
Maintaining Situation Awareness Over Time
— A Survey on the Evolution Support of Situation Awareness Systems

Andrea Salfinger∗, Werner Retschitzegger†, Wieland Schwinger‡

Department of Cooperative Information Systems
Johannes Kepler University Linz

Altenbergerstr. 69
4040 Linz, Austria

{andrea.salfinger∗, werner.retschitzegger†, wieland.schwinger‡}@cis.jku.at

Abstract—Situation awareness (SAW) denotes a human’s ad-
equate interpretation of the observed environment, which is
of prime relevance for human operators in control center
applications (e.g., road and air traffic control). Since humans
may lose their SAW due to information overload and time
criticality, a series of intelligent systems have been proposed
that should support human operators in gaining and maintaining
SAW, whereby existing approaches focus more on the gaining
aspect so far. However, a comparative evaluation of the distinct
approaches has not been the focus up to now, as has been recently
acknowledged. Therefore, the present work attempts at filling
this gap by providing a comparative evaluation of approaches
for gaining and maintaining SAW, thereby focusing on the less
studied aspect of support for maintaining SAW. Thus, this survey
highlights open issues and directions of further research.

I. INTRODUCTION

Situation Awareness. Situation awareness (SAW) denotes a
human’s adequate interpretation of the observed environment.
SAW is thus especially relevant in control center applications,
where a human operator needs to stay fully aware of the
state of the monitored environment, and anticipate critical
situations emerging in that environment in order to undertake
the appropriate (counter)actions. However, a human’s correct
situation assessment (SA), i.e., the process to obtain SAW, is
severely affected by information overload and time criticality,
which induce the risk of a partial loss of SAW, or in the
worst case even a complete misinterpretation of the current
situational state [1], which may entail fatal consequences.
Systems Supporting SAW. Therefore, intelligent systems
have been proposed that should support human operators
in gaining and maintaining SAW of today’s increasingly
complex environments. Such SAW systems are capable of
autonomously deriving the situational state, or critical sit-
uations, of the observed environment by fusing, analyzing
and interpreting the sensed data, i.e., performing high-level
information fusion (HLIF) [2]. By communicating this already
interpreted picture to the operator, the operator is supported in
gaining SAW, as the cognitive load on the operator is reduced.
However, as a user study in [3] revealed that time is a key
factor, to further support the operator in maintaining SAW
over time in a rapidly evolving environment, the SAW system
needs to account for evolution in order to retain its usefulness:
(i) by tracking the evolution of the underlying environment,

especially w.r.t. inferred situations, (ii) by allowing the system
to evolve over time to keep up to this changing environment,
and (iii) by evolving to the needs of its users, i.e., incorporate
and adapt to operator feedback.
Contributions. Whereas the necessity to provide support for
these evolution aspects has been acknowledged recently (e.g.,
in [4], [5]), a comparative study of current SAW systems
especially regarding these issues has not been the focus so
far, as also recognized in [6]. Therefore, the aim of the present
paper is to take a first step towards filling this gap for that: We
propose a criteria catalog allowing to study how SAW systems
can support an operator in gaining and maintaining SAW.
Based on these criteria, we perform a comparative evaluation
of SAW systems, and identify directions for further research.
Structure of the Paper. In the next section, we discuss
existing work aiming at giving an overview and explaining
how they relate to our survey. In section III, we outline and
justify the criteria forming the basis for our evaluation of the
selected approaches. Section IV continues with a discussion
of the systems selected for our survey. Section V then presents
the results of the evaluation, and concludes with the lessons
learned. Section VI ends with a summary and an indication
on future work.

II. RELATED WORK

A series of work aiming at providing an overview on
existing and challenges on prospective SAW systems is found
in the overall area of HLIF: A recent, extensive survey on
current HLIF systems, i.e., SAW systems, is presented in
[6], focusing on describing the different functional models
for HLIF, and systems implemented in various application
domains. However, no comparative evaluation of the discussed
approaches is provided, which therein is suggested as neces-
sary future work.

In [7], a literature survey of sixteen publications on frame-
works and framework issues for HLIF applications has been
conducted, where Llinas focuses on outlining different HLIF
procedures, but neither contrasts the approaches w.r.t. SAW
maintenance aspects.

A review of the state of the art in HLIF has traditionally
also been conducted in the course of the International Con-
ference on Information Fusion, based on panel discussions



or retrospectives identifying the challenges and trends in
this subject (e.g., [8],[9]). [10] also represents the insightful
conclusions from a panel discussion involving leading experts
of the HLIF community, which summarizes the issues and
challenges regarding HLIF. The publications resulting from
these discussions address the state of the art in HLIF from
a methodological perspective, i.e., no explicit comparison
and evaluation of concrete fusion system implementations is
provided. These extensive methodological discussions serve as
a valuable basis for our criteria catalog.

Therefore, despite valuable preparatory work, there is still
a need for a comparative survey as aimed at in this paper,
based on a catalog of criteria, methodologically adhering to
our previous surveys like [11].

III. CRITERIA

In this section, we present our catalog of criteria based on
the core components of SAW systems (cf. Fig. 1), which we
employ for our comparative survey. Since prior to maintaining
SAW, SAW first needs to be established or gained, thus
comprising a prerequisite for the maintenance of SAW, our
criteria catalog is structured into two subsections. The first
focuses on aspects related to gaining SAW, whereas the second
studies which concepts are provided to maintain this SAW, and
thus the usefulness of the SAW system over time.

A. Gaining SAW

The following criteria discuss the abilities of the SAW
system necessary to support the operators in gaining SAW.
Thereby, dedicated criteria investigate the representation of the
observed environment and the core functional capabilities of
the SAW system for supporting the control center operators.
Input Data. Whereas some approaches use a rather homo-
geneous, clearly specified set of input data (e.g., [12], [13]),
other systems employ a variety of heterogeneous data types
(e.g., [14]). The heterogeneity of input data types supported
provides an indication on the potential application domains
of these SAW systems, i.e., whether they are better suited
for homogeneous domains (comprising few different types of
input data) or highly heterogeneous domains (comprising a
variety of different entity types).
Domain Model. Many SAW systems utilize ontological rep-
resentations of the environment of interest, which allows to
encode a priori knowledge of the specific application domain
(e.g., [14], [15], [16]). However, SA techniques exist that
do not utilize an explicit domain model, and thus are of
interest if prior knowledge is not available. Purely data-driven
machine learning methods, for instance, may only operate on
the observed data, without specifically relating it to a dedicated
model of the underlying domain (e.g., [13]).
Situation Assessment. Rule-based expert system implemen-
tations (e.g., [14], [16]) require an a priori specification of
the domain knowledge and situation types of interest, thus
conform to a template-based, top-down approach, as classified
in [13]. Situations are explicitly modeled as situation types of
interest, which need to be specified by the domain experts.

Therefore, their successful application depends on a profound
knowledge of the underlying domain, and may be hampered
by the knowledge acquisition bottle neck [3]. Whereas they
are perfectly suited to monitor recurring events, they fail to
detect novel, unexpected behavior, which, however, is often
of interest, especially in surveillance monitoring applications.
Thus, over the last years SA techniques based on bottom-
up, i.e., data-driven, anomaly detection approaches became
popular in such domains (e.g., [13], [12], [17], [18]). These
methods aim at detecting anomalies from the normal envi-
ronmental picture, which are reported as potential situations
of interest to the operator. Whereas this approach provides
more flexibility, as not everything about potentially interesting
situations needs to be known in advance, it is limited to
detecting “abnormal” situations. Typical behavior of interest
cannot be specified. Furthermore, most of these methods
depend on a sufficiently large training data set. Regarding
the degree of required a priori knowledge, Graphical Models,
such as Bayesian Networks and Hidden Markov Models (e.g.,
[19], [20]) represent an intermediate form. Their structure,
which describes the sought-after situation types, can be either
explicitly defined a priori, or may be autonomously learned
from available data, although techniques for the latter are
currently still in an early stage.
Action Support. As motivated in [4], SAW ultimately pro-
vides the basis for decision support, and forms a key con-
stituent in Boyd’s OODA loop [21]. Advanced SAW systems
could thus go one step further by linking the derived situations
to actions suitable in that situation, which should be suggested
to the human operator.
Application Domain. This criterion states the domain the
system has been applied to, or evaluated on. In case where no
online, real-world evaluation has been performed, it is detailed
whether an analysis of recorded real-world data had been
performed, or only tests on synthetic data had been conducted.

B. Maintaining SAW

Whereas criteria for evaluating the SAW systems’ abilities
of gaining SAW comprised the previous part of the catalog,
the present subsection studies how the systems support main-
taining this SAW, in order to retain their usefulness. Thereby,
from a systemic point of view, we need to consider (i) the
evolution of the observed environment, (ii) the evolution of
the SAW system, and (iii) the evolving needs of the operators
interacting with the system.

i) Environment Evolution
Capturing and Tracking Evolving Situations. As identified
in [3], the evolution of a specific situation is essential to judge
the current situational state, and the effect of time on SA
severely goes beyond the typical definition of SAW in the
HLIF community. The need for SA concepts better capable
of capturing evolving situations has also been recognized in
[4]. Thus, we specifically assess whether and how currently
available SAW systems are capable of capturing and tracking
the evolution of the inferred situations. Capturing evolution
might be supported by explicit evolution models, for instance



Figure 1. A systemic viewpoint of automated SAW systems.

in form of evolution templates (as e.g., suggested in [20], [22]),
preconditions, or evolution patterns. For tracking aspects,
estimating the probable evolution paths (e.g., as in [20]) and
criticality escalation (as has been recognized in [23]) are
relevant. Further relevant aspects could address the following
questions: Can the operator specify the evolution of situation
types, i.e., templates, of relevance? Is the operator supported
therein, for instance the system could suggest preconditions
to a critical situation, which have been observed in the data?
Is the operator enabled of specifying possible situation evo-
lution patterns of interest? Can the operator specify different
criticality levels and alerts along the evolution path?

Projection. However, not only the past evolution of a specific
situation is of relevance: Projection, i.e., the correct anti-
cipation of the current situation’s future development, repre-
sents the most difficult to achieve level in Endsley’s human
mental model of SAW [1]. Estimating the future development
represents the grounding for taking the suitable actions in a
given situation in order to achieve the desired goals, which
is termed impact assessment in the HLIF terminology. This
criterion therefore assesses whether a SAW system provides
such projection support, and how these predictions are formed
and communicated to the user.

Incorporation of Contextual Knowledge. As could be shown
in a user study on operators in a maritime surveillance cen-
ter [3], operators assess the provided information differently
dependent on certain contextual information (e.g., a sudden
increase in the number of boats departing from Germany
towards Sweden would normally correspond to an unusual
situation, but not at the start of the main holiday season). Thus,
such contextual information (e.g., the time of the day or the
time of the year), albeit not part of the situation definition
itself, severely affects the interpretation of a certain situation.
Therefore, we assess whether currently available SAW systems
provide dedicated means to incorporate contextual knowledge.

Incompleteness and Inconsistency. SAW systems likely deal
with only partially observable environments and additionally
are limited by technical parameters. Thus, they need to expect
to encounter incompleteness and inconsistency in the data
[19]. These issues, of course also present in gaining SAW, are
leveraged however through the evolution in the environment,

since additional environmental information may emphasize
but also contradict existing knowledge and introduce new
inconsistencies or allow to resolve existing ones. This is also
interlinked with adjusting the trustworthiness of the situa-
tional information as the situations evolve, making the proper
detection of the situation even more complex. Therefore,
this criterion investigates how the SAW system deals with
incompleteness and inconsistencies over time.

ii) System Evolution
SA Adaptation. The user study in [3] motivated the need for
SAW systems that can be adapted towards the activities of
the operators, like routine tasks as well as special occasions,
due to the changing roles of the operators, and the changing
underlying environments. This necessitates the functionality
to adapt the SA methods accordingly. Operators of maritime
surveillance centers, for instance, are routinely provided with
lists of suspicious vessels which need to be tracked. This
requires that some rules need to be added “on the fly”, which
may also only be valid during a limited time period, whereas
others remain more stable.

However, the system should also be capable of updating
itself without explicit user intervention, i.e., it should detect
if the previously learned models have become outdated over
time (i.e., detect concept drift), or if situation type definitions
may have become inaccurate over time. This criterion therefore
identifies the ability to either fine grained evolution, by e.g.
updating existing or adding new rules, or coarse grained
evolution, by allowing to incorporate different SA algorithms
and strategies. Additionally, it is highlighted whether this
adaptation is conducted automatically, e.g. incorporating new
rules for identified outliers, or allows for manual SA adapta-
tion.
System Tuning. The workload put onto a SAW system may
heavily depend on various factors like the state of the envi-
ronment, available extent of (sensor) information, identified
situations, complexity of the SA algorithm etc., which are
subject to changes over time. Despite these influencing factors,
such systems are required to respond in a timely manner,
calling for an appropriate reaction of the system through, for
instance, allocation of additional resources or the adjustment
of optimization strategies. Therefore, this criterion evaluates



whether the system allows for a runtime tuning of the system
to maintain SAW with respect to, for example, performance
and response time.
Knowledge Base. Analogously to a human operator who gets
more and more experienced during this career, an intelligent
system should become better in its assessment capabilities
over its lifetime. Incorporating a dedicated knowledge base
allows for storing available domain knowledge, as well as
persisting historic data, which could be employed to aid
the interpretation of ongoing situations. An intelligent SAW
system could for instance refine its predictions regarding the
Projection of situations based on similar situations experienced
in the past. Conversely, Action Support could be refined based
on analyzing which actions that have been performed in the
past in similar situations have yielded the desired output.

Therefore, we analyze whether the surveyed approaches
make use of a knowledge base, and how this knowledge base
is used within the SA process, in order to learn from past
experiences.

iii) Usage Evolution
Incorporating Human Intelligence. [8] has emphasized the
need to directly incorporate the role of human intelligence
into SAW systems. A successful SAW system should combine
machine computing power with human cognition and intuition.
Therefore, this criterion studies how operators can transfer
their knowledge to these SAW systems (e.g., by guiding the
system learning, as in [24]).
Personalization. As highlighted in [3], different operators
exhibit different roles and preferences, for instance some
individuals prefer many, others fewer or different types of
alerts of different levels of criticality (e.g., as realized in [24]).
Different working procedures also demand for a configura-
tion thereof. Furthermore, tracking, persisting and analyzing
the preferences and working routines of different operators
corresponds to user refinement, and would allow to match
the users preferred working routines. Therefore, this crite-
rion investigates the provided personalization through explicit
configuration support as well as self-learned adaptivity of the
system.
Explanation and Exploration. Trust and understanding is a
critical aspect for the acceptance of a SAW system through
operators [3]. To increase that, a SAW system needs to be ca-
pable of providing an explanation of the conducted processing
of the situational information in terms of data and workflow
provenance [25] over time and allow for an exploration of
that by the operator. Therefore, this criterion discusses the
explanation and exploration capabilities of the system.

IV. SAW SYSTEMS

In the following section, we evaluate and compare a se-
lection of currently available SAW solutions on basis of
our criteria catalog. Our selection of approaches is targeted
towards providing a broad overview of distinct SA techniques,
whereby we aimed at choosing recent as well as influential
approaches. We shortly sketch each approach, and highlight

distinctive and interesting features. The systematic evaluation
w.r.t. our criteria catalog is summarized in Fig. 2.

The Situation Awareness Assistant (SAWA) described by
Matheus et al. [15], [26] represents a flexible tool suite
for creating SAW applications as rule-based expert systems
(Situation Assessment). These are based on an explicit Domain
Model comprising of formal ontologies, which the user must
specify by extending the encompassed SAW Core Ontology
using the provided Knowledge Management suite. In princi-
ple, thus a variety of Input Data is supported, which may
be of heterogeneous nature. SAWA-based systems can only
detect a priori specified situations, and SAWA does not sup-
port uncertainty reasoning (Incompleteness and Inconsistency),
however provides Projection support in the form of what-if
queries. Therefore, SAWA’s successful application massively
depends on the user’s profound domain knowledge, requiring
the user to exactly know all aspects of interest. No facilities
are provided to validate that domain knowledge (e.g., by
incorporating and checking with available data). SAWA has
been evaluated on a simulated, manually constructed scenario
from the application domain of supply logistics (Application
Domain).

Edlund et al. [16] describe a SAW system for sea-
surveillance (Application Domain) similar to SAWA, which
also bases upon an ontology (Domain Model) and a rule-
based reasoning engine (Situation Assessment). It is especially
emphasized that this system is suited to reason about situations
that develop over time (Capturing and Tracking Evolution),
which are modeled by connecting the sets of interrelated
objects with time connectors (e.g., corresponding to later,
contemporary, synchronic, prestart). However, these situation
evolutions thus can only be specified in a sequential manner
using a dedicated rule editor. Alternative evolution cannot be
specified within a single situation type (e.g., a given situation
might either evolve one way or the other). Furthermore,
situations can be only detected after they have occurred.
Therefore, Edlund et al. state the need to extend their system to
allow for situation warning, as operators should be warned of
possible situations while they are occurring, not just after they
have happened. The system has been evaluated in a user study
involving maritime surveillance operators [3], who especially
appreciated the support for detecting and tracking evolving
situations. As this SAW system is realized as an agent system,
Edlund et al. emphasize it would allow for System Tuning.
Regarding load balancing purposes, agents could be moved to
faster systems if their loads were continually high, or currently
unnecessary reasoning modules could be discarded easily.
However, when tested with real-world maritime surveillance
data quantities, the employed agent framework was not capable
of handling the amount of data.

BeAware! [14] represents another framework for ontology-
driven, rule-based SAW systems (Situation Assessment). How-
ever, it specifically targets SAW applications in control cen-
ter environments, therefore spatio-temporal primitive relations
(Domain Model) are introduced, which facilitate the configu-
ration and reusability of this framework for these real-world



monitoring applications. Baumgartner et al. have demonstrated
the applicability of their framework in a real-world road traffic
monitoring setting (Application Domain). BeAware! provides
concepts for Projection, as the likely evolution of a situation
can be predicted on the basis of these qualitative spatio-
temporal relations. Baumgartner et al. conclude with ideas
to extend their SAW ontology with an action awareness core
ontology, to provide support for modeling Actions suitable in
a given situation, which can be suggested to the operator.

Salerno suggests the integration of knowledge discovery
tools, such as data mining components, into SAW frameworks
[27], which aid analysts in the discovery or learning of domain
models and patterns relevant in this domain (Incorporating
Human Intelligence). Previously discovered or learned models
can drive situation assessment, therefore Salerno proposes to
store learned models in a model library for later use (SA
Adaption). He also underlines the value of historic data, such
as the knowledge of similar situations that occurred in the
past, which should be persisted in the evidence database
(Knowledge Base).

Approaches that employ anomaly detection techniques (Sit-
uation Assessment) for maritime vessel monitoring (Applica-
tion Domain) include [13], [17], [28], [29], [30], whereby
we will discuss the first representatively, where Laxhammar
performs unsupervised clustering (Situation Assessment) of
normal vessel traffic patterns [13]. The learned cluster models
can be used for anomaly detection in sea traffic (Application
Domain), and have been trained and evaluated on real recorded
sea traffic. Laxhammar notes the developed technique would
be applicable to other domains involving surveillance of
moving objects. The momentary location, speed and course
of the tracked vessels are used for creating the patterns,
corresponding to a homogeneous set of Input Data expressed
by defined feature vectors. However, Laxhammar notes that
complex anomalies involving multiple vessels and/or behavior
that develops over time (Capturing and Tracking Evolving
Situations) would necessitate a more sophisticated pattern
model, which remains future work.

Johansson and Falkman used Bayesian networks (Situation
Assessment) to detect anomalies in vessel monitoring (Applica-
tion Domain) [31], which however has only been evaluated on
a synthetic test data set. They advocate for Bayesian networks
due to their explanatory power (Explanation) and their ability
of handling incomplete data (Incompleteness and Inconsis-
tency). Furthermore, they especially highlight the possibility
of easily including domain experts’ knowledge during the
creation and for the validation of the models generated by
data (Incorporating Human Intelligence), which is in their
approach however restricted to the configuration phase of the
system, thus does not aid the maintenance of the SAW system
at runtime.

In [24], Rhodes et al. extend their previous work and present
a highly sophisticated approach by combining a rule-based
pattern recognizer with an anomaly detection model based
on the automatically learned behavior normalcy models sug-
gested in [12] (Situation Assessment). Thus, both anticipated,

routine behavior, as well as novel, unanticipated behavior
can be detected. Their system, which has been implemented
as a prototype for the US Coast Guard port surveillance
system (Application Domain), provides elaborate strategies for
operator-guided learning: Operators can refine the performance
of the learning system by confirming alerts, or indicating
examples of false alarms. Furthermore, they can optionally
guide learning by providing the system with examples and
counter-examples of activities of interest (Incorporating Hu-
man Intelligence). Regarding the incorporation of Contextual
Information, normalcy models can be learned for different
contexts (e.g., based on season, day-of-week, or for different
vessel classes).

Gariel et al. use clustering for anomaly detection (Situa-
tion Assessment) for airspace monitoring [18], in order to
detect non-standard aircraft landings. As an interesting idea
regarding the Explanation to human operators, they suggest
a complexity measure computed from all currently observed
outliers, which is based on Shannon’s entropy measure. This
measure represents an indication of the “disorder” of the
current environmental state in comparison to its typical state,
which increases with the proportion of outliers detected, and
thus serves as valuable information for managerial purposes
(i.e., the higher the disorder of the monitored environment, the
more operators are needed for controlling, and the higher the
workload on the operators).

Meyer-Delius et al. model spatio-temporal situations as a
combination of Hidden Markov Models and Bayesian Net-
works (Situation Assessment) [20]. These situation models
describe how the system evolves over time (Capturing and
Tracking Evolving Situations), and allow to track the current
state of an evolving situation. Furthermore, these models allow
for predicting the situation’s future state (Projection). They
evaluated their approach on simulated and real data on vehicle
passing maneuvers, as would be obtained from a driving
assistance system (Application Domain).

Krishnaswamy et al. propose an Advanced Driving Assis-
tance System (ADAS), which monitors and classifies driver be-
havior in real-time and suggests appropriate countermeasures
(Action Support), such as issuing alerts to fatigued drivers [32].
On-board vehicle data streams are mined, related to contextual
information (Incorporation of Contextual Knowledge) and
compared to a Knowledge Base comprising historical data on
crashes. This Knowledge Base is constantly populated with
new data gathered from the proposed vehicle on-board system.
The employed predictive models (Situation Assessment) are
thus incrementally updated and refined based on this new data
(SA Adaption).

Mirmoeini and Krishnamurthy suggest an algorithm for
adaptive Situation Assessment employing reconfigurable
Bayesian networks [33], [34] , which should account for
dynamic battlespace situation changes (Application Domain).
Bayesian networks have been chosen for the ability to handle
the dependencies among uncertain and incomplete information
(Incompleteness and Inconsistency). By learning the parame-
ters of small batches of data, the Bayesian network’s param-



eters are adapted to slow changes in the battlespace situation
(SA Adaption). Furthermore, their proposed architecture feeds
the results from SA to a decision making system, where the
derived hypotheses are mapped to a set of actions. Since the
actions’ potential effects are also modeled, their effects on the
battlespace can be examined (Projection) The taken actions’
effects in turn are reflected in the next SA step, thereby this
approach implements a stochastic feedback algorithm.

V. LESSONS LEARNED

Fig. 2 represents a condensed summary of our evaluation,
serving as a quick overview of the capabilities of current SAW
systems in comparison. Based on this evaluation, we draw the
following conclusions regarding the state of the art in research
on systems supporting SAW, and directions for future research:
Indication that certain application domains favor certain
SA methods. The encountered application domains of the
surveyed approaches range from road and air traffic mon-
itoring, maritime traffic surveillance, military applications,
supply logistics to driving assistance systems. It is interesting
to note that the distinct application areas expose trends to
certain SA techniques, implying that the domains exhibit
crucial characteristics that favor one technique over another.
In the course of this survey ontology-based systems have
been applied to road traffic monitoring, supply logistics and
a maritime surveillance application. The approaches in the
maritime surveillance domain rather expose a strong trend
towards anomaly detection techniques whereas in the military
domain, Graphical Models have been very popular. However,
this indication would need to be verified by a dedicated survey,
and does not necessarily exclude the approaches from being
applied in different domains.
Domain characteristics. The choice of a SA technique suit-
able to the problem domain at hand vastly depends on the
heterogeneity of the input data and the available a priori
knowledge about the domain and the situation types of in-
terest: If detailed a priori knowledge about the domain is
available, the input data comprises heterogeneous entities, and
the situation types of interest can be determined in advance
and are not subject to frequent changes, template-based SAW
systems basing on ontologies and rules occur to be preferrable
[3]. However, if the observed domain frequently changes,
comprises rather homogeneous objects, and the situation types
cannot be specified in advance, but correspond to abnormal
events and behavior, machine-learning based anomaly de-
tection techniques represent the favorable choice. Examples
of methodologies for anomaly detection that include human
expert knowledge are rare. Furthermore, models generated by
these techniques are generally more difficult to understand than
human-readable rules.
Hybrid systems. Only recently, hybrid approaches are emerg-
ing, which comprise a combination of expert-defined rules
with anomaly detection based data mining techniques (e.g.,
[24], [35]), thus aiming at combining the advantages of both
approaches. However, this raises the interesting issue of how

these distinct approaches can be interlinked. A highly promis-
ing way towards this direction has been suggested in [35],
where Riveiro et al. studied interactive ways of visualizing
both expert-coded rules as well as the normal behavioral
models built from data of a hybrid SAW system: Joint visu-
alizations of normal behavioral models and the corresponding
rules allow to depict the whole system knowledge space, thus
revealing how the expert-defined rules fit with the normalcy
models built from the data, which highlights areas the system
has not knowledge about. However, this visualization approach
mainly targets at Explanation and Exploration, but thus not
allow to interlink these concepts further based on the derived
conclusions. Future research could investigate whether the
two approaches, which currently are used in an independent
fashion, could be integrated more tightly. An operator might
for instance decide to create a rule for a certain anomaly, in
which case the system could provide support by automatically
suggesting potential rules (e.g., by deriving the spatio-temporal
relations of the current anomalous case).
Action support scarcely available. Supporting the operator
by suggesting suitable actions in a given situation is scarcely
supported by current SAW systems. Of those rare systems like
[34], a dynamic evolution of the suggested actions on basis of,
either user feedback or through dynamically learning applied
actions from a knowledge base, is not provided. This also
entails that the implications of taken actions on the long-term
evolution of the situations at hand cannot be appropriately
analyzed within the SAW system.
Learning from the past is mostly not supported. Previously
observed data is rarely reused to refine the predictions of
evolving situations, or suggest actions that should be un-
dertaken in a given situation, which could be considered
squandered potential in the light of ever-growing amounts of
sensed data, and decreasing prizes for data storage devices.
Explanations of not a priori defined situations problematic.
A priori specified, rule-based situation types are considered to
be more or less “self-explaining” to a human reader, likewise
for the visually descriptive Graphical Models. Contrastingly,
the results of machine-learning based techniques, allowing for
the detection of situations that are not a priori known, are
often more difficult to interpret, especially if they incorporate
feature vectors of multiple dimensions, which cannot be jointly
visualized. Consequently, this hampers the trust of operators in
the systems. However, interesting concepts have been proposed
aiming to address these issues (e.g., [17]).
Maintaining SAW evolution not yet matured. As can be
inferred from the evaluation, concepts for maintaining SAW
have been emerging just recently. Maintaining SAW is sup-
ported only by some recent approaches like [24], whereas
older approaches disregard SAW maintenance completely. If
maintenance is supported, it is however not supported to a full
extent, leaving space for further improvements.
Evolution models rare. Whereas the capability of tracking
evolving situations, as well as predicting their likely evolution,
is stated as a relevant issue in numerous publications, situation
models explicitly accounting for this are rarely found.
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Figure 2. An evaluation of the SAW systems depicted in section IV w.r.t. our criteria catalog.



VI. CONCLUSION

In the present survey, we analyzed a range of recent SAW
systems w.r.t. their abilities for supporting human operators
in gaining and maintaining SAW, which requires that these
systems are capable of tracking the evolution of the mon-
itored environment and adapt themselves to environmental
changes and user needs. Based on a set of criteria allowing to
study these issues, we performed a comparative survey, which
revealed that especially the aspects needed for maintaining
SAW are not fully supported by current SAW systems, thus
indicating needs for further research in this direction.
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