jump chain can be represented by a (stationary) CTMC, which
directly models the time spent in a state before a transition to
a different state occurs:

SI =< SST (t) : t ≥ 0 > (16)

The random variable SST (t) now represents the SST oc-
cupied by the CTMC at time t. Time t is considered to be
any non-negative real number, corresponding to the time units
(e.g., minutes) a situation stays in a specific SST . Thus, a
situation instance might spend a variable amount of time, the
so-called holding time, in each of its SST s.

If a transition occurs at time t, the situation SI evolves to
the new state SST (t), whereby SST (t) �= SST (t−). Thus, as
an important distinction to our previously considered DTMC
model, which also included self-transitions if the situation
instance remained in the same SST in the next step, a
transition only occurs if a situation instance jumps to a new
state (since remaining in the old state is modeled via the time
spent in this state before a transition occurs).

In order to incorporate an SST ’s exponentially distributed
holding time into the model, we need to estimate a transition
rate matrix or Generator matrix Λ providing the exponential
holding parameters λ(SST) for each state [10]–[12]:

λ̂MLE
i,j =

nij∑
s:SST i d(s)

(17)

nij is again the total number of transitions from SST i to
SST j, where i �= j. The denominator computes the total time
the chain spends in state SST i (i.e., computes the total time
all our observed situation instances have spent in this state),

whereby d(s) denotes the duration of situation state instance

s. Thus, we obtain an estimate Λ̂ of the generator Λ from
our observed situations. Its elements λ̂ij are non-negative for
all i �= j, and describe the rate of the process transitions
from SST i to SST j. Diagonal elements λ̂ii have to be
chosen such that the row-sums of the transition rate matrix
are equal to zero. To model the behavior of the absorbing
end state, we append a row vector of zeros for λ̂end,: (as
we will not have observed any transitions from the end state
in our data). The generator matrix then allows to determine
the corresponding transition probability matrix for a future
time point of interest as follows (t is taken to be “integer
time point”, e.g., a prediction for the next t minutes in the
future) [10]:

Q̂(t) = e(Λ̂ t) (18)

Hence, we can compute the custom transition probability
distribution after any projection period of interest.

Now that we have defined our model, the question arises on
how well it characterizes our observed real-world situations,
and whether the CTMC provides additional value over model-
ing the problem with a DTMC. Thus, in the next section, we
will study the usefulness of our proposed situation evolution
prediction models on a real-world situation dataset from the
domain of road traffic incident management.

V. CASE STUDY

In the following, we examine whether our MC-based models offer
meaningful inference capabilities based on a feasibility study on the
real-world road traffic incident data described in Section II. The
particular challenge of our collected road traffic incident situations
lies in the considerable variance in the durations of situation state
instances of different SST s. Whereas situation states involving
accidents, for instance, are typically on a time scale of minutes to a
few hours (in case of severe accidents requiring complicated clearance
works), states of other SST s even expose a time scale of multiple
days, such as closures (e.g., road closures due to dangerous snow
conditions, danger of mudslides in alpine regions). Since we are
more interested in predicting unforeseen situations, as opposed to
planned and thus known situations such as long-term roadworks, for
the present analysis we select those situation instances having a total
duration of up to seven days, comprising 1,451 situation instances
recorded in the time span between Dec. 27, 2014, to June 14, 2015,
which expose a total duration between 1 to 9,159 min.12.

Due to the wide range of holding times, the sequence expansion
technique proposed for DTMCs becomes impractical, because no
time step size can be found that suits both short- as well as
long-lasting situation states. However, these specifics allow us to
highlight the particular strength of the CTMC-based model, which
computes the holding parameters individually per SST , and thus
is capable to take into account the different time scales between
different SST s. If we chose a small step-size for DTMCs, such
as k = 5 min., the unrolling of long-lasting situation states would
consequently lead to transition probability distributions containing
almost all transition probability mass on the self-transition (indicating
remaining in that state), while the probabilities of transitioning to
other states would become very low. Hence, our model would always
predict remaining in that state (unless we roll out simulations, i.e.,
generate and aggregate sample sequences from the chain), and due
to the memoryless property, it does not keep track of how long it has
already remained in the currently active state. Conversely, whereas
the CTMC is memoryless as well, it actually models the transitions to
other states. Hence, it eventually will predict the jump to a different

12mean total duration: 642 min., median total duration: 124 min.

SST , based on the SST ’s given exponential holding parameter λ
characterizing the MC’s tendency to remain in this state. Therefore,
since our dataset’s characteristics are better captured by CTMCs, we
will constrain our case study discussion to the CTMC results.

en
d

{A
C

I}

{A
C

I,R
C

D
}

{A
C

I,L
S1

} en
d

{A
C

I}

{A
C

I,R
C

D
}

{A
C

I,L
S1

}

en
d

{L
S1

}

{A
C

I}

{A
C

I,R
C

D
}

en
d

{L
S1

}

{A
C

I}

{A
C

I,R
C

D
}

en
d

{R
C

A}

{L
S1

}{A
C

I}

0.00

0.25

0.50

0.75

1.00

20 60 120 180 240
Projection Period [min.]

Pr
ob

ab
ilit

y

SST
{ACI,LS1}

{ACI,RCD}

{ACI}

{LS1}

{RCA}

end

Successor State Probability Distribution for SST: {ACI}

Figure 2: Projections for SST {ACI}. Event codes: ACI =
accident, LS1 = stationary traffic, RCD = road closed, RCA =
closure

en
d

{S
R

O
}

{R
C

D,
SR

O
}

{C
AL

}

en
d

{S
R

O
}

{R
C

D,
SR

O
}

{C
AL

}

en
d

{S
R

O
}

{R
C

D,
SR

O
}

{C
AL

}

en
d

{S
R

O
}

{R
C

D,
SR

O
}

{C
AL

} en
d

{S
R

O
}

{R
C

D,
SR

O
}

{C
AL

}

en
d

{S
R

O
}

{R
C

D,
SR

O
}

{C
AL

}

en
d

{S
R

O
}

{R
C

D,
SR

O
}

{C
AL

}

0.00

0.25

0.50

0.75

1.00

20 60 120 180 240 2880 7200
Projection Period [min.]

Pr
ob

ab
ilit

y

SST {CAL} {RCD,SRO} {SRO} end

Successor State Probability Distribution for SST: {SRO}

Figure 3: Projections for SST {SRO}. Event codes: SRO

= hard-packed snow, RCD = road closed, CAL = message
cleared

en
d

{R
C

R
}

{L
S1

,O
BR

,R
C

D
}

en
d

{R
C

R
}

{L
S1

,O
BR

,R
C

D
}

en
d

{R
C

R
}

{L
S1

,O
BR

,R
C

D
}

en
d

{R
C

R
}

{L
S1

,O
BR

,R
C

D
}

en
d

{R
C

R
}

{L
S1

,O
BR

,R
C

D
}

0.00

0.25

0.50

0.75

1.00

2 5 10 20 60
Projection Period [min.]

Pr
ob

ab
ilit

y

SST {LS1,OBR,RCD} {RCR} end

Successor State Probability Distribution for SST: {LS1,OBR,RCD}

Figure 4: Projections for SST {LS1,OBR,RCD}. Event codes:
LS1 = stationary traffic, OBR = objects on the roadway, RCD

= road closed, RCR = cleared

We first performed situation mining on this situation dataset to
reconstruct our situation state space, which delivered 241 differ-
ent SST s, and correspondingly assembled the observed situation
evolution sequences. Next, upon performing the required sequence
processing steps (e.g., extending each situation evolution sequence
with a dedicated “end” state), we fit a CTMC to our processed
situation evolution sequences by implementing Eq. (17).

Fig. 2 shows five different forecast horizons for an accident
situation computed with the learned CTMC model based on Eq. (18),
projecting the successor state probability distribution expected after
20, 60, 120, 180 and 240 minutes, respectively. We observe how
the probability distributions of the top four most probable successor
SST s change with the projection period – the further we extend
the forecast horizon, the less likely it becomes that this situation
is still in SST {ACI}, and the more probable it becomes that this
situation has already ended. Similar analysis is provided for situations
involving bad driving conditions and potential road closures due
to hard-packed snow ({SRO}) in Fig. 3, and situations involving
obstructions due to objects lying on the roadway ({LS1,OBR,RCD})
in Fig. 4. Whereas the latter situation can be resolved within a few
minutes, since the small objects can be quickly removed, we observe
that the resolution of the hard-packed snow situations happens on a
different time scale, as to be expected. As can be seen, the CTMC-
based model adequately takes the different evolution time scales of
these different SST s into account. We also observe that our model
fully automatically associated interrelated events and operator actions,
which would be cumbersome to specify manually given that we are
facing 110 different object and event types in this dataset. As this
analysis reveals, the benefit of the CTMC-based approach is that the
learned model picks up the different time scales of our highly distinct
SST s – we could use a single model for learning all of these different
situation evolution types.

Since Figs. 2-4 only have examined the underlying patterns the
model has compiled from the situations it has been “trained” with,
i.e., its training set, we also investigate its generalization capability, by
analyzing how well its forecasts match the yet unseen test situations.
Therefore, we randomly shuffle our situation dataset and perform 10-
fold cross validation, i.e., we perform 10 experiments training on 9
folds and using the left out fold as test set, respectively, to obtain
an estimate of expected prediction accuracy. Starting from the test
situations’ initial state, we aim to predict their evolution sequence
and the associated durations, and compare these with their actual
sequences and durations. We predict the situation’s next state by
extending the projection horizon until the probability of transitioning
to a different SST becomes higher than the probability of remaining
in the current state, which we predict as the next SST (hence this
projection horizon conforms to our predicted duration of remaining in
the current state). For evaluating the resulting predictions, we measure
the binary loss based on whether the entire predicted SST sequence
was correct, as well as the deviations of the predicted total duration
from the actual total duration. In case of SST s only occurring in
our test data and not in our training set, which thus are out of
vocabulary words, i.e., unknown states, for our model, we cannot
make a prediction and thus simply count those as incorrect13. For
predicting the entire evolution sequence correctly, we obtained a
mean accuracy of 80% (σ = 0.04). Our prediction error could be
attributed to two error sources, notably the test sequences starting in
yet unknown states (on average 7% per test fold, σ = 0.01), and
on average 14% (σ = 0.03) of true evolution sequences exposing
a longer evolution sequence, whereas our model predicted a next
transition into the end state. This is since our model exposes a strong
bias on predicting a transition to the end state, as on the entire dataset
only 15% of our situation sequences actually show evolving behavior
(i.e., their sequence consists of more than one SST). This is probably
owed to the noisy and incomplete nature of our situation dataset, since
we might have missed situation updates lying between our sampling

13In real-world applications, we could match those to the semantically most
similar SST based on on sequence similarity or the event taxonomy hierarchy
provided by DATEX II.

1 2 3 4 5 6 7 8 9 10 R

0
1

2
3

4
5

6
Pr

ed
ic

te
d

D
ur

at
io

n
/ T

ru
e

D
ur

at
io

n

Figure 5: Duration prediction results.

intervals14, and encountered incompletely tracked situations. Hence,
this problem is rooted in our specific data set compilation, and
would not occur in real-world application settings in which we
would have access to the complete history of the recorded situations,
without any sampling biases. In general, we note that both types of
errors (unknown start state as well as incorrectly predicted sequence)
would decrease by training on more comprehensive situation datasets
spanning complete time periods.

We finally also compare the situations’ predicted durations with
their actual durations. Since the standard deviation of total durations
on our entire situation dataset is as high as 1,267 min., classical
regression evaluation measures such as RMSE would not be infor-
mative, since the scale of deviations will vary considerably between
different SST s. To account for this SST -specific variance, we thus
compute the degree to which the model under- or overestimates the
actual duration, i.e., compute predicted duration/true duration.
Hence, values close to 1 would indicate accurate predictions. For
those on average 93% of test situations for which predictions could
be made, we obtain the duration accuracy distributions shown in
Fig. 5. Its right-most boxplot shows the accuracy distribution obtained
for random predictions – i.e., instead of computing the estimated
total duration starting from the actual SST , we randomly select
any SST from the model and continue to predict the corresponding
sequence until reaching the end state. These random predictions are
significantly different from our model’s predictions15, which demon-
strates that our model seems to have indeed learned adequate holding
parameters for the different SST s. Given that in our situation dataset,
only 14% of the SST s were covered by more than 20 corresponding
situation state instances, from which the model had to estimate their
holding parameters, we consider these results encouraging, which
could be improved by training on more extensive datasets.

VI. RELATED WORK

To the best of our knowledge, we are not aware of approaches
that address situation (evolution) prediction as a sequence prediction
problem modeled with CTMCs. Therefore, we will discuss applica-
tions of MCs for related situation monitoring tasks, and contrast the
prediction problem examined in our case study with predictive models
developed for this application domain. We conclude this discussion
by outlining the specifics of our approach compared to conventional
event sequence prediction problems.

Alevizos et al. employed Pattern MCs for predicting the estimated
number of events (i.e., object states) required to complete the
detection of a specific situation state [13]. Hence, in terms of our
framework, they consider SST s in isolation only, but do not consider
a situation’s evolution between different SST s.

MCs have previously also been used for situation monitoring
in form of Hidden Markov Models (HMMs). For instance, Meyer-
Delius et al. have used HMMs to model and track vehicular passing
situations in a driver-assistance system [14]. HMMs assume that

14As described in Section II, we only received snapshots of currently
observed states in 3-min. intervals.

15Two-sample Kolmogorov-Smirnov test: p-value < 2.2e-16, whereas for
all combinations of actual prediction distributions, the null hypothesis could
not be rejected under a p-value of 0.05.

observations are produced by unobserved, thus hidden or latent
states, and only these latent states are modeled to form a MC
[9]. Hence, an observation is only conditionally dependent on its
corresponding latent state, which is conditionally dependent on its
previous latent state. Thus, HMMs allow to implicitly capture a
situation’s history via the latent states, and thus are not limited to
incorporating only the k most previous observations, as in k-order
MCs. However, these latent states now also need to be estimated,
which introduces additional complexity for learning these models,
and thus are typically employed when the application domain allows
to include some a-priori knowledge on the number and structure
of those latent states. As in the above mentioned driver-assistance
system, HMMs are employed in scenarios where the SST s that
actually produced the observations (sI) cannot be deterministically
determined (as opposed to our descriptive, i.e., rule-based, situation
tracking approach), but are taken to be latent factors that have
produced the observed sequence of situation state instances. Hence,
their focus is typically more on situation detection and monitoring
(i.e., determining the SST the situation is currently in, which cannot
be directly observed) than situation prediction.

Whereas several predictive models for road traffic incidents have
been developed, these have been focused on conventional, non-
relational input data, i.e., predicting the occurrence of a specific
event type, instead of considering the complex, joint evolution of
multiple incident types on the situation level. As revealed by a recent
review on traffic incident prediction [15], most approaches focused
on the event type of congestion, i.e., predicting the occurrence and
duration of congestion and accidents. Conversely, we have aimed at
representing and predicting a diverse range of road traffic incidents
on the situation level, i.e., exploiting the joint relational composition
between multiple incident types, and have proposed a unified, generic
model for learning arbitrary types of situations, instead of devising a
specific model for a specific object or event type only.

Technically, our approach is rooted in the field of event sequence
prediction, which bases on the idea of learning event prediction
models from observed event sequences. Whereas conventional event
sequence prediction only considers sequences of individual events,
we have proposed a dedicated formulation for representing situations
based on evolving complex sets of events, adhering to the situation
characterization provided by the JDL data fusion model. Furthermore,
we also incorporated the duration of those events in our predictive
model, which has only recently been considered in general event
prediction tasks [16].

VII. CONCLUSION AND FUTURE WORK

In the present work, we have proposed to treat the problem
of situation prediction as a sequence prediction problem. We
have developed a framework that allows to represent evolving
situations by sequences of their traversed situation states,
and proposed a situation evolution model based on learning
Continuous-Time Markov Chains (CTMCs) from the situation
database. We examined the feasibility of our approach on
a case study involving a challenging real-world data set
from the domain of road traffic incident management, which
demonstrated that our proposed approach provides a unified,
generic framework for learning highly heterogeneous situation
evolution patterns, allowing to incorporate situation evolution
types lasting a couple of minutes as well as situations typically
spanning multiple days. Our approach automatically learns the
CTMCs, as it only requires a dataset of labeled situations.

In addition to Predictive Situation Management, the pro-
posed model also supports simulations, as the fitted MCs allow
to generate sample situation evolution sequences according to
the distributions observed in the underlying real-world data.

For future work, we also plan to investigate on the per-
formance of alternative sequence prediction approaches: In

particular on NLP tasks, neural sequence prediction models
such as Recurrent Neural Networks currently offer the best
predictive performance on many problems. However, these
represent black-box models that cannot be as easily dis-
sected as MCs. Hence, we plan to compare the performance
achievable with neural approaches with our MC baselines, to
study the benefits and drawbacks of those different sequence
modeling approaches for situation evolution prediction.

ACKNOWLEDGMENTS

This work has been funded by the Austrian Science Fund
(FWF) under grant FWF T961-N31. The analyzed data has
been provided by ASFINAG.

REFERENCES

[1] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White,
“Revisiting the JDL Data Fusion Model II,” in Proceedings of the Sev-
enth International Conference on Information Fusion (FUSION 2004),
2004, pp. 1218–1230.

[2] C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman,
J. Salerno, and D. Boulware, “Lessons learned from developing SAWA:
a situation awareness assistant,” in Proc. of the 8th International
Conference on Information Fusion, vol. 2, 2005, p. 8 pp.

[3] J. Edlund, M. Grönkvist, A. Lingvall, and E. Sviestins, “Rule-based
situation assessment for sea surveillance,” in Proc. SPIE 6242, Multi-
sensor, Multisource Information Fusion: Architectures, Algorithms, and
Applications, vol. 6242, 2006, pp. 624 203–624 203–11.

[4] F. Terroso-Saenz, M. Valdes-Vela, and A. F. Skarmeta-Gomez, “A
Complex Event Processing Approach to Detect Abnormal Behaviours
in the Marine Environment,” Information Systems Frontiers, vol. 18,
no. 4, pp. 765–780, 2016.

[5] A. Salfinger, W. Retschitzegger, and W. Schwinger, “Staying Aware in
an Evolving World — Specifying and Tracking Evolving Situations,” in
Proceedings of the 2014 IEEE International Inter-Disciplinary Confer-
ence on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA). San Antonio, TX, USA: IEEE, 2014, pp. 195–201.

[6] A. Salfinger, “Situation Mining: Event Pattern Mining for Situation
Model Induction,” in 2019 IEEE Conference on Cognitive and Com-
putational Aspects of Situation Management (CogSIMA). Las Vegas,
USA: IEEE, 2019.

[7] E. Arco, A. Ajmar, F. Arneodo, and P. Boccardo, “An operational
framework to integrate traffic message channel (TMC)in emergency
mapping services (EMS),” European Journal of Remote Sensing, vol. 50,
no. 1, pp. 478–495, 2017.

[8] G. Jakobson, J. Buford, and L. Lewis, “A Framework of Cognitive
Situation Modeling and Recognition,” in Military Communications Con-
ference, 2006. MILCOM 2006. IEEE, 2006, pp. 1–7.

[9] C. M. Bishop, Pattern recognition and machine learning, corr. print ed.,
ser. Information science and statistics. New York, NY: Springer, 2007.

[10] P. Metzner, E. Dittmer, T. Jahnke, and C. Schütte, “Generator estimation
of Markov jump processes,” Journal of Computational Physics, vol. 227,
no. 1, pp. 353–375, 2007.

[11] G. Spedicato and M. Signorelli, “The markovchain Pack-
age: A Package for Easily Handling Discrete Markov
Chains in R,” 2014. [Online]. Available: https://cran.r-
project.org/web/packages/markovchain/vignettes/an_introduction_to
_markovchain_package.pdf

[12] Y. Inamura, “Estimating Continuous Time Transition Matrices From
Discretely Observed Data: Bank of Japan Working Paper Series.”
[Online]. Available: https://ideas.repec.org/p/boj/bojwps/06-e-7.html

[13] E. Alevizos, A. Artikis, and G. Paliouras, “Event Forecasting with
Pattern Markov Chains,” in DEBS’17. New York, New York: The
Association for Computing Machinery, 2017, pp. 146–157.

[14] Meyer-Delius et al., “Probabilistic situation recognition for vehicular
traffic scenarios,” in IEEE International Conference on Robotics and
Automation, 2009. ICRA ’09., 2009, pp. 459–464.

[15] R. Li, F. C. Pereira, and M. E. Ben-Akiva, “Overview of traffic incident
duration analysis and prediction,” European Transport Research Review,
vol. 10, no. 2, p. 109, 2018.

[16] Y. Li, Du Nan, and S. Bengio, “Time-Dependent Representation for
Neural Event Sequence Prediction,” in 6th International Conference on
Learning Representations, 2018.

