
Towards a Semantic Infrastructure Supporting

Model-based Tool Integration
G. Kramler, G. Kappel
Business Informatics Group

Vienna University of Technology
Favoritenstr. 9-17

A-1040 Wien, Austria
++43-1-58801-18804

{kramler,gerti}@big.tuwien.ac.at

T. Reiter, E. Kapsammer,
W. Retschitzegger

Information Systems Group
Johannes Kepler University

Altenbergerstr. 69
A-4040 Linz

++43-732-2468-8880

{reiter, ek,werner}@ifs.uni-linz.ac.at

W. Schwinger
Dept. of Telecooperation

Johannes Kepler University
Altenbergerstr. 69

A-4040 Linz
++43-70-2468-9260

wieland@schwinger.at

ABSTRACT

With the rise of model-driven software development, more and
more development tasks are being performed on models.
Seamless exchange of models among different modeling tools
increasingly becomes a crucial prerequisite for effective software
development processes. Due to lack of interoperability, however,
it is often difficult to use tools in combination, thus the potential
of model-driven software development cannot be fully utilized.
To tackle this problem, we propose ModelCVS, a system aiming
at model-based tool integration. ModelCVS enables transparent
transformation of models between different tools’ languages and
exchange formats, as well as versioning exploiting the rich syntax
and semantics of models, thus going beyond existing low-level
model transformation approaches. For this, ModelCVS utilizes
semantic technologies in terms of ontologies and supports
different integration patterns at the metamodel level. To foster
reuse, a knowledge base captures essential information relevant
for tool integration.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and techniques –
Computer-aided software engineering (CASE).

D.2.12 [Software Engineering]: Interoperability – data mapping.

General Terms

Design, Experimentation, Languages.

1. INTRODUCTION
A rich variety of tools is available supporting different tasks, such
as model creation, model simulation, model checking, and code
generation. Consequently the exchange of models among different
modeling tools becomes an important prerequisite for effective
software development processes. Due to a lack of interoperability,
however, it is often difficult to use tools in combination, thus the
potential of model-driven development cannot be fully exploited.
The problems to be dealt with in model-based tool integration are
manifold, including differences in model data formats, e.g.,

relational databases vs. variants of XMI, differences in modeling
scope, e.g., general-purpose UML vs. specific workflow
languages, and differences in syntax and semantics of languages.
Furthermore, practical tool integration needs to cope with large,
complex, and evolving modeling languages, e.g. UML.
Considering these problems and based on experiences gained in
various integration scenarios, [10], [15], [16], we are currently
realizing ModelCVS1, a system which enables tool integration
through transparent transformation of models between different
tools’ modeling languages expressed as MOF-based metamodels,
as well as versioning capabilities exploiting the rich syntax and
semantics of models. It enables concurrent development by
storing and versioning software artifacts that clients can access by
a check-in/check-out mechanism, similar to a traditional CVS
server. This paper outlines the idea and concepts underlying
ModelCVS – in particular a two-level approach separating
syntactic and semantic issues –, the techniques we intend to use,
and the research challenges we will be facing.

2. LAYERED APPROACH TO TOOL

INTEGRATION
To address the problems identified above for providing tool
interoperability, the approach taken to the realization of
ModelCVS is separated into two conceptual layers that enable to
integrate models produced by adjacent modeling tools. The first
layer is formed by architectural model integration patterns that
ensure openness, scalability, and evolvability of a tool integration
solution. Further elaborated on in subsection 2.1, these will serve
as a basis to define specific bridging tasks and to develop
appropriate bridging operators that support the identified
integration patterns. On top of the first layer, which employs
metamodeling technologies, the second layer deals with the use of
semantic technologies in the form of ontologies for the integration
of tool metamodels, as well as for semantic versioning capabilities
for models. The topic of semantic versioning, however, will not
be further expanded in this paper, as we exclusively focus on
ModelCVS’ integration capabilities and kindly refer the reader to
[11]. Subsection 2.2 addresses the integration problem at the
semantic level using ontologies in more detail and shows how
automation support and reuse capabilities can be achieved. Note
that the problem of differing data formats is not covered by this

1 This work has been partly funded by the Austrian Federal Ministry of

Transport, Innovation and Technology (BMVIT) and FFG under grant
FIT-IT-810806.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GaMMa’06, May 22, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

approach. We assume a common data format for models, i.e.,
XMI based on MOF metamodels, and leave the task of interfacing
particular modeling tools with so-called tool adaptors.

2.1 Model-based Tool Integration Patterns
The basis for our solution to model-based tool integration is a set
of integration patterns that define requirements and working
context for the bridging language. This language contains bridging

operators that specifically support the identified integration
patterns at a suitable abstraction level, and hence can be more
efficiently used than, e.g., generic model transformation
languages [15]. By finally deriving model transformation code to
enforce specific bridging semantics on models, the bridging
language is made executable. For reasons of brevity we resort to
only elaborating on two proposed integration patterns, namely
translation and modularization, dealing with openness and
scalability issues. Other patterns (cf. [11]) address various special
situations relevant for model-based tool integration. This includes
the alignment of models, that allows to keep models of
conceptually disparate metamodels synchronized, as well as
metamodel versioning aiming at the evolution of metamodels.

Metamodel translation. The basic case of tool integration occurs
when two different tools’ modeling languages conceptually
overlap to a large extent. This means, that both modeling
languages cover the same or very similar domains, in a way that
semantically equivalent concepts can be identified in either
metamodel so that models can be translated accordingly. As an
example, we refer to two modelers jointly modeling a workflow:
One of the modelers employs a dedicated BPEL modeling tool,
whereas the other makes use of UML Activity Diagrams (UML-
AD). Both modelers are able to transparently check-out versions
of the latest model, edit it, and check it in again without having to
deal with modeling languages other than their own, as the
language heterogeneity between modeling languages is implicitly
taken care of through translation by ModelCVS.

Variations of this pattern address directionality and completeness
of translation. A translation may be bidirectional, allowing two-
way transformations between metamodels. In case a tool, for
instance a code generator, is purely consuming and not producing
models, unidirectional translations suffice. In case modeling
languages do not entirely overlap, meaning that some concepts
expressible in one modeling language cannot be expressed in
another, a translation may be lossy. A solution to solve this
problem is to explicitly store information that would get lost in the
course of a transformation and to reincorporate it when
performing the roundtrip.

Metamodel modularization. The modularization pattern
addresses the scalability issue of two related integration scenarios.
On the one hand, to fulfill the scalability requirement, the
effectiveness of a tool integration process should not be affected
by the size of the metamodels involved. Hence, a model-based tool
integration approach must allow to deal with large, monolithic
tool metamodels in a manageable way. As an example, the
integration of two large metamodels, like those of UML and
Computer Associates’ CASE tool AllFusion Gen, has to be
supported in a way that keeps the integration task comprehensible.
On the other hand, scalability is required when it comes to the
integration of tools with a varying scope, regarding the domain
specificity of the underlying modeling languages. As an example,

it should be possible to integrate a UML tool with a BPEL tool.
Thereby, the domain specific BPEL tool will conceptually overlap
with the domain covered by the UML tool to a certain extent,
only. Nevertheless, the integration of the BPEL metamodel with
the overlapping part of the UML metamodel should not become
unwieldy. To keep the integration of large metamodels with
varying scopes manageable, modularization enables the
decomposition of these metamodels according to certain concerns,
resulting in so-called metamodel fragments, each expressing a
certain aspect of the entire metamodel. Analogous to the
decomposition of a metamodel, models conforming to such a
metamodel are modularized accordingly. Hence, metamodel
fragments are defined in terms of decomposition criteria as well as
operators for composing coherent metamodels.

For example, the metamodel of AllFusion Gen can be
modularized into several smaller metamodel fragments
representing more specific domains, such as User Interface or
Workflow. These metamodel fragments may overlap each other,
resulting in interdependencies that shall be taken care of in a
transparent way, as described in the alignment example in [11].
The metamodel fragments facilitate the integration of domain
specific GUI and BPEL modeling tools, whose metamodels are
directly mapped to metamodel fragments of the Gen tool. Thus
the integration of large tools is made possible in a scalable way, as
the metamodel fragments of either tool covering semantically
equal domains are mapped onto each other instead of mapping the
original huge metamodels.

2.2 ModelCVS Semantic Infrastructure
In the following, the core functionalities of ModelCVS are laid
out, which are founded on the use of ontologies to express the
semantics of modeling languages. We believe that in doing so,
semantic technologies can yield significant benefits for effectively
driving a model-based tool integration solution.

Tool Integration Knowledge Base. ModelCVS’ semantic
infrastructure makes use of ontologies for means of the integration
of metamodels by relying on modeling ontologies, i.e.,
conceptualizations of modeling languages. We intend to build up
a tool integration knowledge base, made up of ontologies
capturing knowledge about (the concepts of) modeling languages
of different domains, e.g., Workflow, and thus foster immediate
reuse capabilities. Furthermore, the ontologies within the
proposed tool integration knowledge base will be populated with
specific instance data, stemming from reference examples of case
studies. These reference examples contained in the knowledge
base enable the semi-automatic integration of new tool
metamodels that are as well populated with instance data from a
suitable reference model. Thus, the process of specifying
semantics for tool metamodels can be enhanced considerably.

Ontology-based Metamodel Integration. The knowledge
captured in the tool integration knowledge base can be utilized in
creating bridging specifications in a semi-automatic way by
following a sequence of steps. For the sake of simplicity, in the
following our running example focuses on the metamodels of
BPEL and UML Activity Diagrams to be integrated, only. Details
on Fig. 1, which generally depicts our setup used for ontology-
based metamodel integration, will be given throughout the
following subsections.

Figure. 1 Ontology-based Metamodel Integration

(1) Metamodel lifting. The creation of an ontology from some
kind of metadata like an XML [4] or a DB schema [19] is
generally referred to as lifting. Metamodel lifting in particular
encompasses a mapping of elements in the metamodel to concepts
in the ontology, thereby performing a step of abstraction and
semantical enrichment such that the ontology explicitly expresses
the semantics of the modeling concepts whose syntax is defined
by the metamodel. Automatic as well as semi-automatic
approaches to lifting have already been proposed in literature.
Using ModelCVS’ tool integration knowledge base, lifting will be
guided by existing (generic) ontologies. During lifting, existing
ontologies may be extended to capture the ideosyncracies of
specific tools’ languages, resulting in so-called tool ontologies

that reuse semantics defined in generic ontologies. For instance,
the BPEL and the UML-AD ontology reuse concepts from a
generic ‘Workflow’ ontology, which in turn plays a role in
integrating these. For a more elaborated description of
ModelCVS’ lifting functionalities we refer the reader to a
technical report [11]. A generic solution for lifting arbitrary MOF
models (tool metamodels) to tool ontologies can partly automate
the lifting process. However, the entailment of specific semantics
for newly lifted metamodels naturally requires user intervention.

(2) Ontology-level integration. The use of ontologies is based on
the assumption that integration on the ontology layer is more easy
to understand and can be automated to a greater extent. Lifting
different metamodels’ elements to concepts of some common
ontology provides the first step of integration by establishing a
common terminology. Thereby, it is necessary that the chosen
generic ontology covers the domains of both tool ontologies
appropriately. Furthermore, based on defined relations between
concepts in the ontology, relations between the concepts of
specific tools can be deduced, e.g., equivalence, subsumption, or
substitutability. Continuing our example, we assume a generic
Workflow ontology as the common upper ontology. As an
example, we can imagine to map all of BPEL’s control flow
constructs onto the semantically appropriate classes in the
Workflow ontology. Analogously we proceed with mapping the
UML-AD metamodel onto the Workflow ontology. From the two
mappings between tool and Workflow ontologies we employ
structural reasoning to deduce relationships between ontology
classes representing the control flow constructs of BPEL and
ontology classes representing the UML-AD metamodel elements.

(3) Derivation of bridging. Once a mapping between tool
ontologies exists, the next logical step is to derive bridging
operators to express the desired integration behavior on the
metamodel level. In a derived bridge between metamodels,

depending on the integration pattern in use, semantic
correspondence can be expressed by certain metamodel bridging
operators accordingly. In case of a translation, a bridging operator
might denote the creation of a new target model element for every
encountered source model element, whereas in the modularization
case, a bridging operator could denote that two model elements
should be merged into one at check-out. Getting back to our
example, the translation pattern will be the most appropriate, as
both the Activity Diagram and the BPEL metamodels cover a
largely similar domain. Hence, a relationship on the ontology
level between ‘equivalent’ classes would be derived into a
bridging operator relating the metamodel elements that initially
got lifted to the respective ontology classes.

(4) Derivation of transformation. After bridging operators
between metamodels are established, a code generation step
results in QVT code representing the bridging on a lower, finer-
grained level, which eventually leads to executable
transformations. In the context of a translation from BPEL to
UML at execution time, this basically results in code querying the
source model and populating the target model appropriately.

3. RELATED WORK
Related work mainly encompasses work on tool integration,
model transformation languages, and the integration of
heterogeneous data sources in terms of models and ontologies.

Apart from categorizing tool integration approaches from a
conceptual point of view [1][20], research efforts concerning the
mechanical part of tool integration such as CDIF [5] and OMG’s
recent RFP OTIF2

 are of importance. Since past efforts like CDIF,
for instance, were often grounded in large initiatives which have
not been widely accepted, we focus on a layered architecture
backed by model transformation techniques to most possibly
avoid the pitfalls of strongly technology-dependent solutions that
suffer from high maintenance overheads and most importantly,
poor scalability. Hence, existing approaches in terms of model
transformation languages play a key role in our proposed system.
With ATL [8] Bezivin et al. have developed a hybrid
(declarative/imperative) transformation language in response to
QVT. Built upon EMF, ATL is especially applicable in context of
Eclipse development, as is MTF3 by IBM, which with a purely
declarative transformation definition style might be harder to
practically apply than ATL. Although MDDi4 is still in its drafting
phase, it provides interesting ideas for model integration in terms
of a bus architecture. Although, QVT-like model transformation
languages are a cornerstone also of our vision, existing proposals
are too generic and lack appropriate abstraction mechanisms for
different kinds of model integration patterns, which are highly
needed in practice and well-known from other research areas such
as federated and multi database systems [17] and web service

composition [1]. However, there are only few related approaches
providing abstraction mechanisms in terms of, e.g., high-level
bridging operators. In the area of model management, for instance,
Rondo [13] provides high-level operations facilitating the
integration of relational and XML schemata, whereas Clarke [2]
and Straw [18] target UML models. Finally, considering
ModelCVS’ semantic integration capabilities, we can benefit from

2 www.omg.org/docs/mic/04-08-01.pdf
3 www.alphaworks.ibm.com/tech/mtf
4 www.eclipse.org/mddi

Tool

Ontology

c
o
n
fo

rm
s

d
e
ri

v
e

d
e
ri

v
e

Meta-

model

Generic
Ontology

mapping mapping

d
e

ri
v
e

d
e
ri

v
e

lif
ti
n
g

lif
ti
n
g

lif
ti
n
g

c
o

n
fo

rm
s

c
o

n
fo

rm
s

derive

Class

Class Class Class

Class

Class Class

<XML-Schema>
<tag1>

<tag2>
</tag2>
</tag1>
<tag2>
</tag2>

...
</XML>

bridgingbridging

de
riv

ebind bind

4

1

2

3

Model

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

<XML>
<tag1>

<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...

</XML>

<XML>
<tag1>

<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...

</XML>

<XML>
<tag1>
<tag2>

</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

trans-
forming

trans-
forming

Generic
Ontologies

UML ...

Tool Ontologies

Tool Integration Knowledge Base

Knowledge Reuse

StructureComponent

Process

Temporal

BPEL

Graph

Gen

Workflow

...

Timing

Tool

Ontology

c
o
n
fo

rm
s

d
e
ri

v
e

d
e
ri

v
e

Meta-

model

Generic
Ontology

mapping mapping

d
e

ri
v
e

d
e
ri

v
e

lif
ti
n
g

lif
ti
n
g

lif
ti
n
g

c
o

n
fo

rm
s

c
o

n
fo

rm
s

derive

Class

Class Class Class

Class

Class Class

<XML-Schema>
<tag1>

<tag2>
</tag2>
</tag1>
<tag2>
</tag2>

...
</XML>

bridgingbridging

de
riv

ebind bind

44

11

22

33

Model

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

<XML>
<tag1>

<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...

</XML>

<XML>
<tag1>

<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...

</XML>

<XML>
<tag1>

<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...

</XML>

<XML>
<tag1>

<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...

</XML>

<XML>
<tag1>
<tag2>

</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

trans-
forming

trans-
forming

Generic
Ontologies

UML UML ...

Tool Ontologies

Tool Integration Knowledge Base

Knowledge Reuse

StructureComponent

Process

Temporal

BPEL BPEL

Graph

Gen Gen

Workflow

...

Timing

...

Timing

a large body of literature which can provide useful input for our
approach. For a comprehensive overview of this active research
area compare, e.g., [9], [14] and [19].

4. CONCLUDING REMARKS
Currently, an early prototype of the proposed system with a basic
amount of functionality exists, that already allows to carry out a
comprehensive range of intended use cases, which will be
validated in an industrial case study involving the Austrian
Ministry of Defense and a partner of Computer Associates. The
prototype is based on ATL for transforming models, AMW [3] for
bridging metamodels and Jena (jena.sourceforge.net) for ontology
management. Besides further developing the existing
implementation, our focus lies on extending bridging languages
and concepts for the implementation of ontology-based
integration. We are aware that a successful realization of a system
like ModelCVS as laid out in this paper faces a number of issues
mainly concerning technological feasibility and practical
applicability of the final result.

The use of an ontology layer introduces overhead, which is justified
only if the overall integration process can be improved in terms of
speed, quality, and reduced complexity. We assume that moving to
the more abstract semantic level becomes beneficial especially if a
metamodel is large and complex, as is the case, e.g., in our case
study with more than 800 classes of AllFusion Gen. The ontology
will express semantics of concepts and consequently integration
mappings much more concisely, thus helping to keep mappings
comprehensible and manageable. Another benefit is a
comprehensive tool integration knowledge base containing readily
reusable semantic definitions that may also be published on the
Internet. Nevertheless, the design of the semantic infrastructure
will be such that lifting is optional or that it is possible to lift just
core concepts of a metamodel.

Key challenges in achieving our goal will be to find generic
ontologies and support for the lifting process. These ontologies have
to be designed such that the concepts defined by the ontology are
easy to grasp while covering the essential concepts of a given
domain. A particular challenge will be the handling of concepts that
are similar but not equivalent. Although such similarities inhibit full
automation of the integration process, treating them at a conceptual
level can improve the quality of integration by identifying
similarities and defining possible ways of integration. This,
however, requires precise modeling ontologies, which again has to
be considered in the overhead trade-off. The lifting process should
be supported by means of heuristic mapping strategies based on
finding structural and linguistic similarities. The utilization of
lexical reference systems (e.g., [6]) allows to identify and relate
names in question as being synonyms, homonyms, antonyms and
the like. Furthermore, the results of heuristic mapping techniques
can be greatly enhanced when incorporating instance data during
matching [7], which could be accomplished by populating tool
ontologies with data of a common reference example. Although
both of the above mapping methods can alleviate the burden when
creating a mapping from metamodel elements to ontology
concepts, a user is still needed to check the appropriateness of a
proposed mapping and to eventually give it a finishing touch.

5. REFERENCES
[1] A. W. Brown, P. H. Feiler, K. C. Wallnau: Past and future

models of CASE integration, 5th Int.Workshop on
Computer-Aided Software Engineering, IEEE, July 1992.

[2] S. Clarke: Extending standard UML with model composition
semantics, Science of Computer Programming, Elsevier
Science, 44(1), July 2002.

[3] M. Didonet Del Fabro, J. Bézivin, F. Jouault, E. Breton, G.
Gueltas: AMW: a generic model weaver. In: Proc. of the
1ères Journées sur l'Ingénierie Dirigée par les Modèles, 2005.

[4] M. Ferdinand, et al.: Lifting XML Schema to OWL, 4th Int.
Conf. on Web Engineering, Munich, Germany, July, 2004.

[5] R. Flatscher: Metamodeling in EIA/CDIF - meta-metamodel
and metamodels, ACM Transactions on Modeling and
Computer Simulation (TOMACS), 12(4), Oct. 2002.

[6] A. Gangemi et al.: Sweetening wordnet with DOLCE, AI
Magazine, 24(3), 2003.

[7] J. Huang et al.: A Schema-Based Approach Combined with
Inter-Ontology Reasoning to Construct Consensus
Ontologies, 1st Int. Workshop on Contexts and Ontologies:
Theory, Practice and Applications, July, 2005.

[8] F. Jouault, I. Kurtev: Transforming Models with ATL. In:
Proceedings of the Model Transformations in Practice
Workshop at MoDELS 2005, Montego Bay, Jamaica.

[9] Y. Kalfoglou, M. Schorlemmer: Ontology Mapping: The
State of the Art, Dagstuhl Seminar on Semantic
Interoperability and Integration 2005, Germany, 2005.

[10] G. Kappel, E. Kapsammer, W. Retschitzegger: Integrating
XML and Relational Database Systems, in WWW Journal,
Kluwer Academic Publishers, June 2003.

[11] G. Kappel, G. Kramler, E. Kapsammer, T. Reiter, W.
Retschitzegger, W. Schwinger: ModelCVS - A Semantic
Infrastructure for Model-based Tool Integration,
ftp://ftp.ifs.uni-linz.ac.at/pub/publications/2005/0705.pdf,
Technical Report, 2005

[12] J. Koehler, B. Srivastava: Web service composition: Current
solutions and open problems, Proc. of the ICAPS, Workshop
on Planning for Web Services, Italy, June 2003.

[13] S. Melnik, E. Rahm, P. A. Bernstein: Rondo: a programming
platform for generic model management, ACM SIGMOD
Int. Conf. on Management of data, New York, June 2003.

[14] N. Noy: Semantic Integration: A Survey Of Ontology-Based
Approaches, SIGMOD Record, 33(4), Dec. 2004.

[15] T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger:
Model Integration Through Mega Operations, Proc. of the
Int. Workshop on Model-driven Web Engineering (MDWE),
Sydney, 2005

[16] M. Schrefl, M. Bernauer, E. Kapsammer, B. Pröll, W.
Retschitzegger, Th. Thalhammer: Self-Maintaining Web
Pages, Information Systems (IS), Vol. 28/8, Elsevier, 2003.

[17] A. P. Shet, J. A. Larson: Federated Database Systems for
Managing Distributed, Heterogeneous and Autonomous
Databases, ACM Computing Surveys, 22(3), Sep. 1990.

[18] G. Straw et al.: Model Composition Directives, 7th UML
Conference, Lisbon, 2004.

[19] R. Volz, D. Oberle, S. Staab, R. Studer: OntoLIFT, IST
Project 2001-33052 WonderWeb, Deliverable 11, 2003.

[20] A.I. Wasserman: Tool integration in software engineering
environments, Proc. of the Int. Workshop on Software
engineering environments, Springer, New York, USA, 1989.

