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Abstract—Disasters pose severe challenges on emergency re-
sponders, who need to appropriately interpret the situational
picture and take adequate actions in order to save human lives.
Whereas Information Fusion (IF) systems have proven their
capability of supporting human operators in rapidly gaining
Situation Awareness (SAW) in control center domains, disaster
management presents novel challenges: Due to the unpredictabil-
ity, uniqueness and large-scale dimensions of disasters, their
situational pictures typically cannot be extensively captured by
sensors — a substantial amount of situational information is
delivered by human observers. The ubiquitous availability of
social media on mobile devices enables humans to act as crowd
sensors, as valuable crisis information can be broadcast over
social media channels. Although various systems have been
proposed which successfully demonstrate that such crowd-sensed
information can be exploited for disaster management, current
systems mostly lack means for automated reasoning on these
information, as well as an integration with structured data
obtained from other sensors. Therefore, in the present work
we provide a first attempt towards comprehensively integrating
social media-based crowd-sensing in SAW systems: We contribute
an architecture on an adaptive SAW framework exploiting both,
traditionally sensed data as well as unstructured social media
content, and present our initial solutions based on real-world
case studies.

I. INTRODUCTION

Situation Awareness & Disaster Management. Natural and
man-made disasters pose severe challenges on emergency
responders, who need to appropriately interpret the situational
picture and immediately take adequate rescue actions in order
to save human lives. To support human operators in rapidly
gaining Situation Awareness (SAW) in the light of massive
amounts of data, systems capable of automated situation as-
sessment (SA) have been proposed. Whereas such Information
Fusion (IF) systems have already shown their usefulness in a
range of control center domains mainly operating on hard-
sensor data (e. g., road-traffic and air-traffic control, maritime
monitoring), the domain of disaster management presents
novel challenges: Unlike domains that can be comprehensively
monitored by hardware sensors, disasters typically cannot
be extensively captured by such sensors due to their unpre-
dictability, uniqueness and large-scale dimensions [1] — thus,
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a substantial amount of situational information is delivered by
on-the-ground human observers.

Crowd-Sensing. However, the ubiquitous availability of social
media (SM) on mobile devices enables humans to act as
crowd sensors (or citizen sensors [2]), as valuable crisis
information can be broadcast over SM channels (e.g., as
studied in [3]-[6]). Although primarily intended for human
communication, various systems have been proposed which
successfully demonstrate that such information can also be
exploited in disaster management systems (e.g., [7]-[15]).
However, current systems mostly lack means for automated
reasoning on SM content, as well as an integration with struc-
tured data obtained from other sensors, and provide limited
self-adaptivity, semantic processing, identification of sparse
situational updates and incorporation of situative context.
Contributions. Therefore, in the present work we provide a
first attempt towards comprehensively integrating SM-based
crowd-sensing in automated SAW systems: We contribute an
architecture on a SAW framework exploiting both, tradition-
ally sensed data as well as unstructured SM content, and
present our initial solutions for the challenges of SM-sensing,
namely (i) coping with the dynamics of SM by providing an
adaptive crowd-sensing level [C.1]', (ii) a semantic analysis of
textual content [C.2], (iii) identifying sparse situational update
information posted by on-the-ground observers [C.3], and (iv)
studying means for employing additional context by exploiting
already assessed or projected situations [C.4].

Structure of the Paper. In the next section, we discuss
the state-of-the-art of SAW systems incorporating crowd-
sensed content, and elaborate on open issues. In Sec. III, we
subsequently propose the architecture of crowd®4, a SAW
system for disaster management which attempts at providing
solutions towards the open issues we identified in Sec. IL
Finally, we provide an outlook on future work in Sec. IV.

II. RELATED WORK
Based on case studies revealing the potential of SM for
supporting disaster management (e. g., [3]-[6]), several efforts

'Note that these enumerated abbreviations will be used in the following
sections to refer to the corresponding challenge.



have been undertaken to make these information accessible
to emergency managers and operators. To assess how current
crowd-sensing systems for disaster management comply with
the requirements on full-fledged SAW systems (e.g., [16]), we
conducted a survey evaluating state-of-the-art systems with
respect to (w.r.t.) the IF levels these address (as specified
in the JDL data fusion model [17]): Sensing data from the
observed environment (JDL Level 0), assessing objects from
these measurements (JDL Level 1), assessing the overall
ongoing situations (JDL Level 2), projecting these situations’
development and impact (JDL Level 3), and furthermore,
resource management or process refinement (JDL Level 4) and
user refinement (JDL Level 5). In our evaluation, we contrasted
the following approaches [18]: HADRian [7], ESA [8], Twitris
[9], Twitcident [10], SensePlace2 [11], CrisisTracker [12],
TweetTracker [13], Toretter [14], and CIACM [15]. Reviewed
from the perspective of a comprehensive SAW architecture
stretching across all IF levels, it became apparent that current
systems often lack means for automated SA (which is, except
for HADRIian [7], deferred to the human operator), thus do not
support JDL levels 24, and mainly rely on human expertise and
interaction. Although providing valuable first steps towards
crowd-sensing enhanced SAW systems, these systems are
designed to be steered by a human operator and her ad-
hoc information needs and insights, but provide limited self-
adaptivity (towards emerging SM trends), thus, do not address
[C.1], and system-based, continuous monitoring functionality
implementing situation assessment and projection (which is
not targeted in any of the above mentioned systems). Besides
that, many systems base on clustering approaches to infer real-
world events from SM content [8]-[10], [12] or probabilistic
event detection [9], [14], [15], thus, summarize frequently
posted information, which is assumed to represent a certain
degree of confidence. However, actually sparse situational up-
date information [19] may be dominated by general news and
comments, and therefore may not be brought to the operator’s
attention, thus, [C.3] is not addressed. This is aggravated by
the fact that most current systems do not employ a natural
language processing approach for an in-depth analysis of the
actual semantics comprised in the messages, but pursue a
bag-of-words approach (compare textual similarity based on
overlapping words), nor include situative context, thereby do
not address [C.2] and [C.4].

III. A FRAMEWORK FOR ENGINEERING CROWD-SENSING
ENHANCED SAW SYSTEMS

In this section, we introduce crowd®? [20]%, a SAW system
capable of exploiting both, data delivered from hardware sensors as
employed by control centers, as well as information retrieved from
SM, i.e., crowd-sensed information. In contrast to existing crowd-
sensing-based SAW systems (cf. Sec. II), crowd># specifically aims
at providing means for a situation-driven sensing and perception
configuration by implementing feedback-loops between the different
processing levels, which adapt the lower-level IF steps and provide
additional context for the retrieval and interpretation of SM content.
In order to realize this functionality, we propose concepts for the
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following issues that need to be overcome: (i) coping with the
dynamics of SM by providing an adaptive crowd-sensing level [C.1],
(ii) employing a semantic analysis of textual content based on domain
ontologies in order to infer the reported events and match them to
ontological concepts that can be used for automated reasoning (SA)
[C.2], (iii) specifically seeking sparse situational update information
posted by on-the-ground observers by proposing an aggregation-
segregation-based approach [C.3], and (iv) employing additional
context in order to infer the semantics of SM content by exploiting
already assessed or projected situations [C.4].

For realizing the core SAW system, we base on our previous
implementations of SAW systems for control centers, BeAware! [21],
[22] and CSP® (Collaborative Situation Awareness in Road Traffic
Control). The conceptual architecture of the crowd-sensing level is
based on insights and lessons learned from our currently on-going
implementation of the devised crowd-sensing level, and initial case
studies on real-world Twitter* data sets (cf. Table I). In particular, we
will illustrate the processing outlined in Fig. 1 based on three different
disaster events (and their aftermath) happening between Aug., 9th and
15th, 2014, which are reflected in our collected data sets, notably (i)
hurricane-events affecting the Hawaiian islands® (cf. Table I), (ii) the
flooding caused by the remnants of hurricane Bertha in UKS, and (i)
a severe flooding event on Long Island, New York’. Note that we will
refer to individual tweets shown in this Fig. based on their assigned
reference, denoted by [T.x], whereby x corresponds to a sequential
digit. The different parts and components of Fig. 1 are referenced
and explained in the forthcoming sections wherever appropriate (the
functional blocks are referenced by encircled numbers), although the
principal reading direction of Fig. 1 is from bottom to top. We start
our discussion of the processing layers summarized in Fig. 1 by
illustrating the functionality of the Core SAW system, before we
elaborate on the challenges and solutions w.r.t. the incorporation of
additional JDL LO and L1 components realizing crowd-sensing, i.e.,
the retrieval and fusion of content from SM.

A. CSI — the Core SAW System

In control center monitoring tasks, such as road traffic control or
disaster management, human operators monitor their environment,
observed over various sensors, for the occurrence of various event
constellations that require specific counteractions, which we term
situations, such as (i) the formation of a traffic jam in an area of dense
fog, requiring the operator to display warnings on variable message
signs to alert approaching drivers unaware of the jam, or, (ii) power
outages in specific areas, which may affect sensitive infrastructure
that requires specific action (such as hospitals, which may eventually
require evacuations if the time required for restoring power exceeds
their emergency generators’ capacity).

As situations in these domains may be composed of heterogeneous
types of objects, and could either correspond to frequently recurring
situations (e.g., fusing traffic jams), or denote rather seldom and
unique situations (as typical for large-scale disasters), we pursue a
knowledge-based approach for SA, as also proposed in [23]: Event
constellations that should be detected by the system are described
by a set of rules. SA conforms to matching data observed from the
environment against these rules, whereby a matched rule corresponds
to the detection of a specific real-world situation instance.

(1) Configuration CSI requires domain experts to specify templates
describing the situations of interest, so-called Situation Evolution
3¢sisituation-awareness.net

4Therefore, from now on we will use the terms social media message and
its Twitter-specific equivalent rweet interchangeably.

Shttp://www.latimes.com/nation/nationnow/la-na-nn-hawaii-storm-iselle-
juliio-20140808-story.html

Shttp://www.bbc.com/news/uk-scotland-28739164

Thttp://newyork.cbslocal.com/2014/08/13/flash-flood-watches-warnings-in-
effect-as-heavy-rain-drenches-parts-of-tri-state/



Data Set Purpose/Event Time Period Service Remarks
GeneralDisasters | general Twitter stream monitoring for English disaster-related key- | 07/31/2014 — | Twitter > 7.3 x 10
words (Typhoon, Hurricane, Flooding, #Typhoon, #storm, #typhoon, | 10/31/2014 Streaming API | tweets
#flood, flood, spring tide, windstorm, disaster) & Twitter4]
HawaiiHurricanes | Hurricanes Iselle and Julio and the tropical storm Genevieve | 08/09/2014 — | Twitter ~ 212.600
passing Hawaii (by filtering tweets according to the keywords: | 08/21/2014 Streaming API | tweets
Hurricane, #Hurricanelselle, #HurricanePrep, #updatehurricaneiselle, & Twitterd]
#hiwx, #HIGov, Iselle, #Genevieve, #lselle, #Julio, #HIWX, #HIWx)

Table T
OVERVIEW OF COLLECTED REAL-WORLD DATA SETS.

Types (SETs) [24], which are formulated in terms of a suitable
Domain Ontology. Due to performance considerations, we decided to
favor an object-relational implementation in CSI, as opposed to the
semantic web technologies employed in our previous SAW frame-
work BeAware [21] (namely RDF, the graph database Allegrograph,
Lisp and Prolog), motivated by our comparative performance evalua-
tion of the two approaches in [22]. Therefore, we use a UML-based
approach for ontology engineering [25], employing the model-driven
development tool Visual Paradigm® as OntologyDesigner. Our SAW
Core Ontology is based on [26], whereby new application domains
can be incorporated easily by simply inheriting from our base classes,
such as Object, Situation and Action. After ontology engineering, the
corresponding database schemes, Data Access Layers, and persistence
mappings can be automatically generated by Visual Paradigm. For
our current implementation, we employ a postgreSQL database with
the spatial extension postGIS, Java for implementing the framework
logic, the OR-mapping framework Hibernate’, and the business rules
platform JBoss Drools Rules'®.

(@ SET Modeling After configuring the SAW framework towards
a specific application domain, domain experts need to populate the
Situation Evolution Type Knowledge Base (KB) with the sought-
after SETs. A SET models the different potential evolutionary states
of a situation, i.e., allows to track a crisis situation from its emergence
(e.g., the situation Hurricane threatens inhabited area is triggered
by the formation of a hurricane moving towards inhabited landmass)
through its climax (e.g., the hurricane makes landfall and causes
damage, such as power outages and flooded roads) to its clearance
(e.g., power is restored). Thus, it corresponds to a Finite State
Machine (FSM) describing the different szates of a situation (termed
Situation State Types, short SSTs), which correspond to a set of
Event and Object Types (e. g., PowerOutage, City) in specific relations
(e. g., the spatial relations Overlapping, Close, the temporal relation
Before), and the possible transitions between these states [24], [27].
In order to facilitate SET specification and mitigate the knowledge
acquisition bottleneck, we devised SEM? Suite, a tool suite support-
ing an interactive and incremental specification of such SETs [28].
A screenshot of a SET specified in SEM? Suite is shown in Fig. 2,
depicting a SET capturing potential SSTs encountered in expectation
of, during and after a hurricane disaster (exemplarily showing also
the specification of the SST “PowerOutageInCity”, and an aggregate
SST based thereupon, “PowerOutagelnArea”). In order to enable
automated Situation Assessment, SEM> Suite compiles each of these
SSTs to a rule supplied to the Situation State Assessor’s rule engine,
and stores the specified SETs in the the Situation Evolution Type
KB, which is used at runtime by the Situation Evolution Assessor
to reason upon their defined FSMs to infer evolving situations.
Situation Assessment At runtime, SA is performed in the following
fashion, implementing the JDL data fusion model [17]:

JDL LO. The @ Sensing Level retrieves various observations from
the environment (e.g., measurements obtained from wind or humidity
sensors, or satellite images).

8http://www.visual-paradigm.com
%http://hibernate.org
1Ohttp://www.drools.org

JDL L1. The (%) Perception Level performs object assessment, i.e.,
infers the monitored real-world Objects from these measurements
(e.g., reconstructs a hurricane’s location from satellite data).

JDL L2. The (5) Comprehension Level infers the overall situational
picture based on analyzing the objects interrelations, which is im-
plemented in a two-tier fashion: First, the Situation State Asses-
sor aims at detecting currently on-going situations: Matched rules
(corresponding to a specific SST) trigger the creation of a Sifuation
State instance, i.e., a snapshot of a real-world situation. Second, the
Situation Evolution Assessor performs situation evolution tracking.
Based on reasoning on the SETSs stored in the Situation Evolution
Type KB, the currently detected Situation States are compared with
previously assessed situation instances, in order to infer whether the
currently assessed situation snapshots correspond to novel situation
instances or to an evolution of already detected situations [24].
JDL L3. In order to take the adequate counteractions, the @
Projection Level aims at forecasting the encountered situations’ devel-
opment (e.g., if already several mudslides and high water levels have
been reported and the weather forecast predicts prolonged rainfalls,
the situation will likely escalate and thus demand preventive action,
such as securing dams). Therefore, the Situation Evolution Predictor
reasons upon currently on-going Situation Evolutions, forecast data
(e.g., weather forecasts), and potentially historic Situation Evolu-
tions (i.e., historic situations are employed to compute the most
probable situation evolution).

B. crowd®? — Incorporating Crowd-Sensing

Whereas in the hurricane scenario described above, some SSTs
can be assessed from authority-specific hardware sensors (e. g., the
detection of a hurricane formation, and the projection of its likely
movement, can be accurately computed from various weather sensors
and satellite sources), the assessment of actually encountered damage
(as well as the determination of non-affected areas and needed
resources) is largely based on human reports and observations. We
will thus elaborate on how relevant observations can be retrieved
from SM, and serve in the inference of the situational picture, i.e.,
we seek to fulfill the specified SETs with observations from SM.
@ Crowd-Sensor Management [C.1] & [C.4] — Retrieving
Potentially Relevant Messages. Authority sensors, no matter whether
delivering structured data (such as obtained from different kinds
of hardware-sensors), or unstructured, i.e., free-form textual content
(such as contained in protocols), are dedicated to record data related
to the domain-tasks at hand. Contrastingly, the inclusion of crowd-
sensed SM content introduces novel challenges to the Sensing Level
(JDL LO) due to the untargetedness of SM: As SM users may chat
about virtually any topic, actual content of potential relevance needs
to be determined beforehand. To address the monitoring requirements
of large-scale applications, the Crowd-Sensing Platform can be
configured to run dedicated adapters for different SM platforms and
their filtering components on an Apache Storm'' cloud, allowing for
distributed processing meeting real-time demands. Our implementa-
tion is currently focused on Twitter, providing two kinds of adapters:
One for continuous monitoring over the Twitter Streaming API (using

https://storm.apache.org
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the library Twitter4J'?), another one for post-event data gathering
over the Twitter Search API. The adapters retrieve content matching
specific Search Terms (comprising keywords and potentially an area
of interest, i.e., a geographical boundary box), and are steered by the
Sensor Manager.

To address [C.1], i.e., the quickly changing nature of SM, a
SearchTerms Adapter aims at performing adaptive keyword se-
lection. As the analysis of our domain data sets revealed, crises
typically trigger the adoption of crisis-specific hashtags: In the
HawaiiHurricanes dataset, for instance, 4728 tweets contained the
crisis-specific hashtag #Iselle, but not the general hashtag #hurricane
(98% of these did not even comprise the word ‘hurricane’ at all). Such
specifically marked situational update information may be missed by
general disaster-related keywords (e.g., by just filtering for messages
comprising “hurricane”). However, our analysis showed that such
crisis-specific hashtags can be inferred from their emerging co-
occurrence with general disaster-related keywords: Fig. 3 plots the
tweet intensity on hashtag-filtered subsets from the GeneralDisasters
data set over time, whereby this plot actually allows to reconstruct the
different hurricane events that occurred in 2014 (which matches the
“ground truth”, i.e., the records of the National Hurricane Center”):
As peaks occur for tweets using the hashtag #hurricane, a smaller
peak can be observed at the same time for tweets containing both,
the general hashtag #hurricane, as well as a hashtag assembled from
the name of the hurricane happening at that time (e. g., #Iselle). We
could observe similar behavior in other data subsets on typhoons
and other types of crisis (not shown here due to space constraints).
Therefore, the SearchTerms Adapter seeks to detect such emerging
hashtag correlations, upon which the Sensor Manager may spawn
new adapter instances tracking for crisis-specific hashtags.

The Sensor Manager acts as the central interface for realizing
both JDL L4 and L5 functionality, thereby addresses [C.4]: Based on
a (partially) assessed or projected situation, the Sifuation Evolution
Assessor or the Situation Evolution Predictor may seek to retrieve
missing or additional information over SM channels (e.g., if a
hurricane or storm occurred and power outages have been reported,
the system actively searches for tweets reporting damage or seeking
help from the affected area, as sketched in in Fig. 1). Thus, these
components specify a situation profile comprising the location and
information types of interest (elaborating on the idea of the initial
incident profile proposed in [10]). This request is supplied to the
Sensor Manager, which translates this situation profile to a corre-
sponding Adapter keyword set. Besides that, based on the operator’s
current information need, she may wish to issue specific queries,
which are also propagated to the Semsor Manager responsible for
query expansion and configuring the appropriate Adapter instances.

Furthermore, the Crowd-Sensing Platform performs an initial
quality Filtering (comprising Spam filtering, i.e., excluding the con-
tent of blacklisted users and sources), such as excluding (insurance)
advertising tweets, for example [T.6].

Semantic Preprocessing [C.2] & [C.4] — Making Sense
of Retrieved Messages. After storing the retrieved SM messages
in a central Tweet Repository, the next processing step comprises
the Semantic Annotation Pipeline, i.c., performs Natural Language
Processing (NLP) on the actual message text. For this step, crowd

employs the popular NLP software framework GATE [29], which
allows for a custom configuration of various annotation pipelines,
and its extension fine-tuned towards the linguistic peculiarities of
Twitter content, TwitlE [30]. As opposed to open-domain Information
Extraction (IE) tasks, for the application domain of disaster man-
agement, a priori knowledge of the different information types of
interest can be employed, as has been demonstrated in [31] for the
identification of seeker and supplier behavior in Twitter during crisis
situations (termed domain-dependent analysis of message content).

R2http://twitterd].org
Bhttp://www.nhc.noaa.gov/data/tcr/index.php?season=2014

For the tasks of disaster management, the following categories of
information are of primary interest [19]: (i) reports on the current
state of infrastructure and (ii) on different types of hazards, and (iii)
requests for and supplies of resources or help. In order to extract
these information, we pursue an ontology-based semantic annotation
approach [C.2], by employing a domain ontology for annotating
information entities in tweets, such as infrastructure entities (e. g.,
mentions of bridges, buildings etc.), or natural phenomena (e. g.,
environmental hazards such as flooding or hurricanes). Our current
implementation bases on and extends the flooding-specific ontology
proposed in [32] (an excerpt of which is shown in Fig. 4), which
we modeled in RDF, and is loaded into GATE during the annotation
phase. Also general open-domain knowledge for annotation purposes
from DBpedia' is integrable, for instance for the inference and
annotation of proper nouns and proper names (e. g., the Everglades,
Microsoft), by configuring the DBpedia Spotlight plugin'® into the
annotation pipeline. Our basic annotation pipeline consists of the clas-
sical NLP steps of tokenization, stopword removal, Part-of-Speech
(POS) tagging, stemming, Named Entity Recognition and Classifi-
cation (NERC) based on ontological and Gazetteer-based lookups,
resulting in domain-grounded annotations.The mapping from plain
text to ontological concepts allows to resolve syntagmatic relation-
ships (e.g., synonyms) and language heterogeneity, an important
issue in SM [33], and particularly crucial in disaster management
[5]: To adapt the processing pipeline towards different languages,
the text preprocessing components (stopword removal, POS tagging,
stemming) need to be configured towards the language at hand.
Furthermore, the ontological classes need to be annotated with textual
labels of the corresponding language, whereas the overall annotation
pipeline remains unchanged.

Upon this initial semantic interpretation, the overall fopic, time
and location of each tweet need to be determined, i.e., it needs
to be inferred what has happened where and when, which may be
supported by a situative context obtained from a feedback loop from
the comprehension or projection level [C.4]. This spatio-temporal-
thematic grounding is performed by three dedicated components, i.e.,
a Topic Tagger, a Temporal Tagger, and a Geo-Tagger. The latter
two are motivated by the fact that a tweet’s metadata on its creation
timestamp and its user’s location need not necessarily correlate with
its content. Therefore, the Temporal Tagger aims at resolving the
tweet content’s time span, i.e., performs temporal grounding, which
is a key requirement in order to correctly interpret (and discard)
messages such as [T.2].

The Geo-Tagger aims at anchoring a tweet to one or multiple ge-
ographical locations, i.e., performs spatial grounding of the reported
event. Therefore, it potentially needs to incorporate the four different
location types encountered in tweets, i.e., User’s Location Profile
(e.g., the user’s home town specified in her profile), User’s Current
Location (if the tweet has been sent from a mobile device), Locations
in Text (any location mentioned in a text, which could also be, e. g.,
‘London Press’) and Focused Locations (locations mentioned in text
that are indeed the locations of mentioned events) [34] and finally
decide upon which location(s) the tweet should be mapped to. In
[T.2], the Geo-Tagger should detect “near New Orleans” as focused
location, and thus map the hurricane event to the area around New
Orleans. All textually specified locations furthermore require toponym
resolution or geo-coding, i.e., the mapping of the location name to
the actual geographic positions (comprising latitude and longitude).
For this task, crowd®” employs the GeoNames ontology and geo-
coding service'S. However, both geo- and non-geo-ambiguity (i.e.,
common words need to be distinguished from proper names, e.g.,
Reading may refer to a verb or a city in the UK), as well as the
ambiguity of location names (e.g., Sydney may refer to a city in

4http://dbpedia.org
Shttps://github.com/jendarybak/GATE-DBpedia_Spotlight
16http://www.geonames.org



Australia or Canada) [35], require additional contextual information.
Therefore, feedback-loops from the subsequent processing levels are
used in order to provide additional context, thus addressing [C.4]: For
instance, if a specific tweet in question is missing location mentions,
but the User’s Location Profile is set to New York, U.S., and a
situation has been assessed that a severe flooding event is happening
in New York, which matches that tweet’s content, the tweet may be
consequently annotated with the location New York.

Based upon NERC performed by the Semantic Annotator in
the previous step, these semantic annotations are employed in
the subsequent Informativeness Filtering. Whereas previously pro-
posed approaches for informativeness filtering predominantly suggest
machine-learning based methods operating on pure text vectors (e. g.,
[36], [14]), we seek to consider the semantics of the tweet (in order
to resolve synonyms, complex relations and negations, e.g., mapping
the phrases “no electricity”, “without power” [T.10], “w/o power”,
and “damage ...to ...power lines” [T.8] to the ontological concept
PowerOutage) for classifying them according to the following cate-
gories:

— off-topic: Tweets which are not related to a disaster, but
retrieved since matching the Adapter’s keywords, which are used
in a different semantic context, such as [T.1] and [T.5].

— on-topic, irrelevant: Tweets that are related to the disaster,
but apparently do not contain on-the-ground or situational update
information. These mostly correspond to emotionally focused tweets
commenting on the disaster, which, however, may be of value for
characterizing the evolutionary phase and severity of a crisis, such as
[T.7].

— on-topic, relevant: This category comprises tweets which con-
tain crisis-related information, such as [T.3-4], [T.8-11].

To assign a Semantically Annotated Tweet to one of these
categories, the Quality Assessor aims at determining its information
content: It computes dedicated quality metrics which aggregate over
the encountered entity annotations, i.e., annotations of ontologically
relevant information, such as mentions of infrastructure elements
(e. g., bridges, buildings), crisis preparation, mitigation and recovery
actions, and natural phenomena (e.g., flooding, hurricane). Thus,
the mentioning of a location or infrastructure entity may increase
a tweet’s information content value, whereas emotional expressions
(e.g., the phrases ‘pray for’, emoticons such as *;)”), for example,
may decrease this value. This approach has been motivated by
findings based on a manual inspection of large crisis data sets from
Twitter reported in [19], where it has been concluded that tweets that
comprise situational update information, and have been posted with
the aim to broadcast these information, contain higher information
content, and are more often marked with location information (e. g.,
[T.9]), than commentary tweets (e. g., [T.7]).

Therefore, we propose a dedicated QualityAssessor component,
which comprises a QualityMetricCalculator that can be configured
towards various MetricCalculationStrategies. Whereas our initial ex-
periments on this knowledge-based Informativeness Filtering yielded
promising results w.r.t. the identification of disaster-situation relevant
tweets, we currently experiment with incorporating suitable Quality
Metrics and their thresholds for category assignment: For instance,
the co-occurrence of temporal information, location information,
disaster types and infrastructure or rescue action entities in a tweet
could be attributed with larger weights. Furthermore, more specific
location information, such as Pahoa and Puna (e.g., in [T.9]), should
be attributed with larger weights than coarse-grained information such
as Hawaii.

(9) Message Aggregation [C.2] & [C.4] — Grouping Related
Observations. After semantic-based Quality and Informativeness
Filtering, only the Relevant Annotated Tweets are retained for the
further processing steps: In order to infer the underlying real-world
events discussed in retrieved messages, i.e., perform JDL L1 Object
or Event Assessment, similar messages will be grouped (following
the assumption that the underlying real-world event will be sensed

by multiple crowd-sensors observing the same event), which also
follows the finding that SM information is mainly of use on an
aggregate level [5]. Whereas most crowd-sensing approaches perform
clustering based on text vectors, for instance employ the cosine-
similarity between the tweets’ word vectors (e. g., [12]), we plan to
investigate on how we can incorporate features derived from semantic
annotations in the clustering procedure [C.2]. Therefore, crowd>“’s
Message Aggregation component consists of a Feature Generator,
allowing for the specification of custom features, and a general
Cluster Framework, allowing to employ different cluster algorithms.
Whereas the Cluster Framework simply returns sets of tweets that
have been determined to be similar w.r.t. the defined features, i.e.,
should presumably comprise tweets discussing the same underlying
real-world event, the Keyword Extractor aims at identifying common
terms and keywords from this tweet set, resulting in a so-called Story
(following the terminology proposed in [12]), i.e., a set of tweets
presumably discussing the same topic, and keywords or entities that
can be considered as descriptive of this tweet cluster.

@ Event Detection & Tracking [C.3] & [C.4] — Inferring Real-
World Events From Grouped Observations. In order to finally infer
the underlying real-world event that is presumably discussed within
this tweet cluster, suitable spatio-temporal-thematic descriptors need
to be extracted from this Story [37], i.e., the system needs to
determine what has happened where and when. This is similar to
what has been performed during the Message Pre-Processing phase
on a per-message basis, but in this phase needs to be inferred from
a set of tweets, which is performed by a Topic Fencing, a Geo-
Fencing and a Temporal Fencing component, respectively, ultimately
yielding a spatio-temporal-thematic description of the inferred real-
world Events. From Stories shown in Fig. 1, for instance, the
following real-world events can be inferred: Tweets mentioning the
damage after Hurricane Iselle passed the Hawaiian islands, tweets
grouping around the event of the tropical storm Bertha crossing UK,
and tweets mentioning the flooding of Long Island.

In order to be interpretable for the Situation State Assessor, these
Event-level descriptions need to be mapped to Objects of the Domain
Ontology. Thus, the Object State Generator attempts to map events to
the Domain Ontology, and instantiate corresponding Object States.
Finally, the Object Evolution Detector needs to infer whether the
detected Object State corresponds to a new, i.e., previously unseen
object, or denotes the evolution of an existing object, finally yielding
the inferred CrowdObjects.

It is noteworthy to mention that a single Story may describe
multiple Sub-Events, characterized by specific subclusters on these
subjects within the Story, and thus trigger the instantiation of multiple
Objects. The stories depicted in Fig. 1, for instance, trigger the instan-
tiation of the Objects Power Outage and Fallen Trees due to an Event
Hurricane (hurricane Iselle in Hawaii), and the Objects Torrential
Rain and Flooding due to another Event Hurricane (hurricane Bertha
in UK). Ultimately, the correlation of evolving Events and Objects,
as triggered by disasters and discussed in Stories, could potentially
provide a means for learning SETs from the crowd, i.e., crowd-based
knowledge acquisition.

Furthermore, situational update information, posted by on-the-
ground observers, is actually highly sparse in SM content [C.3].
Therefore, these highly valuable information may be lost if we restrict
our system to solely operate on aggregated content, which will be
likely dominated by general news and comments, i.e., establish rather
coarse-grain, event-level information. On the contrary, aggregation
increases the confidence in the reported events. Therefore, we pro-
pose an aggregation-segregation-based approach, by introducing an
additional Event Miner component: After confirming the general
Event context based on Message Aggregation (“net-fishing” related
tweets) or a feedback-loop from Situation Assessment or Situation
Prediction [C.4], the Event Miner specifically seeks to retrieve single
tweets which comprise such highly-relevant situational information
(“line fishing” specific tweets), such as [T.11], which should be



identifiable based on their high information content. These may
individually trigger the instantiation of the corresponding Crowd
Objects (e.g., the Object “DownedTrees” with location Kapoho,
which has been only mentioned in a single tweet in our data set,
notably [T.11], out of 82 tweets reporting on hurricane damage in
Kapoho).

Object Integration & Situation Assessment — Merging
crowd-sensed events with other information sources.

Finally, Crowd Objects may be fused with Authority Objects, i.e.,
data obtained from authority sources, and ultimately serve as input
for situation assessment and projection. Fig. 1 shows an example
situation that can be derived from the HawaiiHurricanes data set,
depicting the assessment and evolution of a disaster situation instance
capturing and summarizing the chain of events triggered by Hurricane
Iselle’s landfall on Big Island, which caused major power outages and
gradual power restoration due to fallen trees in several communities
on the East side of Big Island.

IV. OUTLOOK

In the present work, we devised the architecture of a
SAW system for disaster management, which integrates both,
authority sensors, and crowd sensors retrieving disaster-related
information from SM. We contributed concepts for enhanc-
ing the self-adaptivity of the system and determining event-
and situation-level context by highlighting potential feedback
loops, which for instance aim at complementing currently
partially assessed situations by spawning new crowd-adapters.
Whereas our concepts are backed up by initial case studies
on real-world Twitter data, further large-scale studies on
monitoring different disasters are required to evaluate the
applicability towards various types of crisis, determine optimal
configurations for the different crowd-sensing and -perception
components, and study their potential and limitations.
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