
Towards a Semantic Infrastructure Supporting  

Model-based Tool Integration
G. Kramler, G. Kappel 
Business Informatics Group  

Vienna University of Technology 
Favoritenstr. 9-17  

A-1040 Wien, Austria 
++43-1-58801-18804  

{kramler,gerti}@big.tuwien.ac.at 

T. Reiter, E. Kapsammer,  
W. Retschitzegger 

Information Systems Group 
Johannes Kepler University 

Altenbergerstr. 69 
A-4040 Linz 

++43-732-2468-8880 

{reiter, ek,werner}@ifs.uni-linz.ac.at 

W. Schwinger 
Dept. of Telecooperation 

Johannes Kepler University 
Altenbergerstr. 69 

A-4040 Linz 
++43-70-2468-9260 

wieland@schwinger.at 

 

 

ABSTRACT 

With the rise of model-driven software development, more and 
more development tasks are being performed on models. 
Seamless exchange of models among different modeling tools 
increasingly becomes a crucial prerequisite for effective software 
development processes. Due to lack of interoperability, however, 
it is often difficult to use tools in combination, thus the potential 
of model-driven software development cannot be fully utilized. 
To tackle this problem, we propose ModelCVS, a system aiming 
at model-based tool integration. ModelCVS enables transparent 
transformation of models between different tools’ languages and 
exchange formats, as well as versioning exploiting the rich syntax 
and semantics of models, thus going beyond existing low-level 
model transformation approaches. For this, ModelCVS utilizes 
semantic technologies in terms of ontologies and supports 
different integration patterns at the metamodel level. To foster 
reuse, a knowledge base captures essential information relevant 
for tool integration.   

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design Tools and techniques – 
Computer-aided software engineering (CASE).  

D.2.12 [Software Engineering]: Interoperability – data mapping.  

General Terms 

Design, Experimentation, Languages. 

1. INTRODUCTION 
A rich variety of tools is available supporting different tasks, such 
as model creation, model simulation, model checking, and code 
generation. Consequently the exchange of models among different 
modeling tools becomes an important prerequisite for effective 
software development processes. Due to a lack of interoperability, 
however, it is often difficult to use tools in combination, thus the 
potential of model-driven development cannot be fully exploited. 
The problems to be dealt with in model-based tool integration are 
manifold, including differences in model data formats, e.g., 

relational databases vs. variants of XMI, differences in modeling 
scope, e.g., general-purpose UML vs. specific workflow 
languages, and differences in syntax and semantics of languages. 
Furthermore, practical tool integration needs to cope with large, 
complex, and evolving modeling languages, e.g. UML. 
Considering these problems and based on experiences gained in 
various integration scenarios, [10], [15], [16], we are currently 
realizing ModelCVS1, a system which enables tool integration 
through transparent transformation of models between different 
tools’ modeling languages expressed as MOF-based metamodels, 
as well as versioning capabilities exploiting the rich syntax and 
semantics of models. It enables concurrent development by 
storing and versioning software artifacts that clients can access by 
a check-in/check-out mechanism, similar to a traditional CVS 
server. This paper outlines the idea and concepts underlying 
ModelCVS – in particular a two-level approach separating 
syntactic and semantic issues –, the techniques we intend to use, 
and the research challenges we will be facing. 

2. LAYERED APPROACH TO TOOL 

INTEGRATION 
To address the problems identified above for providing tool 
interoperability, the approach taken to the realization of 
ModelCVS is separated into two conceptual layers that enable to 
integrate models produced by adjacent modeling tools. The first 
layer is formed by architectural model integration patterns that 
ensure openness, scalability, and evolvability of a tool integration 
solution. Further elaborated on in subsection 2.1, these will serve 
as a basis to define specific bridging tasks and to develop 
appropriate bridging operators that support the identified 
integration patterns. On top of the first layer, which employs 
metamodeling technologies, the second layer deals with the use of 
semantic technologies in the form of ontologies for the integration 
of tool metamodels, as well as for semantic versioning capabilities 
for models. The topic of semantic versioning, however, will not 
be further expanded in this paper, as we exclusively focus on 
ModelCVS’ integration capabilities and kindly refer the reader to 
[11]. Subsection 2.2 addresses the integration problem at the 
semantic level using ontologies in more detail and shows how 
automation support and reuse capabilities can be achieved. Note 
that the problem of differing data formats is not covered by this 
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approach. We assume a common data format for models, i.e., 
XMI based on MOF metamodels, and leave the task of interfacing 
particular modeling tools with so-called tool adaptors.  

2.1   Model-based Tool Integration Patterns 
The basis for our solution to model-based tool integration is a set 
of integration patterns that define requirements and working 
context for the bridging language. This language contains bridging 

operators that specifically support the identified integration 
patterns at a suitable abstraction level, and hence can be more 
efficiently used than, e.g., generic model transformation 
languages [15]. By finally deriving model transformation code to 
enforce specific bridging semantics on models, the bridging 
language is made executable. For reasons of brevity we resort to 
only elaborating on two proposed integration patterns, namely 
translation and modularization, dealing with openness and 
scalability issues. Other patterns (cf. [11]) address various special 
situations relevant for model-based tool integration. This includes 
the alignment of models, that allows to keep models of 
conceptually disparate metamodels synchronized, as well as 
metamodel versioning aiming at the evolution of metamodels. 

Metamodel translation. The basic case of tool integration occurs 
when two different tools’ modeling languages conceptually 
overlap to a large extent. This means, that both modeling 
languages cover the same or very similar domains, in a way that 
semantically equivalent concepts can be identified in either 
metamodel so that models can be translated accordingly. As an 
example, we refer to two modelers jointly modeling a workflow: 
One of the modelers employs a dedicated BPEL modeling tool, 
whereas the other makes use of UML Activity Diagrams (UML-
AD). Both modelers are able to transparently check-out versions 
of the latest model, edit it, and check it in again without having to 
deal with modeling languages other than their own, as the 
language heterogeneity between modeling languages is implicitly 
taken care of through translation by ModelCVS.  

Variations of this pattern address directionality and completeness 
of translation. A translation may be bidirectional, allowing two-
way transformations between metamodels. In case a tool, for 
instance a code generator, is purely consuming and not producing 
models, unidirectional translations suffice. In case modeling 
languages do not entirely overlap, meaning that some concepts 
expressible in one modeling language cannot be expressed in 
another, a translation may be lossy. A solution to solve this 
problem is to explicitly store information that would get lost in the 
course of a transformation and to reincorporate it when 
performing the roundtrip.  

Metamodel modularization. The modularization pattern 
addresses the scalability issue of two related integration scenarios. 
On the one hand, to fulfill the scalability requirement, the 
effectiveness of a tool integration process should not be affected 
by the size of the metamodels involved. Hence, a model-based tool 
integration approach must allow to deal with large, monolithic 
tool metamodels in a manageable way. As an example, the 
integration of two large metamodels, like those of UML and 
Computer Associates’ CASE tool AllFusion Gen, has to be 
supported in a way that keeps the integration task comprehensible. 
On the other hand, scalability is required when it comes to the 
integration of tools with a varying scope, regarding the domain 
specificity of the underlying modeling languages. As an example,  

it should be possible to integrate a UML tool with a BPEL tool. 
Thereby, the domain specific BPEL tool will conceptually overlap 
with the domain covered by the UML tool to a certain extent, 
only. Nevertheless, the integration of the BPEL metamodel with 
the overlapping part of the UML metamodel should not become 
unwieldy. To keep the integration of large metamodels with 
varying scopes manageable, modularization enables the 
decomposition of these metamodels according to certain concerns, 
resulting in so-called metamodel fragments, each expressing a 
certain aspect of the entire metamodel. Analogous to the 
decomposition of a metamodel, models conforming to such a 
metamodel are modularized accordingly. Hence, metamodel 
fragments are defined in terms of decomposition criteria as well as 
operators for composing coherent metamodels. 

For example, the metamodel of AllFusion Gen can be 
modularized into several smaller metamodel fragments 
representing more specific domains, such as User Interface or 
Workflow. These metamodel fragments may overlap each other, 
resulting in interdependencies that shall be taken care of in a 
transparent way, as described in the alignment example in [11]. 
The metamodel fragments facilitate the integration of domain 
specific GUI and BPEL modeling tools, whose metamodels are 
directly mapped to metamodel fragments of the Gen tool. Thus 
the integration of large tools is made possible in a scalable way, as 
the metamodel fragments of either tool covering semantically 
equal domains are mapped onto each other instead of mapping the 
original huge metamodels.  

2.2   ModelCVS Semantic Infrastructure 
In the following, the core functionalities of ModelCVS are laid 
out, which are founded on the use of ontologies to express the 
semantics of modeling languages. We believe that in doing so, 
semantic technologies can yield significant benefits for effectively 
driving a model-based tool integration solution.  

Tool Integration Knowledge Base. ModelCVS’ semantic 
infrastructure makes use of ontologies for means of the integration 
of metamodels by relying on modeling ontologies, i.e., 
conceptualizations of modeling languages. We intend to build up 
a tool integration knowledge base, made up of ontologies 
capturing knowledge about (the concepts of) modeling languages 
of different domains, e.g., Workflow, and thus foster immediate 
reuse capabilities. Furthermore, the ontologies within the 
proposed tool integration knowledge base will be populated with 
specific instance data, stemming from reference examples of case 
studies. These reference examples contained in the knowledge 
base enable the semi-automatic integration of new tool 
metamodels that are as well populated with instance data from a 
suitable reference model. Thus, the process of specifying 
semantics for tool metamodels can be enhanced considerably. 

Ontology-based Metamodel Integration. The knowledge 
captured in the tool integration knowledge base can be utilized in 
creating bridging specifications in a semi-automatic way by 
following a sequence of steps. For the sake of simplicity, in the 
following our running example focuses on the metamodels of 
BPEL and UML Activity Diagrams to be integrated, only. Details 
on Fig. 1, which generally depicts our setup used for ontology-
based metamodel integration, will be given throughout the 
following subsections. 



 

Figure. 1 Ontology-based Metamodel Integration 

(1) Metamodel lifting. The creation of an ontology from some 
kind of metadata like an XML [4] or a DB schema [19] is 
generally referred to as lifting. Metamodel lifting in particular 
encompasses a mapping of elements in the metamodel to concepts 
in the ontology, thereby performing a step of abstraction and 
semantical enrichment such that the ontology explicitly expresses 
the semantics of the modeling concepts whose syntax is defined 
by the metamodel. Automatic as well as semi-automatic 
approaches to lifting have already been proposed in literature. 
Using ModelCVS’ tool integration knowledge base, lifting will be 
guided by existing (generic) ontologies. During lifting, existing 
ontologies may be extended to capture the ideosyncracies of 
specific tools’ languages, resulting in so-called tool ontologies 

that reuse semantics defined in generic ontologies. For instance, 
the BPEL and the UML-AD ontology reuse concepts from a 
generic ‘Workflow’ ontology, which in turn plays a role in 
integrating these. For a more elaborated description of 
ModelCVS’ lifting functionalities we refer the reader to a 
technical report [11]. A generic solution for lifting arbitrary MOF 
models (tool metamodels) to tool ontologies can partly automate 
the lifting process. However, the entailment of specific semantics 
for newly lifted metamodels naturally requires user intervention.  

(2) Ontology-level integration. The use of ontologies is based on 
the assumption that integration on the ontology layer is more easy 
to understand and can be automated to a greater extent. Lifting 
different metamodels’ elements to concepts of some common 
ontology provides the first step of integration by establishing a 
common terminology. Thereby, it is necessary that the chosen 
generic ontology covers the domains of both tool ontologies 
appropriately. Furthermore, based on defined relations between 
concepts in the ontology, relations between the concepts of 
specific tools can be deduced, e.g., equivalence, subsumption, or 
substitutability. Continuing our example, we assume a generic 
Workflow ontology as the common upper ontology. As an 
example, we can imagine to map all of BPEL’s control flow 
constructs onto the semantically appropriate classes in the 
Workflow ontology. Analogously we proceed with mapping the 
UML-AD metamodel onto the Workflow ontology. From the two 
mappings between tool and Workflow ontologies we employ 
structural reasoning to deduce relationships between ontology 
classes representing the control flow constructs of BPEL and 
ontology classes representing the UML-AD metamodel elements. 

(3) Derivation of bridging. Once a mapping between tool 
ontologies exists, the next logical step is to derive bridging 
operators to express the desired integration behavior on the 
metamodel level. In a derived bridge between metamodels, 

depending on the integration pattern in use, semantic 
correspondence can be expressed by certain metamodel bridging 
operators accordingly. In case of a translation, a bridging operator 
might denote the creation of a new target model element for every 
encountered source model element, whereas in the modularization 
case, a bridging operator could denote that two model elements 
should be merged into one at check-out. Getting back to our 
example, the translation pattern will be the most appropriate, as 
both the Activity Diagram and the BPEL metamodels cover a 
largely similar domain. Hence, a relationship on the ontology 
level between ‘equivalent’ classes would be derived into a 
bridging operator relating the metamodel elements that initially 
got lifted to the respective ontology classes. 

(4) Derivation of transformation. After bridging operators 
between metamodels are established, a code generation step 
results in QVT code representing the bridging on a lower, finer-
grained level, which eventually leads to executable 
transformations. In the context of a translation from BPEL to 
UML at execution time, this basically results in code querying the 
source model and populating the target model appropriately. 

3. RELATED WORK 
Related work mainly encompasses work on tool integration, 
model transformation languages, and the integration of 
heterogeneous data sources in terms of models and ontologies.  

Apart from categorizing tool integration approaches from a 
conceptual point of view [1][20], research efforts concerning the 
mechanical part of tool integration such as CDIF [5] and OMG’s 
recent RFP OTIF2

 are of importance. Since past efforts like CDIF, 
for instance, were often grounded in large initiatives which have 
not been widely accepted, we focus on a layered architecture 
backed by model transformation techniques to most possibly 
avoid the pitfalls of strongly technology-dependent solutions that 
suffer from high maintenance overheads and most importantly, 
poor scalability. Hence, existing approaches in terms of model 
transformation languages play a key role in our proposed system. 
With ATL [8] Bezivin et al. have developed a hybrid 
(declarative/imperative) transformation language in response to 
QVT. Built upon EMF, ATL is especially applicable in context of 
Eclipse development, as is MTF3 by IBM, which with a purely 
declarative transformation definition style might be harder to 
practically apply than ATL. Although MDDi4 is still in its drafting 
phase, it provides interesting ideas for model integration in terms 
of a bus architecture. Although, QVT-like model transformation 
languages are a cornerstone also of our vision, existing proposals 
are too generic and lack appropriate abstraction mechanisms for 
different kinds of model integration patterns, which are highly 
needed in practice and well-known from other research areas such 
as federated and multi database systems [17] and web service 

composition [1]. However, there are only few related approaches 
providing abstraction mechanisms in terms of, e.g., high-level 
bridging operators. In the area of model management, for instance, 
Rondo [13] provides high-level operations facilitating the 
integration of relational and XML schemata, whereas Clarke [2] 
and Straw [18] target UML models. Finally, considering 
ModelCVS’ semantic integration capabilities, we can benefit from 
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a large body of literature which can provide useful input for our 
approach. For a comprehensive overview of this active research 
area compare, e.g., [9], [14] and  [19]. 

4. CONCLUDING REMARKS 
Currently, an early prototype of the proposed system with a basic 
amount of functionality exists, that already allows to carry out a 
comprehensive range of intended use cases, which will be 
validated in an industrial case study involving the Austrian 
Ministry of Defense and a partner of Computer Associates. The 
prototype is based on ATL for transforming models, AMW [3] for 
bridging metamodels and Jena (jena.sourceforge.net) for ontology 
management. Besides further developing the existing 
implementation, our focus lies on extending bridging languages 
and concepts for the implementation of ontology-based 
integration. We are aware that a successful realization of a system 
like ModelCVS as laid out in this paper faces a number of issues 
mainly concerning technological feasibility and practical 
applicability of the final result.  

The use of an ontology layer introduces overhead, which is justified 
only if the overall integration process can be improved in terms of 
speed, quality, and reduced complexity. We assume that moving to 
the more abstract semantic level becomes beneficial especially if a 
metamodel is large and complex, as is the case, e.g., in our case 
study with more than 800 classes of AllFusion Gen. The ontology 
will express semantics of concepts and consequently integration 
mappings much more concisely, thus helping to keep mappings 
comprehensible and manageable. Another benefit is a 
comprehensive tool integration knowledge base containing readily 
reusable semantic definitions that may also be published on the 
Internet. Nevertheless, the design of the semantic infrastructure 
will be such that lifting is optional or that it is possible to lift just 
core concepts of a metamodel. 

Key challenges in achieving our goal will be to find generic 
ontologies and support for the lifting process. These ontologies have 
to be designed such that the concepts defined by the ontology are 
easy to grasp while covering the essential concepts of a given 
domain. A particular challenge will be the handling of concepts that 
are similar but not equivalent. Although such similarities inhibit full 
automation of the integration process, treating them at a conceptual 
level can improve the quality of integration by identifying 
similarities and defining possible ways of integration. This, 
however, requires precise modeling ontologies, which again has to 
be considered in the overhead trade-off. The lifting process should 
be supported by means of heuristic mapping strategies based on 
finding structural and linguistic similarities. The utilization of 
lexical reference systems (e.g., [6]) allows to identify and relate 
names in question as being synonyms, homonyms, antonyms and 
the like. Furthermore, the results of heuristic mapping techniques 
can be greatly enhanced when incorporating instance data during 
matching [7], which could be accomplished by populating tool 
ontologies with data of a common reference example. Although 
both of the above mapping methods can alleviate the burden when 
creating a mapping from metamodel elements to ontology 
concepts, a user is still needed to check the appropriateness of a 
proposed mapping and to eventually give it a finishing touch. 
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