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Abstract

In Model-Driven Engineering, models have to con-
form to their associated linguistic and ontological
metamodels. While linguistic metamodels are usu-
ally not subject to frequent changes, ontological meta-
models are. Thus, existing conformance relationships
may be easily corrupted by changes on the metamodel
or by the incautious modification of models. Current
approaches for re-establishing conformance relation-
ships are often (i) deeply woven into specific tools
to record changes and to derive resolutions, or (ii)
require extensive user effort to guide the resolution
process, and (iii) the output of these approaches usu-
ally is one single solution, whereas alternative solu-
tions remain unexplored. To allow for exploring a
broader solution space independent of specific tools
and to avoid extensive user involvement by utilizing
predefined repair actions, we propose a logic program-
ming approach called CARE, for accomplishing multi-
ple solutions. In particular, CARE bases on a formal-
ization of the ontological conformance relationship as
constraints, accompanying repair actions for counter-
acting constraint violations, as well as quality criteria
for ranking of solutions. This paper reports on the
realization of CARE based on Answer Set Program-
ming and summarizes lessons learned from applying
the approach in several experiments.

1 Introduction

Model-Driven Engineering (mde) [26] proposes a con-
tinuous use of models to conduct the different phases
of software development. Models have to conform
to their associated linguistic and ontological meta-
models that are prevalent in a certain domain and
which define concepts, their relationships, as well as
constraints among each other. Consequently, con-
formance between models and their associated meta-
models can be classified into ontological conformance,
based on the meaning (e. g., an object Mickey is an in-
stance of a class Mouse), and linguistic conformance,
regarding their syntactical form (e. g., Mickey is an
instance of Object) [16].

This work has been funded by bmvit under grants ffg bridge
832160 and ffg fit-it 825070 and 829598, ffg Basisprogramm
838181, and by öad under grant AR18/2013 and UA07/2013.

While linguistic metamodels, such as Ecore1, are
often standardized and changed seldomly, ontologi-
cal metamodels, representing concepts within a cer-
tain domain, are frequently subject to change [12].
This refers to the typical case of metamodel evolu-
tion, which entails the co-evolution of dependent ar-
tifacts in order to retain conformance [5, 7, 28]. Fur-
ther, in data integration scenarios, conformance of
existing models to a new metamodel may be dis-
rupted [2], and, thus, has to be re-established. More-
over, the incautious modifications of models may also
violate ontological conformance, while keeping the
models syntactically correct, thereby maintaining lin-
guistic conformance. In either case, model process-
ing is obstructed in current tools, until conformance
between models and their ontological metamodels is
re-established, which is, therefore, the focus of this
paper.

Since the manual re-establishment of conformance
is tedious and error-prone, dedicated (semi-) auto-
matic approaches exist, which are, however, (i) often
tightly coupled to specific tools to record changes and
to derive repair actions, or (ii) require extensive user
effort in the resolution process, e. g., by demanding to
specify the resolution steps beforehand, or by guiding
the tool step-by-step. If changes cannot be tracked
or derived due to the absence of the prior metamodel
version, it is of special interest to automatically re-
establish conformance without relying on manually
provided input. Finally, representatives of both kinds
of approaches mostly (iii) provide a single solution,
only, disregarding alternative solutions with respect
to their qualitative properties.

To overcome these shortcomings, we propose a
framework for Constraint-bAsed REpairing of onto-
logical conformance relationships (CARE), which is
(i) independent of a specific tool by means of a stand-
alone framework instead of being deeply woven into
an existing modeling environment, (ii) utilizes prede-
fined repair actions, and, thus, requires little user in-
volvement for specification as well as guidance of the
resolution process, and is (iii) capable of generating
multiple, ranked solutions, which fit a set of quality
criteria that should be naturally fulfilled by repair
solutions, such as the preservation of information ca-
pacity.

Operating in three phases, CARE is able to
re-establish ontological conformance, independent

1Ecore is the realization of mof [22] in the Eclipse Modeling
Framework (emf) http://www.eclipse.org/modeling/emf
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Figure 1: Example for Conformance Re-Establishment: Retyping & Deletion of Objects

whether changes in the model or in the metamodel
caused the violation. Therefore, CARE bases on the
core concepts of Ecore, having classes, attributes, and
references with respective objects, values, and links.
In phase 1 constraint violations are detected based
on a formalization of the ontological conformance re-
lationship in form of dedicated constraints in logic
programming, in phase 2 constraint violations are
repaired by means of repair actions, generating mul-
tiple ontological conforming solutions, and in phase 3
ranking and selection of best solutions is achieved
by applying quality criteria, which comprise struc-
tural and semantic knowledge about the potential so-
lution space. Furthermore, provenance information
and statistics are collected during all phases and re-
ported to the user for inspecting the solutions.

Before the three phases of the CARE approach are
presented in detail in Section 3, Section 2 introduces a
motivating example. Section 4 demonstrates a proof-
of-concept prototype based on Answer Set Program-
ming, while lessons learned from several experiments
are presented in Section 5. Finally, related work is
discussed in Section 6 before Section 7 concludes.

2 Motivation

This section introduces a motivating example and
thereupon outlines different ways to deal with the
challenges to automatically re-establish ontological
conformance based on different kinds of knowledge.
Figure 1 shows a simple example, basing on uml state
machines, with a model M comprising two State ob-
jects, whose conformance gets violated due to meta-
model evolution comprising three steps: extract sub-
class for State resulting in SimpleState and FinalState
as well as make class abstract for State2. These steps,
however, do not need to be known for re-establishing
conformance of M to the evolved metamodel MM ′,
since CARE is capable of re-establishing conformance
regardless whether changes in the metamodel or in the
model caused the violation.

2Note, that classification of evolution steps bases on [11] and
[14].

Solution Space. To re-establish conformance in
the example, non-conforming objects (cf. s1 and s2
in Fig. 1) may either be retyped (reclassified as in-
stances of the concrete classes SimpleState or Final-
State) or deleted. By applying these options, a total
of nine solutions with respect to model-metamodel
constraints arises, so far disregarding any constraints
on the metamodel. Thus, the potential solution space
for retyping or deleting non-conforming elements con-
tains (c + 1)o solutions (with c = number of candi-
date classes + 1 for deletion, o = number of non-
conforming objects).

Selection. These solutions, however, need not
to be valid, since metamodel-specific constraints
may be violated. Consequently, for selecting valid
(i. e., conforming) solutions from the solution space,
metamodel-specific constraints, e. g., specified in
the Object Constraint Language (ocl), and user-
provided constraints, such as mapping instructions,
must be validated. Thus, given the ocl constraint in
Figure 1, the solutions M ′

3, M ′
4, and M ′

6 are inval-
idated.

Ranking. The remaining set of valid solutions
may further be ranked, to provide the user with or-
dered solutions pushing forward those solutions ful-
filling dedicated qualitative criteria. For this, heuris-
tics incorporating structural and semantic knowledge
may be employed. Regarding structural knowledge,
the structural similarity between the objects in M
and M ′ as well as between M and MM ′ may be em-
ployed, by using methods which are similar to exist-
ing schema and ontology matching techniques [6,25].
In contrast, matching has to be done across meta-
modeling layers. Furthermore, in the context of rank-
ing, the prevention of information loss (indicated by
shades in Fig. 1) may be considered essential. Ex-
ploiting this structural knowledge, M ′

1 scores best,
preserving all attributes, and M ′

9 is ranked last, since
all model elements are deleted. Additionally, seman-
tic knowledge obtained from an external knowledge
base (e. g., an ontology) or provided by the user in
terms of domain knowledge, may be used for rank-
ing. Given the knowledge that the value “final” of at-
tribute label rather corresponds to FinalState than to
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Figure 2: Classification of Available Knowledge in Correlation to Solution Space

SimpleState, retyping of s2 to FinalState is preferred,
thus, favoring M ′

2 over M ′
1, as indicated in Figure 1.

Consequently, the ranking of valid solutions depends
on a particular configuration, which may favor dif-
ferent quality criteria. Although CARE provides a
default configuration, e. g., trying to prevent informa-
tion loss, users may overrule it by providing a custom
configuration.

To summarize, Figure 2 gives a classification of
the sources of knowledge, comprising constraints for
selection of valid solutions, and heuristics to be uti-
lized for ranking of solutions. Given these sources
of knowledge, the CARE framework may be divided
into a generic core part, comprising conformance con-
straints and structural knowledge, and an optional ex-
tensions part, which is domain specific. The exten-
sions part may be divided into constraints, compris-
ing metamodel-specific ones (e. g., specified in ocl)
and user-provided ones (e. g., mapping instructions),
and semantic knowledge provided by users or exter-
nal knowledge bases, as well as the user configura-
tion. Consequently, although the CARE framework
may provide multiple valid solutions by relying on
the generic core part, only, the more information is
available for the extensions part, the better the so-
lution space may be narrowed, as indicated in Fig-
ure 2. To achieve the goal of re-establishing confor-
mance, CARE operates in three phases, which are
described in detail in the next section, together with
an overview of the approach.

3 CARE Process: Detection, Repairing,
Ranking

The main idea of CARE is to re-establish confor-
mance between non-conforming models and their
metamodels by utilizing ontological conformance rela-
tionships, formalized as constraints between a model
and its metamodel. Based on corresponding repair
actions, CARE generates multiple ranked solutions
facilitated by Answer Set Programming (asp) [17].
To achieve this goal, CARE operates in three phases
as illustrated in Figure 3.

As a prerequisite, the non-conforming model, as
well as the metamodel together with its constraints
are transformed into asp. For that, CARE bases
on the core concepts of metamodeling, consisting of
classes, attributes, and references, i. e., a representa-
tive subset of Ecore focusing on structure, not consid-
ering operations3. Ecore, however, may be replaced

3Packages, operations, data types, enumerations, as well as op-
posite and composite references are currently not considered.

by other modeling languages, by implementing the
appropriate transformations and by modifying the
conformance constraints, repair actions and ranking
rules.

In the first phase, violations are detected (cf. 1 in
Fig. 3) by means of asp rules which employ built-in
conformance constraints (e. g., objects have to be in-
stances of non-abstract classes), as well as optional
metamodel-provided and user-provided constraints.
Second, during model repairing (cf. 2 in Fig. 3), all
possible solutions that re-establish ontological con-
formance are calculated by means of corresponding
repair rules. In order to rank the resulting models
in a third phase (cf. 3 in Fig. 3), built-in heuris-
tics (e. g., based on structural similarity) together
with external semantic knowledge (e. g., for seman-
tic matching) may be employed in so-called ranking
rules. This means that for repairing and ranking a
“guess, check & optimize” methodology [9] is applied,
which allows to discard non-optimal solutions early
during their computation, and thereby allows to speed
up the whole process. Since all three phases operate
on the same knowledge base of logic programming
facts and rules, CARE enriches solutions with meta
information by using intermediate results to gener-
ate provenance information and statistics, which, ulti-
mately, support the user in inspecting differences be-
tween solutions after the fulfilled transformation back
to Ecore.

3.1 Phase 1: Detection of Violations

For the detection of conformance violations between
a model and its metamodel, CARE bases on formal-
ized constraints, i. e., checking conditions for confor-
mance on all model elements. In general, confor-
mance is accomplished, if each model element can be
syntactically regarded as a valid instance of a type
in the metamodel [16]. Applied to the core concepts
of Ecore, this means that model elements, namely ob-
jects with features (values and links), have to conform
to respective classes with class features (attributes
and references) in a metamodel. Therefrom, we de-
rived a more specific definition, formulated as a set
of object, value, and link constraints, as listed in Ta-
ble 1. Thus, object constraints are denoted with ocX,
value constraints with vcX and link constraints with
lcX, respectively, whereby the X represents an id. For
instance, for the type of an object a corresponding
class must exist (cf. oc1), which must not be abstract
(cf. oc2, depending on oc1). Besides such generic
constraints provided by the CARE core, constraints
on the metamodel in terms of ocl, as well as user-
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Figure 3: CARE Process Overview: Input, Knowledge Base with 3 Phases, Output

provided ones in terms of mapping instructions may
be considered to validate conformance of model ele-
ments (cf. CARE extensions). An example for an
ocl constraint was shown in the introductory state
machine example (cf. Fig. 1), defining that a Final-
State must not have successors, i. e., successorCount
must be 0.

To check whether all conformance constraints are
fulfilled, they are formulated as separate interdepen-
dent logic programming rules. A constraint solver
evaluates these rules to produce the output, i. e., facts
describing which objects, values, and links are con-
form or not, and adds these new facts to the CARE
knowledge base. Examples for such evaluations are
shown as implication rules in Table 2, using a pseu-
docode language in the style of asp, with conjunction
denoted by ∧ (cf. Fig. 4 in Sect. 4 for corresponding
asp code). The above mentioned object constraint
oc2 is expressed in the form of two rules, shown in
lines 3-4, stating that an object with a correspond-
ing, non-abstract class fulfills oc2, whereas an object
not fulfilling the rules for oc2 (which also requires oc1)
violates the constraint (cf. oc2violated(oid)). In
line 9, the above mentioned ocl constraint is spec-
ified formally, which is currently achieved manually
by the CARE user, but foreseen to be automated and
subject to future work. Note, that object(oid,cid)
denotes that an object with id oid is typed to a class
with id cid.

Based on these detection rules, for the in-
troductory example the resulting violations are
oc2violated(s1) and oc2violated(s2), since both
State s1 and State s2 are typed to an abstract class
in MM ′. These detected violations are then used as
inputs for repair actions in the next phase.

3.2 Phase 2: Model Repairing

Based on the violations from the first phase, another
set of rules allows to re-establish ontological confor-
mance between a model and its metamodel. For each
kind of violation, CARE uses dedicated repair ac-
tions, which are systematically derived from the con-
straint violations listed in Table 1 and, thus, prede-
fined within the CARE framework. Basically, the op-
tions to repair violations are to modify or to delete
the violating model element. For instance, an object,
which violates oc2 can either be retyped to another
class (i. e., the type reference from the object to its
class is modified, cf. ra1), or the object can be deleted
(cf. ra2). Such alternative repair actions are denoted
as rows in Table 1. Table 2 shows the examples dis-

cussed above in pseudocode. A disjunction for rules
is expressed by using ∨, thereby producing all pos-
sible different solutions, i. e., retyping and deletion.
Line 5 in Table 2 states, that if oc2 is violated, ei-
ther repair action oc2ra1 (retype object) or oc2ra2
(delete object) has to be applied. For producing out-
put elements, additional facts must be added to the
knowledge base, which are denoted with suffix x. For
the deletion of elements, no further action is required
in oc2ra2 (i. e., no objectx is added), since elements
with suffix x are regarded as output elements, only.
Consequently, the suffix x is also applied to all valid
elements to declare them as output elements. Note,
that on the left hand side of the rule in line 6 of Ta-
ble 2 there is no binding of the object’s id to a specific
class id. Thus, the object is retyped to all possi-
ble non-abstract classes, and consequently, all possi-
ble combinations of retyping are generated. However,
since an object can only be the instance of one class
at a time, another rule must prevent these solutions
from being generated (cf. prevent rule in line 7 of
Table 2).

For the example, this means that the two objects
which violate oc2 (s1 and s2), can either be deleted,
retyped as SimpleState, or retyped as FinalState. By
applying additional metamodel constraints by means
of ocl constraints (cf. line 10 in Table 2), invalid
solutions are excluded (M ′

3, M ′
4, and M ′

6). Finally,
concerning the example, only the remaining six valid
solutions need to be ranked in the next phase, to ul-
timately present a ranked list of models to the user.

3.3 Phase 3: Model Ranking

After extracting valid solutions that meet both, con-
formance constraints and metamodel-specific con-
straints, in the third phase, solutions are evaluated
and ranked using configurable rules, based on heuris-
tics, which incorporate structural as well as semantic
knowledge. Together with accompanying meta infor-
mation about solutions, this ranking enables the user
to inspect the best provided solutions, in order to ul-
timately select one.

For finding the best solutions, CARE assigns costs
to each solution, by using a third kind of rules, which,
instead of preventing a solution, incurs a given cost to
be added up. These rules, however, may also base on
other rules for more complex computations, and they
may incorporate specific facts about the domain. For
that, as discussed in Section 2, CARE differs between
structural and semantic knowledge. Rules based on
structural knowledge, for instance, may use match-
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Table 1: List of CARE Core Conformance Con-
straints with Repair Actions

ing heuristics, or determine information capacity of
solutions, based on inputs, outputs, and intermedi-
ate results, and, thereupon, assign costs for structural
difference or information loss. Additionally, semantic
knowledge from external knowledge bases, such as do-
main ontologies or linked data, or provided by users,
may be used for such heuristics as well. Another in-
teresting criterion in the course of CARE is whether
a heuristic employs single model elements, whole ob-
jects including features, or the complete model, i. e.,
the granularity. For instance, computation of simi-
larity between input and output models may base on
matching of single objects, values, and links by id, on
the comparison of the number of features per class, or
on the usage of characteristics of the complete model,
such as connectivity between objects. A more de-
tailed classification of this knowledge, however, would
go beyond the scope of this paper. Consequently, dif-
ferent kinds of knowledge allow for a variable con-
figuration of the ranking phase, firstly by adding or
removing rules and facts, and secondly, by adjusting

Rule in Pseudocode
1 object(OID,CID) ∧ class(CID) ⇒ oc1(OID)

2 object(OID,CID) ∧ NOT oc1(OID) ⇒ 
oc1violated(OID)

3 object(OID,CID) ∧ oc1(OID) ∧ NOT 
isAbstract(CID) ⇒ oc2(OID)

4 object(OID,CID) ∧ NOT oc2(OID) ⇒ 
oc2violated(OID)

5 ra1/2 oc2violated(OID) ⇒ oc2ra1(OID) ∨ 
oc2ra2(OID)

6 ra1 oc2ra1(OID) ∧ class(CID) ∧ NOT 
isAbstract(CID) ⇒ objectx(OID,CID)

7 ra1c PREVENT objectx(OID,CID1) ∧ 
objectx(OID,CID2) ∧ CID1!=CID2

8 rank1 COST[2] oc2ra2(OID) RESTRAIN(COST = 1) vc2_ra2(OID,AID)

9 mm1
value("succCount",VAL,OID) ∧ 
object(OID,"FinalState") ∧ VAL!=0 ⇒ 
mm1violated(OID)

10 mm1c PREVENT valuex("succCount",VAL,OID) ∧ 
objectx(OID,"FinalState") ∧ VAL!=0

11 rank2 COST[1] value("label","final",OID) ∧ NOT 
objectx(OID,"FinalState") RESTRAIN(COST = 1) vc2_ra2(OID,AID)
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Table 2: Pseudocode for Selected Conformance and
Metamodel Constraints

cost parameters.
Again, Table 2 shows a simple example of such

heuristics, as used in the introductory example. The
rule in line 8 restrains information loss, by assigning
costs to solutions where repair action oc2ra2 (delete
object) is taken. As additionally specified, line 11
assigns costs for objects with label “final” that are
not retyped to FinalState. Thus, for the example,
this means that M ′

2 is the best solution (cost = 0),
and therefore ranked first. M ′

1 is ranked second,
since s2 with label “final” was retyped to SimpleState
(cost = 1). Concerning the remaining four, M ′

9 is
ranked last, since both objects were deleted (cost = 4).

As a result, CARE provides a list of ranked solu-
tions, which are transformed back to Ecore. To sup-
port the user in inspecting and choosing solutions, ad-
ditional meta information in terms of provenance in-
formation and statistics is provided as annotations us-
ing the dedicated Open Provenance Model (opm) [20]
vocabulary. Thus, a model element in M ′ is an ar-
tifact in opm, which is derived from another artifact
in M , and which is used in processes, i. e., CARE
repair rules. This information may be derived di-
rectly from intermediate results, whereas statistics,
in contrast, require additional rules. For instance, the
retyping of s1 in M ′

2 is expressed as s1:SimpleState
wasDerivedFrom s1:State. For counting how many
states were retyped to SimpleState, however, an addi-
tional computation step is required, which may also
be performed on the transformed Ecore model. Ul-
timately, this meta-information may be presented to
the user to facilitate the inspection of the ranked so-
lutions.

4 Proof-of-Concept Prototype

After having discussed the three phases of CARE,
this section presents the prototype for re-establishing
ontological conformance between Ecore-based models
and metamodels, implemented with asp.

The CARE proof-of-concept prototype supports
the core concepts of Ecore, as discussed in the pre-
vious section, as well as ocl constraints. All these
inputs may be represented as logical axioms in asp,
thereby resulting in a similar representation to those
presented in [4, 24]. Consequently, transformations
between Ecore/ocl and asp are required, which are



ASP 

%%% Metamodel MM' %%% 
class("State"). 
isAbstract("State"). 
attribute("id", "State", 1, 1). 
attribute("successorCount", "State", 1, 1). 
class("SimpleState"). 
isParentOf("State", "SimpleState"). 
attribute("name", "SimpleState", 1, 1). 
class("FinalState"). 
isParentOf("State", "FinalState"). 
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%%% Model M %%% 
object("s1", "State"). 
value("id", 1, "s1").  
value("name", "S1", "s1"). 
value("successorCount", 1, "s1"). 
object("s2", "State"). 
value("id", 2, "s2"). 
value("name", "final", "s2"). 
value("successorCount", 0, "s2"). 
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%%% (1) Detection of Violations %%% 
oc1(OID) :- object(OID,CID), class(CID). 
oc2(OID) :- object(OID,CID), oc1(OID), not isAbstract(CID). 
oc2violated(OID) :- object(OID,_), not oc2(OID). 
%%% (2) Model Repairing %%% 
oc2ra1(OID) v oc2ra2(OID) :- oc2violated(OID).  
objectx(OID,CID) :- oc2ra1(OID), class(CID), not isAbstract(CID). 
:- objectx(OID,CID1), objectx(OID,CID2), CID1<>CID2.  
:- valuex("successorCount",VAL,OID), objectx(OID,"FinalState"), VAL<>0. 
%%% (3) Model Ranking %%% 
:~ oc2ra2(OID). [2:10] 
:~ value("label","final",OID), not objectx(OID,"FinalState"). [1:10] 
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State 
id : int 
successorCount : int 

SimpleState 
name : string 

FinalState 

    context FinalState:  
         inv: self.successorCount == 0 

s1 : State 
id=1 
name="S1" 
successorCount=1 

s2 : State 
id=2 
name="final" 
successorCount=0 

min/max bound min/max bound 

Ecore 

Metamodel MM' 

Model M 

costs for ranking 
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Metamodel- 
specific 
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Figure 4: Ecore Representation and asp Code for Input Model M , Metamodel MM ′, as well as Rules for
Detection of Violations, Model Repairing and Model Ranking

already automated for Ecore using Xtend4, and fore-
seen to be automated for ocl by utilizing methods
presented in [19] and [24]. Rules and constraints for
all three phases are implemented in asp, which is a
form of declarative programming language, based on
the stable model semantics of logic programming [17].
An asp program is a finite set of rules, consisting of a
head (on the left) and a body part (on the right). In
CARE, such rules are used for detecting and repairing
violations and as basis for ranking. Along with two
special kinds of rules, they constitute CARE’s knowl-
edge base. First, rules with empty body represent
facts, describing models and metamodels [4]. Second,
rules with empty head, called asp constraints5, are
used to restrict repair actions and, thereby, prevent
generation of invalid solutions. Figure 4 shows an
excerpt of such an asp program, including the trans-
formed metamodel and input model from Figure 1
and the asp representation of the rules from Table 2.

Encoding of Models and Metamodels. For
the subset of Ecore specified in Section 3, each
metamodel element is transformed into an ac-
cording asp fact, i. e., class, attribute, and
reference. Regarding the motivational exam-
ple, a class fact is defined for each class,
i. e., class(’State’), class(’SimpleState’), and
class(’FinalState’). Additional constructs (at-
tributes of classes, relationships between elements)
have been systematically derived from the Ecore
subset, and corresponding asp facts were intro-
duced. Thereby, facts for attributes also contain
the cardinality, represented by integers, e. g., a fact
attribute(’id’, ’State’, 1, 1) defines the at-
tribute id for the class State with a minimum and

4http://www.eclipse.org/xtend/
5asp constraints are dissimilar to the notion of constraints in

this paper.

maximum cardinality of 1. Regarding the motiva-
tional example, an additional fact for the abstract
class State is added, i. e., isAbstract(’State’),
as well as facts for the hierarchy relationships,
i. e., isParentOf(’State’,’SimpleState’), and
isParentOf(’State’,’FinalState’).

In a similar manner, the model elements object,
value, and link are transformed to the asp facts
object, value, and link, respectively. Thereby,
facts for objects consist of the name and type of
the object, resulting in object(’s1’,’State’) and
object(’s2’,’State’) for the example. Values are
represented by their id, the actual value, and the ob-
ject they belong to, resulting in, e. g., value(’id’,
1, ’s1’).

Encoding of Constraints and Repair Ac-
tions. Based upon this representation, the confor-
mance constraints, repair actions, and generic rank-
ing rules representing the generic core part have been
manually defined once (cf. rules 1-8 in Table 2). Fig-
ure 4 shows the asp code required for re-establishing
conformance for the motivational example. Lines 25–
32 as well as line 35 are part of the CARE core func-
tionality, while line 33 and line 36 have been derived
from the metamodel-specific ocl expressions. ocl
constraints consisting of boolean expressions, select,
or size operations are candidates to be transformed
automatically into ASP constraints (cf. rules 9-10
in Table 2), which may be established utilizing the
approach of [24] in future versions of the prototype.
In contrast, domain-specific ranking rules have to be
specified manually (cf. rule 11 in Table 2, which has
been transformed to line 35 in Figure 4). Although
not required for generating valid solutions, they facil-
itate proper ranking of these solutions.

Re-Establishing Conformance. To execute



asp programs, CARE employs the dlv6 solver, which
provides several extensions to asp, such as the sup-
port for weak constraints [9], i. e., a special kind of
asp constraints to specify costs for non-compliance
of constraints. Cost bounds and a limitation in terms
of the number of results can be used to rank and re-
strict the resulting models, in order to compute best
solutions meeting these quality criteria, only. In par-
ticular, computation can be speeded up, since solu-
tions that score worse than the current cost bound
can be eliminated early. The generated solutions are
then transformed back into Ecore, allowing the user
to select one of the ranked solutions.

5 Lessons Learned

For the experiments we extended the introductory
example based on the uml 1.4 state machine meta-
model, focusing on re-establishing ontological confor-
mance of objects. In the following, we present lessons
learned gained from these experiments.

CARE Core Depends on Structural Diver-
sity. Given that CARE is used solely on basis of the
generic core part, the ranking quality heavily depends
on structural diversity of the classes in the meta-
model. Consequently, if classes in the metamodel
are structurally similar and no additional knowledge
sources are incorporated, CARE suffers from the the-
oretically large solution space in terms of computa-
tional complexity.

Constraints Allow to Speed up Computa-
tion Process. As already introduced, CARE is ca-
pable of including metamodel-specific ocl constraints
as well as user constraints, e.g., mapping instruc-
tions. Since these constraints represent hard facts,
i. e., they narrow the solution space, they are an es-
sential source for efficiently generating valid solutions.
Consequently, with many constraints to be exploited
in the computation process, CARE exhibits a consid-
erably increased runtime performance. Nevertheless,
in certain cases the presence of ocl constraints may
lead to an empty solution, if no repair actions for ocl
violations are present. Those repair actions have to be
defined manually in the current prototype. An inves-
tigation of how to automatically derive repair actions
for ocl constraints is part of future work.

Ranking Depends on Favored Quality Cri-
teria. As mentioned, CARE provides a default con-
figuration for ranking, which focusses on the preven-
tion of information loss as a quality criterion for the
resulting models. This may be undesired, e.g., in
case that classes in the metamodel have been deleted
and, consequently, corresponding instances should be
deleted as well. Thereby, the incorporation of seman-
tic knowledge may be beneficial to recognize semanti-
cally related concepts and, thus, rank corresponding
solutions higher. Consequently, the user may influ-
ence the ranking by providing additional knowledge,
which in turn favors different quality criteria.

Runtime Complexity & Scalability. As seen
by means of the presented example, the solution space
exponentially depends on the size of the metamod-
els and on the number of non-conforming instances.
Referring to the formula for complexity (c + 1)0 for
the example (cf. Sect. 2), one may see that in case
of many non-conforming instances counter-measures
are indispensable for efficient computation. There-
fore, CARE provides several of such measures includ-
ing the usage of constraints, which reduce the number
of possible solutions and, therefore, heavily improve

6http://www.dlvsystem.com/

runtime performance. Another way to alleviate this
problem is to reclassify by class, instead of per ob-
ject (e. g., all State objects become reclassified to the
same class), effectively reducing the complexity to be
linear, only.

Meta Information Provides a Valuable
Source for Selection. In cases, where multiple so-
lution models remain for selection, which all exhibit
the same costs according to the provided quality crite-
ria, the generated meta-information in terms of prove-
nance information and statistics represents a valuable
source for the user to inspect and distinguish the solu-
tions. Consequently, differences may be determined,
to ultimately select the best solution.

In summary, CARE allows to re-establish confor-
mance without comprising additional knowledge, but
is especially useful for metamodels with comprehen-
sive constraints, to generate the best solutions en-
riched by provenance information.

6 Related Work

This section discusses related approaches on detecting
and repairing ontological conformance violations. Ta-
ble 3 compares related approaches as well as our own
approach CARE, regarding criteria discussed in Sec-
tion 1 comprising tool coupling and application scope,
user involvement, and provision of multiple solutions,
as well as criteria related to the three phases of the
CARE approach, i. e., 1 detection, 2 repairing of
constraint violations, and 3 ranking of multiple solu-
tions. Approaches are classified with respect to tight
coupling, i. e., deeply woven into an IDE, or loose cou-
pling to a specific modeling environment. Applica-
tion scope indicates the specific or general applica-
bility of the approach, by specifying the kinds of ar-
tifacts between which conformance is re-established.
Detection of constraint violations considers both, the
specification and the examination of constraints to
expose their violations. Regarding repairing of con-
straint violations, we investigated generation of solu-
tions, checking for contradictory repairing, and user
involvement by examining user effort for repairing,
e. g., specification of rules, and whether or not inter-
active user guidance is required for finding a valid so-
lution. Approaches generating multiple solutions are
examined for automatic ranking. Finally, we investi-
gated if meta information by means of provenance of
the generated solutions is provided.

The examined approaches have been selected due
to their capability for fixing inconsistencies in mod-
els or re-establishing conformance between models
and their metamodels. They are classified accord-
ing to tool coupling into either tight [8, 10, 13, 18, 21]
or loosely [1, 3, 15, 23, 27, 29] coupled approaches,
whereas the latter are more closely related to the
CARE approach, since CARE is not coupled to or
woven into a specific tool. The application scope
ranges from detecting or repairing of constraint vi-
olations in uml models [1, 8, 21, 23, 27], over view-
point synchronization [10], and re-establishing confor-
mance in graph based models [15], to fixing of incon-
sistencies of models using the ocl related language
BeanBag [29], and coupled evolution of metamodels
and models [13]. CARE proposes a more generic ap-
proach for re-establishing conformance of models to
a given Ecore-based metamodel. Specification and
examination for detecting of constraint violations is
performed by logic programming [1, 3, 10, 21, 23, 27]
using different execution engines, graph transforma-
tion rules [18], Java [13], or using the language Bean-
Bag [29]. Like most approaches, CARE also bases on



Specification Examination Low User Effort
Independence of 

User Guidance
Ranking

Prove-
nance

[1] Loose
UML MM -> UML 
model

Prolog Rules  Logic pre-dicates 
(Praxis)

(Partial) 
repair plans 

 Specify cause 
detection rules  Not required

Not 
required 

Almeida da Silva et 
al., 2010  not required

[3] Loose
UML MM -> UML 
model

Prolog Rules  Logic pre-dicates 
(Prolog)

 n.a. n.a. n.a. n.a. 
Blanc et al., 2008

[8] Tight
UML model A -> UML 
model B

Abstract Rule 
Language  (Model profiler)

Single 
solution    Pick resolution 

action
Not 
required 

Egyed et al., 2008

[10] Tight
Viewpoint A -> 
Viewpoint B

ASP  Logic pre-dicates 
(Smodels)

Multiple 
solutions    Refine sol-

utions iteratively
 

Eramo et al., 2008

[13] Tight MM -> M co-evolution Java  (Edapt)
Single 
solution 

 Specify custom 
migration rules

 Define coupled 
evolution steps

Not 
required 

Herrmannsdoerfer, 
2011

[15] Loose Graph based models
Triple Rules 
(TGG)

 Consistency 
rules

Multiple 
repair actions   Select repair 

action
 Not required  

Körtgen, 2010

[18] Tight
UML MM -> UML 
model

Graph trans-
formation rules  (AGG)

Single 
solution  -  Pick resolution 

action iteratively
Not 
required 

Mens et al., 2006

[21] Tight
Repair distributed UML 
documents

First Order 
Logic

 Logic pre-dicates 
(xlinkit)

Single repair 
action   Create repair 

action
 Pick repair 
actions

Not 
required 

Nentwich et al., 2003

[23] Loose
UML class diagram A -> 
UML class diagram B

PDDL  Logic pre-dicates 
(PDDL)

Only plans  -  Not required
Not 
required 

Puissant et al., 2010

[27] Loose
UML model A -> UML 
model B

Description 
Logic

 Logic pre-dicates 
(Loom)

Single 
solution   Specify models 

in DL  Not required
Not 
required 

Van der Straeten et 
al., 2003

[29] Loose
Model inconsistency 
fixing

BeanBag 
program  (BeanBag)

Single 
solution 

 Define 
beanbag program  Not required

Not 
required 

Xiong et al., 2009

CARE Loose
Re-establishing M -> 
MM conformance

ASP  Logic pre-dicates 
(DLV Solver)

Multiple 
solutions   Select solution  Not required   CARE

 

 

User InvolvementNon-
Contra-
dictory

③ Ranking & 
ProvenanceApp-

roach

Tool 
Coup-

ling
Application Scope

② Repairing

Solutions

① Detection 

Table 3: Comparison of Approaches for Re-Establishing Conformance

logic programming (in terms of asp), but is unique
in using the dlv solver, which allows the usage of
weak constraints for ranking, by downgrading non-
optimal solutions. Most approaches support repair-
ing or re-establishing conformance, either by gen-
erating a single solution [8, 13, 18, 21, 27, 29], mul-
tiple repair actions [15] or repair solutions [10], or
by creating (partial) repair plans [1, 23]. Like only
one other approach [10], CARE is able to generate
multiple solutions in parallel, from which the user
may select the most appropriate one, but is unique
with respect to ranking them. Checking for non-
contradictory repairing is essential, to either restrict
the solutions or generate valid repair plans, and is
performed by various approaches [8, 10,18,21,23,27],
as well as by CARE, which computes valid solutions,
only. Furthermore, we examined approaches with re-
spect to the required extent of user involvement. Sev-
eral approaches require manual effort to enable de-
tection of non-conformance in models [1,21,29], while
others rely on interactive user guidance for finding
a valid solution [8, 10, 13, 18, 21]. Unlike those ap-
proaches, CARE does not rely on user interaction,
as the provided generic conformance constraints as
well as metamodel constraints allow to generate mul-
tiple valid solutions, but optionally user knowledge
can be incorporated to further improve the genera-
tion and ranking of results. In contrast to the ex-
amined approaches, which support the generation of
multiple, but unranked solutions [10,15], CARE pro-
vides built-in heuristics which allow for configuration
and, thus, an appropriate ranking of the generated
solutions. CARE is unique with respect to providing
provenance information of the generated solution.

In summary, when surveying related work with re-
spect to CARE, one may see that CARE is unique
with respect to the combination of (i) loose coupling
to a specific tool or modeling environment, (ii) low
user effort in the repairing process, and (iii) offering
multiple valid and ranked solutions that are further

enhanced by provenance information, which is then
reported to the user for inspecting the differences be-
tween generated solutions.

7 Conclusion & Future Work

In this paper, we have shown, how a violated onto-
logical conformance relationship between a model and
its metamodel may be re-established based on confor-
mance constraints, facilitated by logic programming.
In particular, the presented approach supports the de-
tection of conformance violations and provides repair
actions to re-establish this conformance relationship.
In contrast to other approaches, not only a single solu-
tion, but a set of ranked solutions is generated based
on several quality criteria exploiting structural and
semantic knowledge that is enriched with provenance
information and statistics to facilitate inspection by
the user.

The current realization shows great potential, but
there are several lines of future work. As already men-
tioned, the transformation to and from asp is foreseen
to be fully automated in the future. In this context,
especially the generation of repair actions for ocl vi-
olations is of great interest, including the potential
for reusing the already implemented repair actions.

Ultimately, given the appropriate transformations,
the implementation may be adapted to other domains
and technical spaces besides Ecore, e. g., database
schemas with according instances. Alternatively,
CARE may also be applied for the evolution of in-
terdependent semantic web ontologies with accompa-
nying owl constraints. Thereby, multi-domain on-
tologies such as DBpedia may be employed as source
for semantic knowledge with the dlvhex [9] solver.
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