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Abstract. The key to success with Model-Driven Engineering is the ability to
maintain metamodels and their related artifacts consistent over time. Metamod-
els can evolve under evolutionary pressure that arises when clients and users
express the need for enhancements. However, metamodel changes come at the
price of compromising metamodel-related artifacts, including model transforma-
tions, necessitating their migration to again conform to the evolved metamodel.
Restoring conformance of transformations is intrinsically difficult since a multi-
tude of possible migration alternatives exist, which are unfeasible to be inspected
manually. In this paper, we present an approach to explore variability in model
transformation migration. Employing a feature-based representation of several
possible transformation migrations, the approach permits modelers to explore
and explicitly discover differences and conflicts among them. Once the desired
migration alternatives are selected, the actual migration program is generated and
executed by exploiting the EMFMigrate platform.

1 Introduction

As the complexity of software systems escalates, there is an increasing consensus on the
need to leverage abstraction. In Model-Driven Engineering [20] (MDE) this is usually
accomplished by formalizing domains by means of metamodels that are at the core of
this software discipline. As a consequence, complete modeling environments, which
consist of a multitude of artifacts including models and model transformations, are
formally defined in accordance with their reference metamodels [7]. Similarly to other
software artifacts, metamodels can evolve under evolutionary pressure that arises when
clients and users express a need for enhancements. Changing a metamodel might break
conformance to its dependent artifacts because of the existing dependencies among
them [6]: conformance restoring migrations are therefore necessary to re-establish the
conformance in the modeling environment. Model transformations are no exception and
urge to be migrated whenever metamodels they are based on undergo modifications [8].
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Analogously to the well-known update view problem in relational databases [1] there
are multiple ways of propagating metamodel changes, i.e., there are many alternatives
to migrate a transformation. The problem is how to choose one i.e., how is it possible
to identify a migration alternative reflecting both the modeler intents and the rationale
behind the metamodel refactoring among the viable alternatives? Existing approaches
(e.g., [10,16]) typically start from a formalization of the metamodel changes to automati-
cally derive a single migration. However, these techniques offer a prefixed solution only,
which must be used in any context and regardless of the reasons behind the occurred
metamodel evolution, entailing the drawback that potential solutions which better fit the
modeler intents are left unexplored. However, since multiple solutions are possible, each
leading to a differently migrated transformation, it is of utmost importance to identify the
one that best fits developers’ needs. In particular, small changes in a given metamodel
typically correspond to a large number of migration alternatives. Unsupported manual
inspection and detection of those is prone to errors, because alternatives might overlap
each other, hampering a successful transformation migration.

This paper proposes an approach to represent a set of possible model transforma-
tion migration alternatives in response to metamodel evolution to support the user in
inspection and detection of migration alternatives. As a result, migration solutions can
be better compared as differences and potential conflicts between migration alternatives
are denoted by variability points without the necessity of manually inspecting each of
them. In this context, the user is supported in choosing the desired migration alternative
by means of a feature model [2]. EMFMigrate [23] rules are automatically generated
and executed with respect to the selected migration alternative, to migrate the initial
transformation to recover its conformance with the evolved metamodel.
Outline. Next section presents a motivating scenario, while Sect. 3 introduces a notation
for managing variability in an intensional way and its application on an example. A
prototypical implementation is presented in Sect. 4 and related work is discussed in
Sect. 5. Finally, Sect. 6 draws conclusions and outlines future work.

2 Motivating Scenario

In this section, we present an explanatory metamodel evolution and its effects on a model
transformation. Despite its simplicity, it is able to show the large number of migration
alternatives and, thus, the multitude of different migrations a user is confronted with.

Figure 1a shows the Simple Workplace metamodel acting as the source metamodel
of a transformation, comprising metaclasses for the specification of persons and their

(a) Initial version (b) Evolved version

Fig. 1: An explanatory Workplace metamodel evolution
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corresponding workplaces. According to the metamodel, a Person works optionally in
an (abstract) Workplace, which can be a Company or University. The specification of
Persons can include the corresponding Address and Contact data. Company elements
consist of the specification of the corresponding addresses and total revenues. The
definition of University includes also information about the number of students.

Fig. 2: The conference management metamodel

Figure 2 shows the metamodel of a simple conference management system: a Con-
ference can have a set of participants that can be affiliated with either a Univer-
sity or a Company. In order to complete the registration to a conference, each participant
has to provide the corresponding organizers with a BillingAddress and a Contact.

1 r u l e Person2Participant {
2 from s: WORKPLACE!Person
3 to t: CONFERENCE!Participant (
4 name <- s.name,
5 affiliated <- s.works,
6 contact <- s.contacts->first(),
7 address <- s.lives
8 )
9 }

10 r u l e University2University {
11 from s: WORKPLACE!University
12 to t: CONFERENCE!University (
13 name <- s.name
14 )
15 }
16 r u l e Company2Company {
17 from s: WORKPLACE!Company
18 to t: CONFERENCE!Company (
19 name <- s.name
20 )
21 }
22 r u l e Address2Billing {
23 from s: WORKPLACE!Address
24 to t: CONFERENCE!BillingAddress
25 (
26 address <- s.street + ’, ’ + s.city
27 )
28 }
29 r u l e Contact2Contact {
30 from s: WORKPLACE!Contact
31 to t: CONFERENCE!Contact (
32 name <- s.name,
33 phone <- s.phone
34 )
35 }

Listing 1.1: Snippet of SimpleWorkplace2ConferenceManagement
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Listing 1.1 shows an ATL transformation [14] generating models conforming to the
metamodel in Fig. 2 out of workplace models conforming to the metamodel in Fig. 1a.
Therefore, the rule Person2Participant generates a Participant instance for each
instance of the Person metaclass. Analogously, the rules University2University
and Company2Company create instances of the corresponding metaclasses. The rule
Address2Billing generates a BillingAddress instance for each Address instance,
concatenating the source values street and city for the target address value. The
rule Contact2Contact generates Contact instances.

In order to address unforeseen requirements or to better represent the considered
application domain, metamodels can evolve. For instance, the workplace metamodel
shown in Fig. 1a is modified to obtain the new version in Fig. 1b by applying the
following refactorings:
- R1. Introduction of subclasses: the Employee and Researcher metaclasses are intro-
duced as subtypes of Person, which in turn becomes abstract;
- R2. Split attribute: the attribute name of the metaclass Person is split in two attributes
with the same type, named firstname and lastname;
- R3. Flatten Hierarchy: the hierarchy between the metaclass Workplace and the sub-
classes Company and University is reduced to the new version of the Workplace

metaclass. It contains a new attribute of type WorkspaceType, which is a new enumer-
ation representing the pruned subclasses, whose default value is Company;
- R4. and R5. Replace metaclass: The metaclass Address is replaced by the Personal-
Info metaclass, and Contact is replaced by the PersonalInfo metaclass.

Because of these applied metamodel changes, the model transformation in Listing
1.1 has lost its domain conformance [13] to the metamodel, and thus, has to be migrated.
Migration of model transformations is difficult and can easily give place to inconsisten-
cies and omissions [8]. Moreover, multiple migrations are possible [21], each providing
a different solution. Thus, Table 1 shows possible migration alternatives for each applied
refactoring. It is worth noting how even simple, non-breaking changes [10] induce
multiple options of migration according to developer’s expertise and goals, which is the
case of R1. In particular, if the rule Person2Participant (cf. line 1–9 of Listing 1.1)
is left unmodified the transformation remains valid, since Person instances will be
matched by the rule. However, developers might still decide to change the input pattern
of the transformation with one of the subclasses, i.e. Employee or Researcher.

Refactoring R2 involves the split of the attribute name (cf. line 4). The pattern
s.name in the right hand side of the binding can not be longer queried and thus, needs
to be adapted. The corresponding migrations shown in Table 1 are not exhaustive since
the use of OCL in ATL transformations increases complexity and gives place to many
different solutions. However, possible migration alternatives for the right hand side of
the binding can be for instance at least the following expressions: (i) s.firstname, (ii)
s.lastname or (iii) s.firstname + ’ ’ + s.lastname.

Concerning refactoring R3, the rules in lines 10–21 are no longer valid since the
types of the input patterns (i.e., University and Company) have been removed from the
initial version of the source metamodel. One possible migration is to change the input
patterns of the affected rules by adding conditions based on the new type attribute (cf.
Fig. 3a), e.g., s:WORKPLACE!Workplace(s.type=#University). Such a “filter" is
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Metamodel change Possible migration alternatives

R1. Introduce subclasses
R1a1. Leave transformation unchanged
R1a2. Change in-pattern to Employee
R1a3. Change in-pattern to Researcher

R2. Split attribute

R2a1. Use firstname
R2a2. Use lastname
R2a3. Use concatenation of firstname and lastname
R2a4. Delete the affected binding (it is assumed it is not mandatory in the target
metamodel)

R3. Flatten hierarchy

R3a1. Change input pattern of the affected rule to the remaining class
Workplace and introduce guards to produce instances of University and
Company
R3a2. Change input pattern of the affected rule University2University
to Workplace and delete the other rule Company2Company
R3a3. Change input pattern of the rule Company2Company to Workplace
and delete the other rule University2University
R3a4. Delete both rules Company2Company and
University2University

R4. Replace metaclass Address with
PersonalInfo

R4a1. Delete rule Address2Billing
R4a2. Change input pattern of the rule Address2Billing to the class
PersonalInfo
R4a3. Change input pattern of the rule Address2Billing to match the class
PersonalInfo. In addition, add another output pattern to produce also target
Contact instances

R5. Replace metaclass Contact with
PersonalInfo

R5a1. Delete rule Contact2Contact
R5a2. Change input pattern of the rule Contact2Contact to be class
PersonalInfo
R5a3. Change input pattern of the rule Contact2Contact to match the class
PersonalInfo. In addition, add another output pattern to produce also target
BillingAdress instances

Table 1: Possible migration alternatives for the motivating example

necessary since in ATL each source model element can match with one rule only [14] and,
consequently, the input pattern Workplace can not be used in two different rules without
any guard. Alternatively, it is possible to drop one of the affected rules and change the
input pattern type of the kept rule to Workplace (cf. Fig. 3b and Fig. 3c). Another
option can be dropping both rules. However, although this would be a syntactically valid
option, no instances would be transformed, resulting in a loss of information.

Among the possible ways to resolve refactoring R4, Table 1 shows three alternatives
consisting of dropping the rule Address2Billing (R4a1), and change the type of its
input pattern to PersonalInfo (R4a2). This would be enough to run the transformation

(a) Migration alternative (a) (b) Migration alternative (b) (c) Migration alternative (c)

Fig. 3: Possible migration alternatives related to refactoring R3
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without errors. However, an additional output pattern can be added in order to generate
also Contact instances (R4a3). Similarly to R4, Table 1 shows three alternatives for
adapting the sample ATL transformation because of refactoring R5.

When migrating model transformations, which have been compromised by meta-
model refactoring actions, developers have to combine different migration alternatives,
one for each metamodel refactoring, to obtain a migration solution. This represents a ma-
jor difficulty because alternatives must be combined causing a combinatorial explosion
of cases: for instance, the 5 refactorings presented above can give place to

3× 4× 4× 3× 3 = 432

migration alternatives. Although this is an over-approximation since conflicts might
occur between migration options as discussed later in the paper, it is highly impractical
for the modeler to sort out a myriad of individual alternatives. The problem can be
even more complex if the affected transformation has several source and target evolving
metamodels4. In the remainder of the paper we consider the management of one-to-
one model transformations with only the source metamodel evolving, while the target
metamodel remains unchanged.

3 Proposed approach
In this section, we propose an approach to represent, explore, and select migration
alternatives for ATL transformations in response to an evolved source metamodel. The
approach permits to represent all migration alternatives in a single model with variability.
Besides having an intensional representation of the solution space, i.e., all valid migra-
tions of the transformation, the approach permits the identification of the differences
among the alternatives by means of variation points originated from each metamodel
refactoring. Moreover, the approach permits to highlight conflicting alternatives, which
will be discussed in more detail later.
The approach is outlined in Fig. 4, where weaving model mWMM represents possible
migration alternatives to be applied on the affected transformation T . The weaving
model5 conforms to the the Variability Weaving Metamodel explained in detail in Sect. 3.1
and Sect. 3.2. To allow developers exploring the alternatives represented in mWMM ,
the WMM2FM transformation automatically generates a feature model, a common
mean to represent variability [2] (Sect. 3.3). This is further used to easily determine
a valid combination of migration alternatives (Sect. 3.4) and to select a configuration
to generate EMFMigrate migration programs, which can be executed to migrate the
affected transformations.

4 In order to give more evidence of the difficulties related to the extensional treatment
of transformation migrations, which might be required because of metamodel evolu-
tions, our online appendix discusses a list of metamodel changes borrowed from existing
catalogues, e.g., [5,12]: http://www.emfmigrate.org/wp-content/uploads/
2017/04/appendix.pdf. Such changes are organized with respect to the impact they
might have on existing transformations.

5 Currently, the weaving model mWMM is manually specified even though an automatic creation
is feasible as discussed later in the paper. Such a relevant automation step is an important work
that we plan to do in the future.
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Fig. 4: Overview of the proposed approach

3.1 Variability weaving metamodel for representing different migration
solutions

The Variability Weaving Metamodel (WMM) has been designed in order to be independent
from the model transformation language in use. As a result, it can be used without loss
of generality for any rule-based transformation language. To this end, a generalization
step has been employed to abstract from language dependent concepts in order to
define a simplified transformation language very much aligned with the notations given
in [11,24], collecting common concepts of model transformation languages (cf. Fig. 5).
According to the simplified transformation metamodel, Module holds one or more
Rules that might have superrules which are composed of InPatterns and Out-

patterns. An InPattern is further composed of InputElements and an optional
Guard. The OutPattern is composed of one or more OutputElements which have
optional bindings. It is worth noting that the actual bindings, guards as well as the
input and output patterns are expressed as strings in the current version, but are planned
to be replaced by including an OCL metamodel, e.g., as done in [18].

As previously said, the variability weaving metamodel relies on the simplified trans-
formation metamodel to deal with all kind of transformation language specificities. Thus,
by applying the approach presented in [3], for each metaclass MC in the simplified
transformation metamodel, corresponding AddedMC, DeletedMC, and ChangedMC
metaclasses, e.g., AddedRule, are defined in WMM as shown in Fig. 6. WMM permits
to represent Solutions that are considered as the counterpart for the applied meta-
model changes. As shown in Fig. 6, each Solution is composed of Alternatives,
which are disjunct and represent migrations which have to be performed to co-evolve
the affected transformation. Each Alternative consists of DiffElements. A Diff-

Element can be in turn a DiffRule or a DiffPattern, i.e., the changes that a rule
can undergo or that affect a pattern of a rule, respectively. AddedRule, ChangedRule
and DeletedRule are provided for added, updated or deleted rules, while CopyRule
allows the rule to be copied without actions, which might be a valid choice for some
refactorings, e.g., introduction of superclasses. The same concept is replicated for other
transformation constructs like patterns that are composed of bindings containing an
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Fig. 5: The Simple Transformation Language (STL) Metamodel

OCL expression, to be held in the attribute expr. Finally, input patterns can have guards
to match only certain input patterns, and also in this case is done using an expression.
The references applicationElement from DiffElement link to the abstract class
SimpleTransformationElement, which can be specialized for each concept shown
in Fig. 5 in order to refer concrete elements of the transformation to be migrated.

Fig. 6: The Variability Weaving Metamodel (WMM)

An important characteristics of WMM is the specification of conflicts, i.e., disjunct
choices that must not occur in the same solution. For instance, a migration solution can
not contain choices that contribute to the generation of different rules defined on the
same input pattern without any guard, thus causing run-time errors due to multiple rules
matching the same model element. As another example, a migration solution must not
contain choices that refer to an element which has been deleted by another alternative.

As previously mentioned, WMM can be used for managing model transformations
specified in different rule-based transformation languages. Thus, a transformation written
in a language, such as ATL or ETL [15], can be mapped into its simplified version
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as shown in Fig. 7. This enables a simpler specification of the linkage between the
(abstract) transformation and the migration variants. Once the modeler has selected the
desired alternatives (cf. Sect. 4), the transformation can be migrated by projecting the
modification from the abstract model to the original transformation. Therefore, the trace
information produced when executing the ATL2STL or ETL2STL transformation is
used.

3.2 Specification of variability weaving models

Figure 8 presents a variability model conforming to the WMM and related to the running
example. The weavings have been labeled with the same numbers as in Fig. 4, so the left
panel is the simplified version of the transformation in Listing 1.1, and the right panel is
the associated variability model containing all migration alternatives listed in Table 1.

Variability Meta-
model WMM

TETL

TATL

ATL2STL

ETL2STL

mWMM

weaving links

STL2ATL

STL2ETL

trace 
information

trace 
information

TSTL

conformsTo

data flow

Legend:

Fig. 7: Generation of simplified transformation models

Please note that the graphical overlay by means of dashed and dotted lines is for
presentation purposes only and not visualized in this way in the tool, instead we provide
a feature model as graphical decision support which is a common and widely used
mean to manage variability in software product lines [2] (cf. Sect. 4). The weaving
links have been highlighted as dashed (green) lines, while the link shown as dotted (red)
line identifies a conflict in the solutions. The weaving link denoted by the left (green)
tooltip maps the OutPattern from the simplified transformation model to a Changed-
OutPattern in the Alternative R4a1 as part of the Solution R4. It comprises
a DeletedBinding element, which is in turn linked to the affected binding in the
simplified transformation model in rule Person2Participant. The corresponding
action in Table 1 is denoted by R4a1.

Furthermore, a conflict between Alternative R4a2 and R5a2 has been identified,
using the proposed conflict detection algorithm (cf. Sect. 3.4). In fact, having both
alternatives in the solution model would give place to an invalid transformation with
two rules matching the same input metaclass, which is forbidden since the input pattern
has to be unique. Possible conflicts that can occur when migrating transformations are
discussed in Sect. 3.4.

In the following, we show how a feature-based representation of the migration
alternatives, as those represented in Fig. 8, can be automatically generated and how it is
beneficial in the variability management.
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Fig. 8: Excerpt of the variability model for the transformation example

3.3 Feature model as representation for managing variability

Fig. 9 shows a generated feature model6 specifying the alternatives for migrating the
transformation to cope with the source metamodel evolution. In the context of this paper,
the feature model is a compact representation of all migration alternatives and possible
conflicts between them, supporting the exploration of the desired migration alternatives.

As shown in Table 1, we consider five refactorings R1–R5 that entail five solu-
tions, each of those has possible alternatives for migration that satisfy the domain
conformance relationship. Also, the automatically identified conflict between the alter-
natives is reflected by means of a constraint in the feature model. Thus, the constraint
R4a2 ⇒ ¬R5a2 defines that if alternative R4a2 is chosen, the alternative R5a2 is no
longer valid and can not be chosen by the modeler.

The feature model is automatically generated starting from the weaving model by
employing the transformation WMM2FM shown in Listing 1.2. The transformation

6 In this work we employed the Eclipse FeatureIDE plugin [22] for specifying feature models.
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Fig. 9: Feature model for the transformation example

employing the Epsilon Generation Language (EGL) [19]. The model-to-code transfor-
mation targets XML as technical space and starts storing in the variabilityM variable
the instance of the variability model and in allSolutions the solutions specified (cf.
lines 1–2). The transformation iterates the solutions and for each alternative a feature
labeled with the alternative’s name is created (cf. lines 7–13). Then the script generates
constraints stemming from the defined conflicts (cf. lines 17–30). Those constraints
correspond with the following expression a⇒ ¬a1 ∧ ¬a2 ∧ . . . ∧ ¬an defining that if
alternative a is chosen, the alternatives a1, a2, ... an are no longer valid.

1 [% var variabilityM := VariabilityM.allInstances().at(0);
2 var allSolutions := variabilityM.solutions; %]
3 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
4 <featureModel chosenLayoutAlgorithm="1">
5 <struct>
6 <and abstract="false" mandatory="true" name="VariabilityModel">
7 [% for (s in allSolutions ) { %]
8 <alt mandatory="true" name="[%=s.name%]">
9 [% for (a in s.alternatives) { %]

10 <feature mandatory="true" name="[%=a.name%]" />
11 [% } %]
12 </alt>
13 [% } %]
14 </and>
15 </struct>
16 <constraints>
17 [% for (s in allSolutions) {
18 for (a in s.alternatives) {
19 if (a.allConflicts.size() > 0) { %]
20 <rule>
21 <imp>
22 <var>[%=a.name%]</var>
23 <conj>
24 [% for (conflict in a.allConflicts) { %]
25 <not><var>[%=conflict.name%]</var></not>
26 [% } %]
27 </conj>
28 </imp>
29 </rule>
30 [% } } } %]
31 </constraints>
32 ...
33 </featureModel>

Listing 1.2: Fragment of the WMM2FM transformation
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3.4 Automated identification of conflicting alternatives

In order to further automate the presented approach, we propose an algorithm that
automatically identifies conflicts between alternative solutions and sets the corresponding
conflict relations in the variability model (cf. Fig. 8). A conflict can be defined as a
situation where two different alternatives can not co-exist, since they could raise errors
at run-time. The algorithm shown in Algorithm 1 is able to identify the following
conflicts, however, the algorithm can be extended or changed if needed, to account for
language-specific conflict detections7:

c1) Rules are missing guards avoiding multiple matches for a same model element;
c2) A rule that has been deleted in one alternative is used in another alternative;
c3) A binding that has been deleted in one alternative is used in another alternative;

Algorithm 1 Detection of Conflicting Alternatives
1: for all solutions s in model do
2: for all alternatives a in s do
3: for all rules r in a do
4: doubleMatch← HASDOUBLEMATCH(m, r)
5: if doubleMatch <> null then
6: ADDCONFLICT(a, doubleMatch)
7: end if
8: deletedRule← ISRULEDELETED(r)
9: if deletedRule <> null then

10: ADDCONFLICT(a, deletedRule)
11: end if
12: for all bindings b in rule r do
13: deletedBinding ← ISBINDINGDELETED(b, r)
14: if deletedBinding <> null then
15: ADDCONFLICT(a, deletedBinding)
16: end if
17: end for
18: end for
19: end for
20: end for

In particular, all the solutions in the input solution model are queried, and all their
alternatives and rules are iterated to check if two rules can potentially match a same
model element. Since in ATL this must not occur, it has to be ensured that rules violating
such a constraint are marked as conflict. In line 4 of Algorithm 1 it is therefore checked
if the current metamodel element is matched by any other rule, by calling the auxiliary
function HASDOUBLEMATCH. If a double match is detected, then a conflict is added in
the model by means of the ADDCONFLICT auxiliary function (cf. line 6). Analogously, in

7 The auxiliary functions HASDOUBLEMATCH, ISRULEDELETED, ISBINDINGDELETED, and
ADDCONFLICT used in Algorithm 1 are reported online: http://www.emfmigrate.
org/wp-content/uploads/2017/04/appendix.pdf.
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case elements are accessed in one alternative, but deleted in another one a conflict has to
be declared. To this end, in line 8 and line 13 the auxiliary functions ISRULEDELETED

and ISBINDINGDELETED are executed, respectively and depending on their outcomes the
ADDCONFLICT function is executed accordingly.

4 Configuration and execution of the feature model

In order to enable the execution of the migration solution obtained by selecting the
alternatives in the considered feature model, we exploit the EMFMigrate migration
platform8. EMFMigrate provides modelers with languages and tools supporting the
coupled evolution of any kind of modeling artifacts. An EMFMigrate specification
consists of migration rules as shown in Fig. 10. In particular, a migration program, usually
specified by the modeler, is able to migrate artifact A, conforming to the metamodel MM,
according to the metamodel differences represented in the model Delta, conforming to
the difference metamodel proposed in [3] already applied to other co-evolution cases
(e.g., [4]).

A migration program consists of a sequence of migration rules mri. Each rule is
applied on artifact A if the corresponding guardi evaluated on the difference model
Delta holds. The body of a migration rule consists of a sequence of rewriting rules like
the following

s[guard]→ t1[assign1]; t2[assign2]; . . . tn[assignn]

where s, t1, . . . , tn refer to metaclasses of MM, and guard is a boolean expression
which has to be true in order to rewrite s with t1, t2, and tn. It is possible to specify the
values of the target term properties by means of assignment operations (see assigni).

Fig. 10: EMFMigrate syntax

Figure 11a shows the building of migration solution by selecting migration alterna-
tives represented by means of a feature model as discussed in the previous section. The

8 A detailed discussion of EMFMigrate is outside the scope of this paper. Interested reader can
refer to [6,23] for a detailed presentation of the approach.
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a) Selection of migration alternatives b) Log of EMFMigrate code generation

Fig. 11: Generation of migration solution code

desired options for migration are selected and shown as green crosses. For each selected
migration alternative corresponding EMFMigrate migration rules are generated, that can
be then executed on the input transformation in order to obtain the migrated one. As
one might see, the option R5a2 is already grayed out by the tool, since this option is
in conflict with the selected one R4a2, thus, not available anylonger. Fig. 11b shows
the generation of the selected migration alternatives and a fragment of the generated
EMFMigrate code is shown in Listing 1.3. The shown code is related to the manage-
ment of the metamodel refactoring R1 by means of the selected alternative R1a2 (cf.
Table 1). Lines 5–17 represent the guard of the rule and thus the metamodel changes that
have to match in order to execute the migration specification in line 21. The reported
guard corresponds to the metamodel refactoring R1 involving the metaclasses Person,
Employee, and Researcher. The application of the migration in line 21 induces the
adaptation of the affected transformation by changing the input patterns typed Person,
which are all replaced with the class Employee.

1 migration Workplace2ConferenceManagement-Transformation;
2 migrate SimpleWorkplace2ConferenceManagement.atl : ATL
3 with WorkplaceMM0-WorkPlaceMM2.delta{
4 ...
5 rule migrationR1a2[
6 class person= changeClass(oldperson: class){
7 set abstract=true;
8 ...
9 }

10 class employee=addClass("Employee"){
11 set name="Employee";
12 set eSuperType=person;
13 }
14 class researcher=addClass("Researcher"){
15 set name="Researcher";
16 set eSuperType=person;
17 }
18 ]
19 {
20 -- input patterns and helper contexts will be assigned to the R1a2 choice
21 o1: OclModelElement where [name = oldperson.name] -> o2: OclModelElement [ name

= employee.name ]
22 }
23 ...
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24 }

Listing 1.3: Fragment of the generated EMFMigrate code

With the help of this approach and by taking potential conflicts into account, the
number of valid migration alternatives is significantly reduced, resulting in

3× 4× 3× 2× 2 = 144

migration alternatives for the refactoring presented in Table 1, which are significantly less
than those that can be obtained without the proposed approach. Furthermore, migration
alternatives are reduced even more once some of them are selected, as shown in Fig. 11,
thus, helping the user in finding the most appropriate solution. Moreover, the generated
EMFMigrate code consists only of those migration rules related to the alternatives that
are selected by means of the feature model.

5 Related Work

In this section, we report on work (i) closely related to model transformation migration,
and (ii) more widely related with respect to variability in co-evolution in MDE.

Recent approaches tackling the problem of transformation migration mostly aim
at providing a unique, predefined, and possible over-writable solution, thus, variability
is not supported, but has to be manually considered after the migration, entailing the
drawback that generated solutions have to be modified by hand, regardless if the so-
lution has been generated by means of a higher-order transformation [10], predefined
migration actions [12,16], or mapping operators [25]. In [9] the authors propose the
usage of transformation chains, which are chosen by the user, thus, different solutions
can be generated, but having the drawback that the modeler has to be familiar with
transformation chains. In [17] a comprehensive set of metamodel changes is proposed,
each accompanied with a migration action for models and transformations. Since for
the same metamodel evolution, different semantic changes entailing different migration
solutions are proposed, variability is slightly considered in the sense, that the evolution
designer can incorporate the intention of the evolution when applying the changes. How-
ever, support for exploration of different options for migration is not provided, i.e., an
intensional representation is not provided.

As a more widely related work, in [21] an approach for the generation of multiple,
ranked solutions for model migration (in contrast to transformation migration as proposed
in this paper) is presented. Based on the formalization of the conformance relationship,
the authors employ logic programming to generate a set of ranked solutions for model
migration. However, to the best of our knowledge, an approach supporting variability in
the context of transformation migration has not been proposed yet. As a result, one may
see that the presented approach is unique in the respect that alternative solutions can be
explored and selected by having a suitable representation in terms of a feature model
easing the burden of exploring and selecting the ultimately desired solution.
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6 Conclusion and Future Work

In this paper, we proposed an approach for exploring and resolving variability during
model transformation migration, which is inevitable as a response to metamodel evo-
lution. The approach builds upon an intensional representation to explore variability
by representing each migration alternative as a dedicated element in a weaving model.
Furthermore, potentially arising conflicts between solutions that are not compatible to
each other can be explicitly highlighted. In order to support the user not only in exploring
but also in resolving variability, a suitable representation in terms of a feature model has
been proposed, which is automatically generated from the weaving model. Additionally,
EMFMigrate migration actions have been attached to the migration alternatives, which
allow for a (semi-)automatic co-evolution of transformations. Besides the possibility of
representing alternatives in a compact way, the method provides means for detecting
variations among the different solutions. Detection that otherwise should be performed
by manually comparing models, which are greatly overlapping one with another.

There are several lines of future work. As already mentioned, we plan on automating
the generation of the weaving model, starting form our previous work on generating
multiple solutions for model co-evolution [21] in order to create the intensional repre-
sentation of multiple migration alternatives. Furthermore, we plan on an evaluation in
terms of a user study to identify and highlight the major benefits and possible drawbacks
of the proposed approach especially from a usability point of view.
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