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Abstract: Domain specific languages play an important role in model driven development, as they allow to model a 
system using modeling constructs carrying implicit semantics specific to a domain. Consequently, possibly 
many reusable, domain specific languages will emerge. Thereby, certain application areas, such as business 
process engineering, can be jointly covered by a number of conceptually related DSLs, that are similar in a 
sense of sharing semantically equal concepts. Although, a crucial role in being able to use, manage and 
integrate all these DSLs comes to model transformation languages with QVT as one of their most prominent 
representatives, existing approaches have not aimed at reaping benefit of these semantically overlapping 
DSLs in terms of providing abstraction mechanisms for shared concepts. Therefore, as opposed to a general-
purpose model transformation language sought after with the QVT-RFP, this work discusses the possibility 
of employing domain-specific model transformation languages. These are specifically tailored for defining 
transformations between metamodels sharing certain characteristics. In this context, the paper introduces a 
basic framework which allows generating the necessary tools to define and execute transformations written 
in such a domain-specific transformation language. To illustrate the approach, an example language will be 
introduced and its realization within the framework is shown. 

1 INTRODUCTION 

Model transformations play a key part in the success 
of model engineering in general, and for instance 
OMG’s Model Driven Architecture (MDA) in 
particular. Applying MDA, the transition between 
PIM and PSM is facilitated by a model 
transformation. In an effort to standardize a 
language for specifying such model transformations, 
the OMG issued the QVT-RFP (OMG, 2002) 
(Queries/Views/Transformation). The QVT 
language allows writing transformation 
specifications between MOF-based metamodels. A 
QVT engine is then able to execute these 
transformations and create (or update) a target model 

from a source model. At the time of writing, the 
adoption of a QVT standard is in its final stages, but 
various implementations of QVT-like languages are 
available, such as (Bézivin, 2003), (Marschall, 
2003), (INRIA Triskell, 2004). However, it is still to 
be seen whether a final standard finds industry-wide 
acceptance in the form of transformation engines, or 
whether vendor specific interpretations or even 
adaptations of the standard will emerge. 

At present, the situation is somewhat comparable 
to the so-called ‘method wars’ in the nineties 
(Thomas, 2003), where different modeling methods 
like OMT, Booch, and so forth, were competing for 
standardization and adoption in the community. The 
struggle finally resulted in the emergence of the 
Unified Modeling Language (UML), which 
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nowadays can be seen as the standard modeling 
language everyone can (more or less) agree on. The 
‘more or less’ refers to developers who find the 
recent UML 2.0 version a too large and to wide-
scoped standard to be reasonably applicable in 
software development. It can be argued, that as 
opposed to such general-purpose modeling 
languages, DSLs (domain-specific languages), for 
instance in the form of UML profiles or custom-built 
MOF-based metamodels, can contribute 
significantly to make model-driven software 
development work efficiently. 

Based on this rationale and the intent to 
capitalize on semantically equivalent concepts 
inherent in various DSLs, this paper suggests the 
employment of domain specific model 
transformation languages (DSMTLs), which can 
simplify certain transformation tasks by offering 
appropriate abstraction mechanisms for such shared 
concepts. Hence, DSMTLs are tailored for certain 
recurring transformation tasks among a number of 
languages (metamodels) covering same or similar 
domains. 

However, the focal point of this paper is not on 
inventing a fully-fledged DSMTL for some family 
of DSLs, but on motivating the approaches 
applicability and on furthermore proposing a 
generator framework that allows for the efficient 
implementation of DSMTLs. Nevertheless, as a 
running example a simple DSMTL is employed 
throughout the paper to motivate our intent and 
serve as a proof of concept for the application of the 
generator framework. 

The rest of this paper is structured as follows: 
Section 2 will discuss the applicability of domain 
specific languages for model transformations, 
followed by Section 3 giving an overview of a 
framework for the generation of DSMTLs. Section 4 
gives an example of how a DSMTL transformation 
definition is rendered executable. Lessons learned 
throughout the implementation of a prototypical 
framework are laid out in Section 5. Section 6 gives 
an overview of related work on that topic, and 
section 7 concludes with an outlook on future work. 

2 DOMAIN SPECIFIC  
TRANSFORMATION 
LANGUAGES 

Domain specific languages focus on a narrow 
domain only, and can therefore take certain 
assumptions about a domain. For instance, terms and 

concepts of a certain domain that implicitly carry 
specific semantics are immediately reused. Hence, 
the main advantage of a DSL is that it is accessible 
for persons having knowledge in a certain domain, 
but who are laymen (non-programmers) to general 
modeling per se. The disadvantage of DSLs is that 
considerable effort goes into devising and 
implementing them, as for every DSL a set of tools, 
such as parsers, compilers or debuggers, which 
support their application are required. 
The idea of employing languages tailored to certain 
domains is not a new one (Landin, 1966), and 
numerous DSLs have been devised since. 
Meanwhile, the DSL approach has also propagated 
into the model engineering community. Actually, 
considerable controversy is abound in terms of 
whether MDD (model-driven development) should 
focus on a general-purpose modeling language, 
namely UML, or make use of a number of smaller, 
domain-specific languages expressed as 
metamodels. 

In any case, model transformation technology 
contributes an essential part to the successful 
application of either approach. As opposed to a QVT 
language, which can be considered as a general-
purpose model transformation language, a DSMTL 
offers high-level transformation language primitives. 
Through this raise in abstraction, transformation 
tasks can be made easier to describe and understand, 
especially considering the laymen factor. An 
example for a DSMTL would be some kind of 
‘refactoring language’, that would allow to refactor 
programs written in a certain object-oriented 
programming language. For instance, certain 
common refactorings like changing ‘for-loops’ into 
‘while-loops’ could be abstracted by that DSMTL. 
Furthermore, a DSMTL can find application when 
certain model transformation tasks do not require a 
full blown query language like OCL, but specialized, 
recurring queries suffice. 

Although existing transformation languages 
allow defining procedure-like ‘helper functions’ that 
can for instance sum up the above mentioned 
functionalities, these would still be written in a 
general-purpose language. An important aspect in 
developing a DSL is to explicitly narrow the scope 
of a language, and disallow certain actions that 
would be possible in a general-purpose language. 
This deliberate infringement can avoid a certain 
language from being misused in a certain context. 
Examples for such misused DSLs are various 
scripting languages, which for instance too often 
prove malicious on the internet in the form of 
worms, ad pop-ups and the like. 
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To give a tangible example, in the following a 
simple DSMTL  applied to a concrete transformation 
task is introduced. In this respect, domain specificity 
refers to the notion that the example DSMTL is 
tailored to be applicable for DSLs used for 
describing workflows, such as BPEL (BEA, 2003), 
UML-AD (OMG, 2005), WSFL (Leymann, 2001), 
XLANG (Thatte, 2001) and the like. Hence, the 
example DSMTL, which in the following will be 
referred to as WFTL (“workflow transformation 
language”), can capitalize on incorporating recurring 
patterns that emerge when specifying 
transformations from these workflow languages onto 
for instance UML Activity Diagrams (Kramler, 
2005). To be able to identify such common patterns, 
the associated workflow languages have to cover 
certain semantically equivalent concepts (Fig. 1).  

 

...
WSFL

BPMN
XPDL

XLANG
BPEL

Workflow Domain

UML-AD

Specification 
Languages

implementedBy

…
Workflow Patterns

AND AND

Sequence
Synchronization Parallel Split

...
WSFL

BPMN
XPDL

XLANG
BPEL

Workflow Domain

UML-AD

Specification 
Languages

implementedByimplementedBy

…
Workflow Patterns

AND AND

Sequence
Synchronization Parallel Split

…
Workflow Patterns

ANDAND ANDAND

Sequence
Synchronization Parallel Split

 
Figure 1: Workflow patterns covered by workflow 
languages. 

Appropriate abstraction mechanisms for the WFTL 
can for instance be built upon workflow patterns 
inherent in several workflow languages, such as 
those proposed by (van der Aalst, 2003), which 
capture concepts like parallelism, sequential 
execution, synchronization, and so forth. The 
incorporation of these patterns can be seen as 
domain-specific assumptions representing the 
implicit semantics carried by the syntactic elements 
of the respective DSMTL. Hence, the DSMTL has 
to offer syntax that allows to semantically bind the 
respective concepts in the various workflow 
languages onto the generic workflow patterns. 
Taking the WFTL code samples in Figure 2 below, 
the use of the high-level §SeqExec statement binds 
all BPEL ‘Activities’ contained in Sequence, and 
implicitly maps them onto a semantically equivalent 
UML-AD representation consisting of ActionNodes 
connected by Transitions. The Activities of the BPEL 
Flow are treated analogously. 
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Figure 2: Workflow patterns as High-level WFTL 
Statements. 

Although possible, an attempt to express the high-
level constructs as depicted above in a general-
purpose model transformation language would 
doubtlessly be more complicated. An imperative 
approach to express the §SeqExec pattern for 
instance, would possibly result in some form of loop 
iterating over the nodes to establish transitions 
between them, whereas a declarative definition 
might be counter-intuitive to find and understand.  

Apart from the code snippets above, in the 
following we discuss further concrete syntax 
samples of WFTL applied to an actual example 
transformation from BPEL to UML Activity 
Diagrams. A transformation definition in WFTL 
consists of a set of rules, which relate concepts in the 
source extent with concepts in the target extent. The 
following excerpts of WFTL transformation code 
show a transformation rule mapping the BPEL 
concept of Process to a semantically equivalent 
UML construct, namely Model. 
 
Process2Model     (1) 
… 
variables      (2) 
UseCase UseCase Use_Cases; 
… 
mapping       (3) 
… 
Process.name =: Model.name;  (4) 
… 
Model <> UseCase 

  A_namespace_ownedElement Core; (5) 
… 
Process.activity -> *;   (6) 

 
The transformation rule’s title is stated in (1). 
Following, (2) denotes the instantiation of a 
UseCase model element (in the UML Use_Cases 
package) and binds it to the UseCase variable. The 
mapping (3) keyword specifies that the statements 
to follow actually facilitate the transformation logic. 
In (4) a value is assigned from left to right. (5) infers 
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creating a link of A_namespace_ownedElement 
type (in package Core) between model element 
instances referred to by the variables Model and 
UseCase. (6) explicitly initiates the execution of 
transformation rules on every model element 
referred to by activity contained in Process. 

The above described example shows how a 
DSMTL can provide specific constructs, in this case 
for the BPEL-to-UML transformation. With this 
raise of abstraction, a number of assumptions are 
taken that finally tailor the language to its intended 
application area. In the case of WFTL, the focus lies 
on creating an imperative language with explicit rule 
execution ordering and the ability to call sub-
transformations. Such a stand-point can be 
reasonably justified when the language’s intended 
target audience has a strong workflow engineering 
background, and is used to think in an algorithmic, 
step-wise manner. Although declarative 
transformation definitions can be less verbose, 
complex transformations can become somewhat 
difficult to comprehend, especially for users who are 
not familiar with the declarative style of ‘thinking’. 

For reasons of brevity and due to the fact that the 
introduction of a full-blown transformation language 
is out of scope of this paper,  neither the full 
language definition (grammar) nor any other 
transformation rules than the one explained above 
can be elaborated on in this work. Consequently, we 
kindly refer the reader to (Reiter, 2005b). 
Nevertheless, after having motivated the approach 
for DSMTLs above, the following section will 
elaborate on our generator framework called Marius, 
which plays a key role in partly automating the 
realization of DSMTLs. 

3 GENERATOR FRAMEWORK 

For every DSL developed, an infrastructure making 
that language executable has to be created as well. 
The development of DSLs is generally following a 
so-called source-to-source (Spinellis, 2001) 
approach, meaning that code written in the DSL is 
translated into intermediary code of a general-
purpose programming language that after 
compilation eventually realizes the DSL’s high-level 
semantics. To lower the involved effort, frameworks 
(cf. Section 6) can be employed, which automate 
some of the effort involved in implementing DSLs. 
Basically, these  language generation frameworks 
utilize a parser generator and some code-generation 
facility to produce output code. Thereby, the 
language developer provides specific semantics by 

specifying how constructs in the DSL are mapped 
onto an implementation in the general-purpose 
language. Analogously, for every DSMTL 
developed, an executable implementation of this 
language has to be generated, for which a supporting 
generator framework is proposed. However, we 
narrow the focus from providing a generic solution 
to the implementation of a DSL towards a 
framework specifically aimed at the implementation 
of model transformation languages. This means that 
the proposed generator framework offers specific 
support for the generation of DSMTLs, which when 
using generic language frameworks would require 
considerable adaptation and parameterization effort. 
For instance, one of the particular assumptions taken 
about implementing a DSMTL framework is, that 
every generated transformation language will rely on 
a number of rules to define transformations. 
Furthermore it can be assumed, that every such 
transformation rule will require repository access to 
query source models and create/update target 
models. Consequently, such considerations are 
reflected in the architecture of Marius by specific 
framework components, which are elaborated on in 
more detail in section 3.1 to 3.3. 

In addition to the above taken assumption 
concerning transformation languages that mainly 
specialize the scope of our framework, a number of 
general design goals influence architecture and 
implementation related issues, too. 

First of all, one of our design goals is to provide 
a low cost of entry for language definition. Hence, 
Marius is aimed at generating text-based languages 
by utilizing EBNF grammars, for which simple text 
editors suffice. Although nothing impedes the 
devising of additional visual syntaxes, such 
undertakings are out of Marius’ scope, as DSLs are 
typically slim, focused languages that often do not 
necessitate a visual syntax per se. Therefore, support 
for language definition in terms of MOF 2.0 as 
requested by the QVT-RFP is out of scope as well. 
Furthermore, enabling higher-order transformations 
(transformations of transformation definitions) may 
be interesting for general-purpose transformation 
languages, but not applicable for DSMTLs. 

Secondly, the transformation logic produced by 
Marius should be flexible and open. A source-to-
source transformation approach that maps DSMTLs 
onto a general-purpose programming language 
allows developers to easily analyze, optimize, and 
customize the intermediary code, should the need 
arise to incorporate special requirements or external 
functionalities. 
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Thirdly, the definition of behavioral semantics 
for DSMTL constructs should be possible in a 
comprehensible and maintainable way. Hence, a 
template-based approach in which code fragments in 
the intermediary language are defined by the 
developer and assembled by Marius into a 
compilable language implementation is taken. 

Finally, a design goal is to ensure easy 
deployment and application of the generated 
DSMTL implementation. Marius assembles 
translated DSMTL transformation definitions and 
auxiliary code pieces, such as repository access 
code, into a single, executable software bundle, 
representing a stand-alone model transformer. 

Geared towards the above mentioned design 
goals, Marius is a prototype implementation 
developed for gaining hands-on experience (cf. 
Section 5) in implementing domain-specific model 
transformation languages. The remainder of this 
section deals with  describing the Marius generator 
framework from an architectural point of view by 
explaining how the components it consists of work 
and interact.  

As shown in Figure 3, the framework consists of 
components either associated with build-time, 
translation-time or execution-time. At build time, the 
implementation of a specified transformation 
language is generated. This means, that tools such as 
parser and compiler are being built, which during 
translation time are being used to generate model 
transformers from transformation definitions at 
translation time. Finally, at execution time these 
stand-alone model transformers are applied to 
models stored in a repository. 
 

Apply Model 
Transformer

Build Model 
Transformer

Build Language
Implementation

Apply Model 
Transformer

Build Model 
Transformer

Build Language
Implementation  

Figure 3: Marius Development Steps. 

In the following, the framework’s components and 
the activities associated with them will be described 
in more detail, according to what ‘time’ of the 
development phase they are active. 

3.1 Build-time  

The starting point for generating a language 
implementation is to provide a language definition. 
This is accomplished in terms of providing an EBNF 
grammar (Fig. 4). This grammar is fed to SableCC 
(Gagnon, 1998), an open source parser generator, 
which produces a Java-based parser implementation 
and tree-walker classes accordingly, which can serve 
to visit a parsed syntax tree. However, Marius makes 

use of the parser only and omits using the tree 
walker classes, as the specification of semantics in 
the form of Java code (intermediary language), 
directly in the tree walker source code, suffers from 
poor readability. Hence, Marius employs a template-
based approach for building a ‘compiler’. Java 
Emitter Templates (JET) (Popma, 2004) are used to 
generate the compilation output in a source-to-
source transformation. 
 

Template
Generator
Template
Generator

Template
Skeleton
Template
Skeleton

JET
Template

SableCCSableCC

DSMTL
Parser
DSMTL
Parser

DSMTL
Grammar

 
Figure 4: Build-time Component Generation. 

Thereby, Marius utilizes a template generator which 
constructs a JET skeleton specific to the DSMTL’s EBNF 
grammar that contains generic functionality to 
conveniently traverse parse trees and rudimentary method 
bodies into which a developer enters the desired Java 
output code. 

3.2 Translation-Time 

During the translation step (Fig. 5), the parser 
generated during build-time parses transformation 
definitions (1) and passes the in-memory syntax tree 
(2) on towards a JET template engine (3). In the next 
step, this engine utilizes the JET template (4) 
specified previously to generate Java source code 
(5), which represents the executable transformation 
definitions (6). To ensure maintainability, 
traceability comments are incorporated into the 
generated code that relate Java code blocks to their 
counterpart constructs in the DSMTL transformation 
definition. Furthermore, Marius provides a generic 
logging mechanism preserving a transformation’s 
execution trace by for instance storing 
corresponding instances concerning source and 
target model elements. Logging can serve useful for 
lookup purposes during transformation execution as 
well as for subsequent debugging purposes. 
Similarly, Marius lays the way for utilizing specific 
or external, pre-existing model query mechanisms. 
For instance, in case of the WFTL samples 
introduced earlier, a custom query resolver is 
implemented and used. Code enabling to utilize 
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either mechanism is placed into the according 
intermediary code by the framework as required. 

Figure 5: Generation of Stand-alone Model Transformer. 

It is to note that the parsing process includes a check 
for syntactical correctness of the transformation 
definitions. A semantic analysis, however, is not 
performed. Nevertheless, the use of a non-declared 
identifier for instance will not result in a translation 
error, but will subsequently lead to an unsuccessful 
compilation of the JAVA transformation files. 

Finally, after a successful compilation, the 
resulting class files along with auxiliary classes for 
managing repository access, factory classes for 
instantiating executable transformations, and generic 
framework base-classes are bundled into a .jar file, 
constituting a stand-alone, executable model-
transformer (7). 

3.3 Execution-Time 

As a final point, during execution-time, the 
generated model-transformer is put to work (Fig. 6). 
This means, that the transformer is executed against 
a model repository which holds source and target 
models and metamodels. In the case of Marius, the 
NetBeans MDR (Netbeans, 2003) is employed. 
Repository access functionality is thereby already 
incorporated into the stand-alone transformer, and its 
execution will result in the generation of a target 
model from a source model. 

Figure 6: Repository Access & Manipulation. 

This involves other components that do not directly 
belong to the immediate setup of Marius, namely 
readers/writers for source and target documents. An 
example thereof is for instance a reader for BPEL 
documents, which parses a BPEL source file and 
instantiates a model accordingly in the repository, 
requiring that a MOF-metamodel for the BPEL 
language has been instantiated in the repository prior 
to that. In our WFTL example, due to the XML-
based syntax of BPEL, the actual reader parsing 
BPEL source files is implemented as an XSLT style 
sheet for readability reasons. 

4 TRANSFORMATION CLASSES 

As mentioned earlier, during translation-time a Java-
based, stand-alone model transformer is being 
generated. This section takes a look at the output of 
the JET engine, which are the Java transformation 
classes. For every transformation rule, one 
transformation class is being generated. The 
structure of these classes is similar, as determined by 
the template they were produced from. 

public class Process2Model  implements 
Transformation {     (1) 
… 
private java.lang.Object UseCase_; (2) 
… 
public void doMapping() { …  (3) 
… 
//AName2equTrafo START Line 25, 
//Column 0  
((RefObject)targetBase) 
.refSetValue("name" , source); 
//AName2equTrafo END    (4) 
 

…        
 
targetPackage.refPackage("Core") 
.refAssociation 
("A_namespace_ownedElement") 
.refAddLink((RefObject)source,  
(RefObject)UseCase_);   (5) 
… 
source = wrapAttributes(Process_, new 
String(".activity"));   (6) 
… 
myIt = source.iterator();  
… 
while(myIt.hasNext()) { 
fromArg = myIt.next(); 
tr = TrafoGenerator.generate(fromArg, 
this); 
… 
tr.doMapping();  
…     
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If necessary, the generated Java source files can be 
manually fine-tuned. The example below shows 
generated Java code corresponding to the WFTL 
code sample in Section 2. Note, that for reasons of 
clarity the shown code omits exception handling and 
assumes, that the variables target, targetBase, 
targetPackage, and source have been previously 
resolved accordingly. In (1), the class for the 
Process2Model rule is declared, and (2) defines a 
UseCase_ helper variable. (3) is a framework 
method used to implement rule execution. Apart 
from a value assignment, (4) shows how comments 
are used to establish traces to the original DSMTL 
statements. (5) establishes a specific link between 
two model element instances. (6) depicts the 
resolution of a query (invocation of the 
wrapAttributes method) followed by an explicit 
invocation of sub-transformation rules, which are 
instantiated by a factory (TrafoGenerator). 

5 LESSONS LEARNED 

This section briefly reports on experiences gained 
during the implementation of our DSMTL on basis 
of Marius. 

To evaluate the applicability of the approach 
taken, a case study was carried out which aimed at 
transforming BPEL process specifications into UML 
Activity Diagrams. First of all, this involved 
defining a MOF-based metamodel for BPEL to 
consequently be able to instantiate and manipulate 
BPEL documents in a model repository. The actual 
mapping from BPEL to UML-AD was largely 
reverse-engineered from (IBM, 2003). It is to note, 
that BPEL is not a laconic language, which means 
that to express the same semantic concepts, different 
syntactic constructs can be used (e.g. ‘Flow’). 
Hence, clean round-trip engineering poses a 
challenge and possibly requires additional meta-
information. However, our main focus was to devise 
the Marius framework that would allow for 
developing a dedicated transformation language 
(WFTL) suitable for the task at hand. 

Generally, the creation of a domain specific 
language can be approached from two sides: A top-
down approach will first define an abstract syntax of 
the language to be realized, whereas a bottom-up 
approach will start with the writing of concrete 
syntax samples, of which eventually a language 
grammar will be ‘re-engineered’. The latter 
approach is typically the more explorative, best 
suited for a rather ‘agile’ approach to the definition 
of a transformation language. In iterative cycles, 

new language constructs are explored. If applicable, 
these are incorporated into the language definition, 
which is then used to implement the language by 
means of constructing a compiler/interpreter making 
the language executable. If a set of test 
transformations runs free of errors, the next iteration 
can begin. During the development of WFTL this 
approach proved to be very applicable and produced 
quick results. However, languages developed 
according to this approach are in danger of getting 
fuzzy and possibly ambiguous, due to the constant 
growth of functionality that can result in feature-
creep. Therefore, experience gained in the 
development of WFTL has shown how important it 
is to refactor the language definition every few 
iterations, to avoid such problems. One can see, that 
the bottom-up approach taken for developing a 
DSMTL, can become problematic when trying to 
implement too large, wide-scoped, language 
definitions. However, domain-specific languages 
have a narrow scope and usually a rather concise 
language definition, for which the employed 
approach will typically suffice. 

6 RELATED WORK 

This section will introduce related work in the field 
of QVT-like model transformation languages 
including yet available implementations thereof, and 
frameworks supporting language generation in 
general. 

For specifying transformations, a distinction 
between declarative, imperative and hybrid 
languages can be made. Declarative languages allow 
to state how the input and the output of a 
transformation should be made up, without 
specifying how the execution should go about. On 
the contrary, imperative languages allow to do just 
that, as they let a programmer exactly specify how a 
source model should be transformed into a target 
model. A hybrid transformation language allows 
both declarative and imperative constructs to be 
intermingled, for instance a declarative language 
such as OCL (OMG, 2003) may be employed for 
selecting input model elements by means of pattern 
matching, whereas the specification of possibly 
complex transformation rules can be facilitated 
using imperative statements. A good example for 
such a hybrid approach is ATL (INRIA Atlas, 2004). 

From an implementation point of view, various 
strategies are in use to implement model 
transformation engines. For reasons of language 
extensibility and to make it easier to comply with a 
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final QVT syntax, ATL for instance employs a 
virtual machine that operates on a specific byte-code 
representation of ATL transformation definitions. 
MTF (IBM, 2004) falls into the declarative category 
and relies on an EMF-based (Eclipse Project, 2004) 
transformation engine that proceeds in two stages 
called mapping (evaluate relations by iterating 
model instances) and reconciliation (satisfy relations 
by deleting/modifying/creating model elements). 

Aiming at flexibility, Marius does not enforce a 
certain style of transformation definition, but leaves 
it up to the user to specify semantics in a template-
based approach. Thereby, a source-to-source 
transformation into Java allows for further flexibility 
and customization potential. 

MoTMoT (Model driven, Template-based, 
Model Transformer) is a compiler generating 
repository manipulation code from visual 
transformation definitions. The compiler takes 
models conforming to a UML profile for Story 
Driven Modeling (SDM) (Shippers, 2004) and 
generates JMI specific Java code. However, only 
transformations between models conforming to the 
same metamodel are supported. Furthermore, 
MoTMoT does not aim at providing a framework for 
the generation of DSMTLs in general, but focuses 
on integration with the Fujaba tool and on making 
transformations specified in SDM executable. 

Microsoft’s work on software factories involves 
the notion of software product lines, which 
essentially means, that according to a domain-
specific language a set of tools is generated to drive 
the software development process for fast 
application assembly. Although the principle of 
software factories aims at the implementation of 
domain specific languages, its focus is more wide-
spread and is neither specific to MOF-based DSLs 
nor to implementing model transformations engines 
as the framework proposed in this paper does. 

Sprint (Consel, 1998) is a framework for 
designing and implementing domain specific 
languages. The development of a DSL is 
underpinned by an iterative method encompassing 
several distinct steps, which finally result in an 
interpreter or compiler. However, the Sprint 
framework is not immediately applicable for model-
driven development, nor does it provide specific 
support for the implementation of model 
transformation languages. Furthermore, it seems that 
Sprint’s development method would be a somewhat 
heavyweight approach, compared to ours, which is 
rather focused on immediate, template-based 
realization. 

The Kent Modelling Framework (KMF) (Kent, 
2004) provides a set of tools to support model driven 
software development. KMFStudio supports the 
development of modeling tools, OCL4KMF 
provides OCL support, and YATL4KMF 
implements the QVT-like YATL transformation 
engine. Although the infrastructure provided by 
KMF can prove highly valuable for implementing 
MDD tools, to the best of our knowledge the 
framework does not provide a low-cost entry for the 
development of DSMTLs through provision of 
appropriate language definition, parsing and code 
generation facilities. 

The Modeling Turnpike Project (Wada, 2005) 0 
(mTurnpike) is a framework that allows to define 
domain-specific concepts through a combination of 
both modeling and programming, with the goal to 
raise the layer of abstraction programmers work on. 
Although Marius and mTurnpike both build on 
template-based code generation, mTurnpike is aimed 
towards model-driven development in general and is 
not tailored to implement DSMTLs. As an example, 
mTurnpike does not immediately provide for an 
EBNF-based grammar definition and the 
construction of an associated parser. 

7 OUTLOOK AND FUTURE 
WORK 

At current a research prototype of the Marius 
framework exists. As a proof of concept, a 
transformation language and example transformation 
definitions for BPEL-to-UML have been created. 
Future work in terms of extending the existing 
framework will concentrate on enabling better tool 
support for the generated languages. This shall also 
encompass to extend the existing architecture to 
allow external functionalities and components, e.g. 
OCL checkers or String manipulation libraries, to be 
better integrated into the implementation of a 
language. Furthermore, the framework shall become 
more flexible and allow to make use of other 
repository implementations than NetBeans’ MDR. 
The same applies for specifying a model 
transformation language’s semantics not using JMI 
(JSR 040, 2002) directly, but equivalent, general-
purpose QVT constructs. 

Apart from overhauling the existing prototype, 
our future work also focuses on identifying 
application areas where the implementation of 
domain specific model transformation languages can 
prove beneficial. In this respect, some of our current 
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research efforts go into the direction of devising 
model transformation languages specific to various 
model integration tasks (Reiter, 2005a). 
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