
A GENERATOR FRAMEWORK FOR DOMAIN-SPECIFIC
MODEL TRANSFORMATION LANGUAGES

T. Reiter, E. Kapsammer, W. Retschitzegger
Dept. of Information Systems, Johannes Kepler University, Linz, Austria

reiter@ifs.uni-linz.ac.at, ek@ifs.uni-linz.ac.at, werner@ifs.uni-linz.ac.at

W. Schwinger
Dept. of Telecooperation, Johannes Kepler University, Linz, Austria

wieland.schwinger@jku.ac.at

M. Stumptner
Adv. Computing Research Center, University of South Australia, Adelaide, Australia

mst@cs.unisa.edu.au

Keywords: Domain-specific languages, model transformation, QVT, MDA, workflow patterns.

Abstract: Domain specific languages play an important role in model driven development, as they allow to model a
system using modeling constructs carrying implicit semantics specific to a domain. Consequently, possibly
many reusable, domain specific languages will emerge. Thereby, certain application areas, such as business
process engineering, can be jointly covered by a number of conceptually related DSLs, that are similar in a
sense of sharing semantically equal concepts. Although, a crucial role in being able to use, manage and
integrate all these DSLs comes to model transformation languages with QVT as one of their most prominent
representatives, existing approaches have not aimed at reaping benefit of these semantically overlapping
DSLs in terms of providing abstraction mechanisms for shared concepts. Therefore, as opposed to a general-
purpose model transformation language sought after with the QVT-RFP, this work discusses the possibility
of employing domain-specific model transformation languages. These are specifically tailored for defining
transformations between metamodels sharing certain characteristics. In this context, the paper introduces a
basic framework which allows generating the necessary tools to define and execute transformations written
in such a domain-specific transformation language. To illustrate the approach, an example language will be
introduced and its realization within the framework is shown.

1 INTRODUCTION

Model transformations play a key part in the success
of model engineering in general, and for instance
OMG’s Model Driven Architecture (MDA) in
particular. Applying MDA, the transition between
PIM and PSM is facilitated by a model
transformation. In an effort to standardize a
language for specifying such model transformations,
the OMG issued the QVT-RFP (OMG, 2002)
(Queries/Views/Transformation). The QVT
language allows writing transformation
specifications between MOF-based metamodels. A
QVT engine is then able to execute these
transformations and create (or update) a target model

from a source model. At the time of writing, the
adoption of a QVT standard is in its final stages, but
various implementations of QVT-like languages are
available, such as (Bézivin, 2003), (Marschall,
2003), (INRIA Triskell, 2004). However, it is still to
be seen whether a final standard finds industry-wide
acceptance in the form of transformation engines, or
whether vendor specific interpretations or even
adaptations of the standard will emerge.

At present, the situation is somewhat comparable
to the so-called ‘method wars’ in the nineties
(Thomas, 2003), where different modeling methods
like OMT, Booch, and so forth, were competing for
standardization and adoption in the community. The
struggle finally resulted in the emergence of the
Unified Modeling Language (UML), which

27

nowadays can be seen as the standard modeling
language everyone can (more or less) agree on. The
‘more or less’ refers to developers who find the
recent UML 2.0 version a too large and to wide-
scoped standard to be reasonably applicable in
software development. It can be argued, that as
opposed to such general-purpose modeling
languages, DSLs (domain-specific languages), for
instance in the form of UML profiles or custom-built
MOF-based metamodels, can contribute
significantly to make model-driven software
development work efficiently.

Based on this rationale and the intent to
capitalize on semantically equivalent concepts
inherent in various DSLs, this paper suggests the
employment of domain specific model
transformation languages (DSMTLs), which can
simplify certain transformation tasks by offering
appropriate abstraction mechanisms for such shared
concepts. Hence, DSMTLs are tailored for certain
recurring transformation tasks among a number of
languages (metamodels) covering same or similar
domains.

However, the focal point of this paper is not on
inventing a fully-fledged DSMTL for some family
of DSLs, but on motivating the approaches
applicability and on furthermore proposing a
generator framework that allows for the efficient
implementation of DSMTLs. Nevertheless, as a
running example a simple DSMTL is employed
throughout the paper to motivate our intent and
serve as a proof of concept for the application of the
generator framework.

The rest of this paper is structured as follows:
Section 2 will discuss the applicability of domain
specific languages for model transformations,
followed by Section 3 giving an overview of a
framework for the generation of DSMTLs. Section 4
gives an example of how a DSMTL transformation
definition is rendered executable. Lessons learned
throughout the implementation of a prototypical
framework are laid out in Section 5. Section 6 gives
an overview of related work on that topic, and
section 7 concludes with an outlook on future work.

2 DOMAIN SPECIFIC
TRANSFORMATION
LANGUAGES

Domain specific languages focus on a narrow
domain only, and can therefore take certain
assumptions about a domain. For instance, terms and

concepts of a certain domain that implicitly carry
specific semantics are immediately reused. Hence,
the main advantage of a DSL is that it is accessible
for persons having knowledge in a certain domain,
but who are laymen (non-programmers) to general
modeling per se. The disadvantage of DSLs is that
considerable effort goes into devising and
implementing them, as for every DSL a set of tools,
such as parsers, compilers or debuggers, which
support their application are required.
The idea of employing languages tailored to certain
domains is not a new one (Landin, 1966), and
numerous DSLs have been devised since.
Meanwhile, the DSL approach has also propagated
into the model engineering community. Actually,
considerable controversy is abound in terms of
whether MDD (model-driven development) should
focus on a general-purpose modeling language,
namely UML, or make use of a number of smaller,
domain-specific languages expressed as
metamodels.

In any case, model transformation technology
contributes an essential part to the successful
application of either approach. As opposed to a QVT
language, which can be considered as a general-
purpose model transformation language, a DSMTL
offers high-level transformation language primitives.
Through this raise in abstraction, transformation
tasks can be made easier to describe and understand,
especially considering the laymen factor. An
example for a DSMTL would be some kind of
‘refactoring language’, that would allow to refactor
programs written in a certain object-oriented
programming language. For instance, certain
common refactorings like changing ‘for-loops’ into
‘while-loops’ could be abstracted by that DSMTL.
Furthermore, a DSMTL can find application when
certain model transformation tasks do not require a
full blown query language like OCL, but specialized,
recurring queries suffice.

Although existing transformation languages
allow defining procedure-like ‘helper functions’ that
can for instance sum up the above mentioned
functionalities, these would still be written in a
general-purpose language. An important aspect in
developing a DSL is to explicitly narrow the scope
of a language, and disallow certain actions that
would be possible in a general-purpose language.
This deliberate infringement can avoid a certain
language from being misused in a certain context.
Examples for such misused DSLs are various
scripting languages, which for instance too often
prove malicious on the internet in the form of
worms, ad pop-ups and the like.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

28

To give a tangible example, in the following a
simple DSMTL applied to a concrete transformation
task is introduced. In this respect, domain specificity
refers to the notion that the example DSMTL is
tailored to be applicable for DSLs used for
describing workflows, such as BPEL (BEA, 2003),
UML-AD (OMG, 2005), WSFL (Leymann, 2001),
XLANG (Thatte, 2001) and the like. Hence, the
example DSMTL, which in the following will be
referred to as WFTL (“workflow transformation
language”), can capitalize on incorporating recurring
patterns that emerge when specifying
transformations from these workflow languages onto
for instance UML Activity Diagrams (Kramler,
2005). To be able to identify such common patterns,
the associated workflow languages have to cover
certain semantically equivalent concepts (Fig. 1).

...
WSFL

BPMN
XPDL

XLANG
BPEL

Workflow Domain

UML-AD

Specification
Languages

implementedBy

…
Workflow Patterns

AND AND

Sequence
Synchronization Parallel Split

...
WSFL

BPMN
XPDL

XLANG
BPEL

Workflow Domain

UML-AD

Specification
Languages

implementedByimplementedBy

…
Workflow Patterns

AND AND

Sequence
Synchronization Parallel Split

…
Workflow Patterns

ANDAND ANDAND

Sequence
Synchronization Parallel Split

Figure 1: Workflow patterns covered by workflow
languages.

Appropriate abstraction mechanisms for the WFTL
can for instance be built upon workflow patterns
inherent in several workflow languages, such as
those proposed by (van der Aalst, 2003), which
capture concepts like parallelism, sequential
execution, synchronization, and so forth. The
incorporation of these patterns can be seen as
domain-specific assumptions representing the
implicit semantics carried by the syntactic elements
of the respective DSMTL. Hence, the DSMTL has
to offer syntax that allows to semantically bind the
respective concepts in the various workflow
languages onto the generic workflow patterns.
Taking the WFTL code samples in Figure 2 below,
the use of the high-level §SeqExec statement binds
all BPEL ‘Activities’ contained in Sequence, and
implicitly maps them onto a semantically equivalent
UML-AD representation consisting of ActionNodes
connected by Transitions. The Activities of the BPEL
Flow are treated analogously.

WFTL UML-ADBPEL

<sequence>
<invoke>

…
</invoke>
<invoke>

...
</invoke>
<receive>

…
</receive>

</sequence>

<flow>
<receive>

…
</receive>
<assign>

…
</assign>
<invoke>

…
</invoke>

</flow>

§ParExec(Flow.activity)
ANDAND

§SeqExec(Sequence.activity)

WFTL UML-ADBPEL

<sequence>
<invoke>

…
</invoke>
<invoke>

...
</invoke>
<receive>

…
</receive>

</sequence>

<flow>
<receive>

…
</receive>
<assign>

…
</assign>
<invoke>

…
</invoke>

</flow>

§ParExec(Flow.activity)
ANDAND

§ParExec(Flow.activity)
ANDAND ANDANDAND

§SeqExec(Sequence.activity)§SeqExec(Sequence.activity)

binds

binds

Figure 2: Workflow patterns as High-level WFTL
Statements.

Although possible, an attempt to express the high-
level constructs as depicted above in a general-
purpose model transformation language would
doubtlessly be more complicated. An imperative
approach to express the §SeqExec pattern for
instance, would possibly result in some form of loop
iterating over the nodes to establish transitions
between them, whereas a declarative definition
might be counter-intuitive to find and understand.

Apart from the code snippets above, in the
following we discuss further concrete syntax
samples of WFTL applied to an actual example
transformation from BPEL to UML Activity
Diagrams. A transformation definition in WFTL
consists of a set of rules, which relate concepts in the
source extent with concepts in the target extent. The
following excerpts of WFTL transformation code
show a transformation rule mapping the BPEL
concept of Process to a semantically equivalent
UML construct, namely Model.

Process2Model (1)
…
variables (2)
UseCase UseCase Use_Cases;
…
mapping (3)
…
Process.name =: Model.name; (4)
…
Model <> UseCase

 A_namespace_ownedElement Core; (5)
…
Process.activity -> *; (6)

The transformation rule’s title is stated in (1).
Following, (2) denotes the instantiation of a
UseCase model element (in the UML Use_Cases
package) and binds it to the UseCase variable. The
mapping (3) keyword specifies that the statements
to follow actually facilitate the transformation logic.
In (4) a value is assigned from left to right. (5) infers

A GENERATOR FRAMEWORK FOR DOMAIN-SPECIFIC MODEL TRANSFORMATION LANGUAGES

29

creating a link of A_namespace_ownedElement
type (in package Core) between model element
instances referred to by the variables Model and
UseCase. (6) explicitly initiates the execution of
transformation rules on every model element
referred to by activity contained in Process.

The above described example shows how a
DSMTL can provide specific constructs, in this case
for the BPEL-to-UML transformation. With this
raise of abstraction, a number of assumptions are
taken that finally tailor the language to its intended
application area. In the case of WFTL, the focus lies
on creating an imperative language with explicit rule
execution ordering and the ability to call sub-
transformations. Such a stand-point can be
reasonably justified when the language’s intended
target audience has a strong workflow engineering
background, and is used to think in an algorithmic,
step-wise manner. Although declarative
transformation definitions can be less verbose,
complex transformations can become somewhat
difficult to comprehend, especially for users who are
not familiar with the declarative style of ‘thinking’.

For reasons of brevity and due to the fact that the
introduction of a full-blown transformation language
is out of scope of this paper, neither the full
language definition (grammar) nor any other
transformation rules than the one explained above
can be elaborated on in this work. Consequently, we
kindly refer the reader to (Reiter, 2005b).
Nevertheless, after having motivated the approach
for DSMTLs above, the following section will
elaborate on our generator framework called Marius,
which plays a key role in partly automating the
realization of DSMTLs.

3 GENERATOR FRAMEWORK

For every DSL developed, an infrastructure making
that language executable has to be created as well.
The development of DSLs is generally following a
so-called source-to-source (Spinellis, 2001)
approach, meaning that code written in the DSL is
translated into intermediary code of a general-
purpose programming language that after
compilation eventually realizes the DSL’s high-level
semantics. To lower the involved effort, frameworks
(cf. Section 6) can be employed, which automate
some of the effort involved in implementing DSLs.
Basically, these language generation frameworks
utilize a parser generator and some code-generation
facility to produce output code. Thereby, the
language developer provides specific semantics by

specifying how constructs in the DSL are mapped
onto an implementation in the general-purpose
language. Analogously, for every DSMTL
developed, an executable implementation of this
language has to be generated, for which a supporting
generator framework is proposed. However, we
narrow the focus from providing a generic solution
to the implementation of a DSL towards a
framework specifically aimed at the implementation
of model transformation languages. This means that
the proposed generator framework offers specific
support for the generation of DSMTLs, which when
using generic language frameworks would require
considerable adaptation and parameterization effort.
For instance, one of the particular assumptions taken
about implementing a DSMTL framework is, that
every generated transformation language will rely on
a number of rules to define transformations.
Furthermore it can be assumed, that every such
transformation rule will require repository access to
query source models and create/update target
models. Consequently, such considerations are
reflected in the architecture of Marius by specific
framework components, which are elaborated on in
more detail in section 3.1 to 3.3.

In addition to the above taken assumption
concerning transformation languages that mainly
specialize the scope of our framework, a number of
general design goals influence architecture and
implementation related issues, too.

First of all, one of our design goals is to provide
a low cost of entry for language definition. Hence,
Marius is aimed at generating text-based languages
by utilizing EBNF grammars, for which simple text
editors suffice. Although nothing impedes the
devising of additional visual syntaxes, such
undertakings are out of Marius’ scope, as DSLs are
typically slim, focused languages that often do not
necessitate a visual syntax per se. Therefore, support
for language definition in terms of MOF 2.0 as
requested by the QVT-RFP is out of scope as well.
Furthermore, enabling higher-order transformations
(transformations of transformation definitions) may
be interesting for general-purpose transformation
languages, but not applicable for DSMTLs.

Secondly, the transformation logic produced by
Marius should be flexible and open. A source-to-
source transformation approach that maps DSMTLs
onto a general-purpose programming language
allows developers to easily analyze, optimize, and
customize the intermediary code, should the need
arise to incorporate special requirements or external
functionalities.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

30

Thirdly, the definition of behavioral semantics
for DSMTL constructs should be possible in a
comprehensible and maintainable way. Hence, a
template-based approach in which code fragments in
the intermediary language are defined by the
developer and assembled by Marius into a
compilable language implementation is taken.

Finally, a design goal is to ensure easy
deployment and application of the generated
DSMTL implementation. Marius assembles
translated DSMTL transformation definitions and
auxiliary code pieces, such as repository access
code, into a single, executable software bundle,
representing a stand-alone model transformer.

Geared towards the above mentioned design
goals, Marius is a prototype implementation
developed for gaining hands-on experience (cf.
Section 5) in implementing domain-specific model
transformation languages. The remainder of this
section deals with describing the Marius generator
framework from an architectural point of view by
explaining how the components it consists of work
and interact.

As shown in Figure 3, the framework consists of
components either associated with build-time,
translation-time or execution-time. At build time, the
implementation of a specified transformation
language is generated. This means, that tools such as
parser and compiler are being built, which during
translation time are being used to generate model
transformers from transformation definitions at
translation time. Finally, at execution time these
stand-alone model transformers are applied to
models stored in a repository.

Apply Model
Transformer

Build Model
Transformer

Build Language
Implementation

Apply Model
Transformer

Build Model
Transformer

Build Language
Implementation

Figure 3: Marius Development Steps.

In the following, the framework’s components and
the activities associated with them will be described
in more detail, according to what ‘time’ of the
development phase they are active.

3.1 Build-time

The starting point for generating a language
implementation is to provide a language definition.
This is accomplished in terms of providing an EBNF
grammar (Fig. 4). This grammar is fed to SableCC
(Gagnon, 1998), an open source parser generator,
which produces a Java-based parser implementation
and tree-walker classes accordingly, which can serve
to visit a parsed syntax tree. However, Marius makes

use of the parser only and omits using the tree
walker classes, as the specification of semantics in
the form of Java code (intermediary language),
directly in the tree walker source code, suffers from
poor readability. Hence, Marius employs a template-
based approach for building a ‘compiler’. Java
Emitter Templates (JET) (Popma, 2004) are used to
generate the compilation output in a source-to-
source transformation.

Template
Generator
Template
Generator

Template
Skeleton
Template
Skeleton

JET
Template

SableCCSableCC

DSMTL
Parser
DSMTL
Parser

DSMTL
Grammar

Figure 4: Build-time Component Generation.

Thereby, Marius utilizes a template generator which
constructs a JET skeleton specific to the DSMTL’s EBNF
grammar that contains generic functionality to
conveniently traverse parse trees and rudimentary method
bodies into which a developer enters the desired Java
output code.

3.2 Translation-Time

During the translation step (Fig. 5), the parser
generated during build-time parses transformation
definitions (1) and passes the in-memory syntax tree
(2) on towards a JET template engine (3). In the next
step, this engine utilizes the JET template (4)
specified previously to generate Java source code
(5), which represents the executable transformation
definitions (6). To ensure maintainability,
traceability comments are incorporated into the
generated code that relate Java code blocks to their
counterpart constructs in the DSMTL transformation
definition. Furthermore, Marius provides a generic
logging mechanism preserving a transformation’s
execution trace by for instance storing
corresponding instances concerning source and
target model elements. Logging can serve useful for
lookup purposes during transformation execution as
well as for subsequent debugging purposes.
Similarly, Marius lays the way for utilizing specific
or external, pre-existing model query mechanisms.
For instance, in case of the WFTL samples
introduced earlier, a custom query resolver is
implemented and used. Code enabling to utilize

A GENERATOR FRAMEWORK FOR DOMAIN-SPECIFIC MODEL TRANSFORMATION LANGUAGES

31

either mechanism is placed into the according
intermediary code by the framework as required.

Figure 5: Generation of Stand-alone Model Transformer.

It is to note that the parsing process includes a check
for syntactical correctness of the transformation
definitions. A semantic analysis, however, is not
performed. Nevertheless, the use of a non-declared
identifier for instance will not result in a translation
error, but will subsequently lead to an unsuccessful
compilation of the JAVA transformation files.

Finally, after a successful compilation, the
resulting class files along with auxiliary classes for
managing repository access, factory classes for
instantiating executable transformations, and generic
framework base-classes are bundled into a .jar file,
constituting a stand-alone, executable model-
transformer (7).

3.3 Execution-Time

As a final point, during execution-time, the
generated model-transformer is put to work (Fig. 6).
This means, that the transformer is executed against
a model repository which holds source and target
models and metamodels. In the case of Marius, the
NetBeans MDR (Netbeans, 2003) is employed.
Repository access functionality is thereby already
incorporated into the stand-alone transformer, and its
execution will result in the generation of a target
model from a source model.

Figure 6: Repository Access & Manipulation.

This involves other components that do not directly
belong to the immediate setup of Marius, namely
readers/writers for source and target documents. An
example thereof is for instance a reader for BPEL
documents, which parses a BPEL source file and
instantiates a model accordingly in the repository,
requiring that a MOF-metamodel for the BPEL
language has been instantiated in the repository prior
to that. In our WFTL example, due to the XML-
based syntax of BPEL, the actual reader parsing
BPEL source files is implemented as an XSLT style
sheet for readability reasons.

4 TRANSFORMATION CLASSES

As mentioned earlier, during translation-time a Java-
based, stand-alone model transformer is being
generated. This section takes a look at the output of
the JET engine, which are the Java transformation
classes. For every transformation rule, one
transformation class is being generated. The
structure of these classes is similar, as determined by
the template they were produced from.

public class Process2Model implements
Transformation { (1)
…
private java.lang.Object UseCase_; (2)
…
public void doMapping() { … (3)
…
//AName2equTrafo START Line 25,
//Column 0
((RefObject)targetBase)
.refSetValue("name" , source);
//AName2equTrafo END (4)

…

targetPackage.refPackage("Core")
.refAssociation
("A_namespace_ownedElement")
.refAddLink((RefObject)source,
(RefObject)UseCase_); (5)
…
source = wrapAttributes(Process_, new
String(".activity")); (6)
…
myIt = source.iterator();
…
while(myIt.hasNext()) {
fromArg = myIt.next();
tr = TrafoGenerator.generate(fromArg,
this);
…
tr.doMapping();
…

Stand-alone
Model Transformer

Metadata
Repository

Reader Writer

BPEL
(XML)

ModelModelModelModelModelModel

Source/Target Documents

UML-AD
(XMI) ...

JET
Template

JET
TemplateJET
Template.java

Stand-alone
Model Transformer

Executable Transformations
DSMTL

Transformation
Definition

DSMTL
Transformation

Definition

DSMTL
Transformation

Definition

JET EngineDSMTL
Parser

Class
FileClass
File.class

Auxiliary
Classes

1

2

3

4

5
6

7

Parse-Tree JET
Template

JET
TemplateJET
Template.java

Stand-alone
Model Transformer

Executable Transformations
DSMTL

Transformation
Definition

DSMTL
Transformation

Definition

DSMTL
Transformation

Definition
DSMTL

Transformation
Definition

DSMTL
Transformation

Definition

DSMTL
Transformation

Definition

DSMTL
Transformation

Definition

DSMTL
Transformation

Definition

DSMTL
Transformation

Definition

JET EngineJET EngineDSMTL
Parser
DSMTL
Parser

Class
FileClass
File.class

Auxiliary
Classes

1

2

3

4

5
6

7

Parse-Tree

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

32

If necessary, the generated Java source files can be
manually fine-tuned. The example below shows
generated Java code corresponding to the WFTL
code sample in Section 2. Note, that for reasons of
clarity the shown code omits exception handling and
assumes, that the variables target, targetBase,
targetPackage, and source have been previously
resolved accordingly. In (1), the class for the
Process2Model rule is declared, and (2) defines a
UseCase_ helper variable. (3) is a framework
method used to implement rule execution. Apart
from a value assignment, (4) shows how comments
are used to establish traces to the original DSMTL
statements. (5) establishes a specific link between
two model element instances. (6) depicts the
resolution of a query (invocation of the
wrapAttributes method) followed by an explicit
invocation of sub-transformation rules, which are
instantiated by a factory (TrafoGenerator).

5 LESSONS LEARNED

This section briefly reports on experiences gained
during the implementation of our DSMTL on basis
of Marius.

To evaluate the applicability of the approach
taken, a case study was carried out which aimed at
transforming BPEL process specifications into UML
Activity Diagrams. First of all, this involved
defining a MOF-based metamodel for BPEL to
consequently be able to instantiate and manipulate
BPEL documents in a model repository. The actual
mapping from BPEL to UML-AD was largely
reverse-engineered from (IBM, 2003). It is to note,
that BPEL is not a laconic language, which means
that to express the same semantic concepts, different
syntactic constructs can be used (e.g. ‘Flow’).
Hence, clean round-trip engineering poses a
challenge and possibly requires additional meta-
information. However, our main focus was to devise
the Marius framework that would allow for
developing a dedicated transformation language
(WFTL) suitable for the task at hand.

Generally, the creation of a domain specific
language can be approached from two sides: A top-
down approach will first define an abstract syntax of
the language to be realized, whereas a bottom-up
approach will start with the writing of concrete
syntax samples, of which eventually a language
grammar will be ‘re-engineered’. The latter
approach is typically the more explorative, best
suited for a rather ‘agile’ approach to the definition
of a transformation language. In iterative cycles,

new language constructs are explored. If applicable,
these are incorporated into the language definition,
which is then used to implement the language by
means of constructing a compiler/interpreter making
the language executable. If a set of test
transformations runs free of errors, the next iteration
can begin. During the development of WFTL this
approach proved to be very applicable and produced
quick results. However, languages developed
according to this approach are in danger of getting
fuzzy and possibly ambiguous, due to the constant
growth of functionality that can result in feature-
creep. Therefore, experience gained in the
development of WFTL has shown how important it
is to refactor the language definition every few
iterations, to avoid such problems. One can see, that
the bottom-up approach taken for developing a
DSMTL, can become problematic when trying to
implement too large, wide-scoped, language
definitions. However, domain-specific languages
have a narrow scope and usually a rather concise
language definition, for which the employed
approach will typically suffice.

6 RELATED WORK

This section will introduce related work in the field
of QVT-like model transformation languages
including yet available implementations thereof, and
frameworks supporting language generation in
general.

For specifying transformations, a distinction
between declarative, imperative and hybrid
languages can be made. Declarative languages allow
to state how the input and the output of a
transformation should be made up, without
specifying how the execution should go about. On
the contrary, imperative languages allow to do just
that, as they let a programmer exactly specify how a
source model should be transformed into a target
model. A hybrid transformation language allows
both declarative and imperative constructs to be
intermingled, for instance a declarative language
such as OCL (OMG, 2003) may be employed for
selecting input model elements by means of pattern
matching, whereas the specification of possibly
complex transformation rules can be facilitated
using imperative statements. A good example for
such a hybrid approach is ATL (INRIA Atlas, 2004).

From an implementation point of view, various
strategies are in use to implement model
transformation engines. For reasons of language
extensibility and to make it easier to comply with a

A GENERATOR FRAMEWORK FOR DOMAIN-SPECIFIC MODEL TRANSFORMATION LANGUAGES

33

final QVT syntax, ATL for instance employs a
virtual machine that operates on a specific byte-code
representation of ATL transformation definitions.
MTF (IBM, 2004) falls into the declarative category
and relies on an EMF-based (Eclipse Project, 2004)
transformation engine that proceeds in two stages
called mapping (evaluate relations by iterating
model instances) and reconciliation (satisfy relations
by deleting/modifying/creating model elements).

Aiming at flexibility, Marius does not enforce a
certain style of transformation definition, but leaves
it up to the user to specify semantics in a template-
based approach. Thereby, a source-to-source
transformation into Java allows for further flexibility
and customization potential.

MoTMoT (Model driven, Template-based,
Model Transformer) is a compiler generating
repository manipulation code from visual
transformation definitions. The compiler takes
models conforming to a UML profile for Story
Driven Modeling (SDM) (Shippers, 2004) and
generates JMI specific Java code. However, only
transformations between models conforming to the
same metamodel are supported. Furthermore,
MoTMoT does not aim at providing a framework for
the generation of DSMTLs in general, but focuses
on integration with the Fujaba tool and on making
transformations specified in SDM executable.

Microsoft’s work on software factories involves
the notion of software product lines, which
essentially means, that according to a domain-
specific language a set of tools is generated to drive
the software development process for fast
application assembly. Although the principle of
software factories aims at the implementation of
domain specific languages, its focus is more wide-
spread and is neither specific to MOF-based DSLs
nor to implementing model transformations engines
as the framework proposed in this paper does.

Sprint (Consel, 1998) is a framework for
designing and implementing domain specific
languages. The development of a DSL is
underpinned by an iterative method encompassing
several distinct steps, which finally result in an
interpreter or compiler. However, the Sprint
framework is not immediately applicable for model-
driven development, nor does it provide specific
support for the implementation of model
transformation languages. Furthermore, it seems that
Sprint’s development method would be a somewhat
heavyweight approach, compared to ours, which is
rather focused on immediate, template-based
realization.

The Kent Modelling Framework (KMF) (Kent,
2004) provides a set of tools to support model driven
software development. KMFStudio supports the
development of modeling tools, OCL4KMF
provides OCL support, and YATL4KMF
implements the QVT-like YATL transformation
engine. Although the infrastructure provided by
KMF can prove highly valuable for implementing
MDD tools, to the best of our knowledge the
framework does not provide a low-cost entry for the
development of DSMTLs through provision of
appropriate language definition, parsing and code
generation facilities.

The Modeling Turnpike Project (Wada, 2005) 0
(mTurnpike) is a framework that allows to define
domain-specific concepts through a combination of
both modeling and programming, with the goal to
raise the layer of abstraction programmers work on.
Although Marius and mTurnpike both build on
template-based code generation, mTurnpike is aimed
towards model-driven development in general and is
not tailored to implement DSMTLs. As an example,
mTurnpike does not immediately provide for an
EBNF-based grammar definition and the
construction of an associated parser.

7 OUTLOOK AND FUTURE
WORK

At current a research prototype of the Marius
framework exists. As a proof of concept, a
transformation language and example transformation
definitions for BPEL-to-UML have been created.
Future work in terms of extending the existing
framework will concentrate on enabling better tool
support for the generated languages. This shall also
encompass to extend the existing architecture to
allow external functionalities and components, e.g.
OCL checkers or String manipulation libraries, to be
better integrated into the implementation of a
language. Furthermore, the framework shall become
more flexible and allow to make use of other
repository implementations than NetBeans’ MDR.
The same applies for specifying a model
transformation language’s semantics not using JMI
(JSR 040, 2002) directly, but equivalent, general-
purpose QVT constructs.

Apart from overhauling the existing prototype,
our future work also focuses on identifying
application areas where the implementation of
domain specific model transformation languages can
prove beneficial. In this respect, some of our current

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

34

research efforts go into the direction of devising
model transformation languages specific to various
model integration tasks (Reiter, 2005a).

REFERENCES

van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Kiepuszewski, B., Barros, A.P. Workflow Patterns.
2003. Distributed and Parallel Databases, 14(3).

BEA, IBM, Microsoft, SAP, Siebel, 2003. Business
Process Execution Language for Web Services
Specificaion. Version 1.1.

Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.,
2003. First experiments with the ATL model
transformation language: Transforming XSLT into
XQuery. 2nd OOPSLA Workshop on Generative
Techniques in the context of Model Driven
Architecture.

Consel, C., Marlet, R., 1998. Architecturing software
using a methodology for language development. Proc.
of the 10th Int. Symposium on Programming
Languages, Implementations, Logics and Programs
(PLILP/ALP '98). Pisa, Italy.

Eclipse Project, 2004. Eclipse Modeling Framework.
http://www.eclipse.org/emf/

Gagnon, E., 1998. SableCC Java Parser Generator,
Version 2.18.2, http://sablecc.org/

JSR 040, Java Community Process, 2002. Java Metadata
Interface (JMI) Specification, http://www.jcp.org/

Landin, P.J., 1966. The next 700 programming languages.
Commun. ACM 9 (3), 157-166.

Leymann, F., IBM, 2001. Web Services Flow Language.
IBM Alphaworks, 2004. Model Transformation

Framework, www.alphaworks.ibm.com/tech/mtf
IBM, Amsden, J., Gardner, T., Griffin, C., Iyengar, S.,

Knapman, J., 2003. Draft UML 1.4 Profile for
Automated Business Processes with a Mapping to
BPEL 1.0.

INRIA Atlas, Université de Nantes, 2004. The ATL
Homepage, www.sciences.univ-nantes.fr/lina/atl/

INRIA Triskell, Université de Nantes, 2004. MTL Engine.
modelware.inria.fr/rubrique.php3?id_rubrique=8

Kramler, G., Kapsammer, E., Retschitzegger, W., Kappel,
G., 2005. Towards Using UML 2 for Modelling Web
Service Collaboration Protocols. Proc. of the First
International Conference on Interoperability of
Enterprise Software and Applications (INTEROP-
ESA'05), Geneva, Switzerland.

Marschall, F., Braun, P., 2003. Model Transformations for
the MDA with BOTL. Proc. of the Workshop on
Model Driven Architecture: Foundations and
Applications, CTIT Technical Report TR-CTIT-03-27,
University of Twente.

Netbeans, 2003. Netbeans Metadata Repository - MDR,
http://mdr.netbeans.org

OMG, 2003. UML 2.0 OCL Specification, Final Adopted
Specification, www.omg.org/docs/ptc/03-10-14.pdf

OMG, 2002. Request for Proposal: MOF 2.0 Queries /
Views / Transformations RFP. ad/2002-04-10.

OMG, 2005. Unified Modeling Language Specification.
http://www.omg.org/uml/

Popma, R., 2004. JET Tutorial Part 1 (Introduction to
JET), JET Tutorial Part 2 (Write Code that Writes
Code). www.eclipse.org/articles/Article-
ET/jet_tutorial1.html

Reiter, T., Kapsammer, E., Retschitzegger, W.,
Schwinger, W., 2005. Model Integration Through
Mega Operations. Proc. of the Int. Workshop on
Model-driven Web Engineering (MDWE2005).
Sydney, Australia.

Reiter, T., 2005. Transformation of Web Service
Specification Languages into UML Activity Diagrams,
Master Thesis. ftp://ftp.ifs.uni-
linz.ac.at/pub/diplomathesis/ reiter.pdf

Schippers, H., Van Gorp, P., Janssens, D., 2004.
Leveraging UML profiles to generate plugins from
visual model transformations. Software Evolution
through Transformations (SETra). Satellite of the 2nd
Intl. Conference on Graph Transformation.

Spinellis, D., 2001. Notable design patterns for domain-
specific languages. The Journal of Systems and
Software 56, p. 91-99.

Thatte, S., Microsoft, 2001. XLANG, Version 1.0,
http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm

Thomas, D., 2003. UML – Unified or Universal Modeling
Language? Journal of Object Technology, Vol 2, No 1.

University of Kent, 2004. Kent Modelling Framework,
http://www.cs.kent.ac.uk/projects/kmf/index.html

Wada, H., Suzuki, J., Takada S., Doi, N., 2005. A Model
Transformation Framework for Domain Specific
Languages: An Approach Using UML and Attribute-
Oriented Programming. Proc. 9th World Multi-
Conference on Systemics, Cybernetics and
Informatics, USA.

A GENERATOR FRAMEWORK FOR DOMAIN-SPECIFIC MODEL TRANSFORMATION LANGUAGES

35

