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Abstract
While formal verification techniques are inevitable to ensure safety
of critical cyber-phyical systems (CPS), engineering techniques to
support the design and analysis of such CPS are still in their infancy.
Therefore, we take a first step towards the provision of appropri-
ate engineering techniques for CPS verification, by providing an
extensive evaluation of the current state of the art, identifying chal-
lenges not yet tackled by existing approaches and by proposing a
research roadmap intended to pave the way towards a fully supported
engineering process for CPS verification models.

CCS Concepts
• Computer systems organization → Embedded and cyber-physical
systems; • Computing methodologies → Model verification and
validation.
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1 Introduction
The high safety standards imposed on cyber-physical systems (CPS)
urgently require formal verification techniques (e.g., deductive verifi-
cation [49] or reachability analysis [16]). Safety verification at scale
calls for component-based hybrid system models [42], combining the
hybrid nature of discrete controllers and physical processes, along
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with contracts describing initial system states (e.g., vehicle stopped
initially) and desired target states (e.g., vehicle does not collide).
Problem. To address the complexity of verification, design tech-
niques for obtaining more manageable components based on ab-
straction (i.e., reducing model details) and decomposition (i.e., par-
titioning models) are essential [15]. In order to ensure that these
components still represent the relevant characteristics of the CPS
under construction, additional analytic techniques are crucial, not
least since formal verification is costly due to human interaction.
These techniques being derived from the fundamental activities in
SW engineering (SWE) [52] are central in a CPS verification model
engineering process and comprise three phases (cf. Fig. 1): (i) a mod-
eling phase in terms of decomposition driven by partition and reuse
based on a system description leading to a component-based model,
(ii) a validation phase leading, in a model-driven and data-driven
way, to a validated model and (iii) a verification phase leading to a
verified model which finally ends up, on basis of appropriate model
transformations, in an executable controller of the CPS in question.
CPS Verification Engineering vs. SWE. Traditional SWE tech-
niques are, however, inapplicable without severe adaptations, as
engineering of CPS verification models differs in several key aspects
[32]: Goal of the process is not a comprehensive system model, but
a model that can be formally verified. As a result, processed artifacts
(i) comprise intertwined discrete and continuous dynamics (hybrid
system models), (ii) are highly non-deterministic, (iii) are vigorously
abstracted to facilitate verification, (iv) target all system relevant
actors, not only the ones being engineered (e.g., obstacle-avoiding
robot and obstacles), and (v) must be unambiguously defined follow-
ing explicitly defined formal semantics. Lack of support in current
CPS engineering techniques for these unique features makes it far
from trivial to create valid component-based hybrid system verifica-
tion models, and presents one of the biggest bottlenecks for applying
formal methods to CPS [51].
Contribution and Paper Structure. Taking a first step towards the
provision of appropriate engineering techniques for CPS verifica-
tion, the contribution of this paper is as follows. Section 2 provides
an extensive evaluation of the current state of the art, based on a
systematic set of criteria and identifies challenges not yet tackled by
existing approaches. Section 3 proposes a research roadmap in order
to overcome these challenges and finally, Section 4 concludes the
paper with a brief resumé.
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Figure 1: CPS verification model engineering process: modeling, validation, verification

2 State of Research
In order to give an in-depth overview about the state of research,
approaches tackling different aspects of verification engineering of
CPS are evaluated on basis of a systematic set of comparison cri-
teria (see Fig. 2) which were carefully assembled in a bottom-up
manner on basis of the characteristics of the different approaches.
As intertwined cyber- and physical aspects are inherent to CPS, we
did not consider solely discrete or continuous approaches (e.g., [21],
supporting validation of continuous power systems), but rather fo-
cus on related work covering engineering of both aspects, usually
formalized in hybrid system models. In the following, we first start
with a brief discussion of the wider research context for engineer-
ing CPS verifications, followed by an evaluation of approaches for
decomposition and finally validation of verification models.

2.1 CPS Engineering & Component-based SWE
CPS engineering is increasingly adopting paradigms from traditional
component-based software engineering (CBSE) [52, 55]. Despite
inherent differences as already discussed above, CBSE provides valu-
able input like component identification (e.g., [13, 33]), component
reuse (e.g., [14]), code search engines (e.g., [5, 22, 50]), pragmatic
software reuse (e.g., [20, 36]) and various software metrics (e.g.,
[22, 28, 29, 39, 53]). However, compositional formalisms necessary
for describing desired overall behavior of CPS for verification are
less common and often limited to linear continuous dynamics (e.g.,
assume-guarantee reasoning for hybrid automata [2, 15, 19]).

2.2 Decomposition of Verification Models
Approaches targeting the decomposition of verification models are
evaluated in the following by distinguishing between those, acting in
a top-down manner by partitioning the system into parts and those
adhering to a bottom-up strategy by reusing existing components
from a library such that they comprise the system behavior.

2.2.1 Partitioning-based Approaches.

Kekatos et al. [27] translate Simulink models to SpaceEx verifica-
tion models building a network of hybrid automata. Simulink blocks
containing non-linearities are over-approximated by piecewise affine
approximations, possibly resulting in numerous locations (e.g., sinus

approximated by 40 locations). Further partitioning besides over-
approximation is not supported.
Kebir et al. [26] identify components from object-oriented code
with two bottom-up decompositions: (i) automated clustering with
a fitness function based on coupling and cohesion, and (ii) user-
guided component identification of desired size around pre-selected
key entities. Additionally, heuristics identify interfaces (e.g., based
on method cohesion). Despite its focus on discrete software only,
some techniques like clustering, key entities or heuristics provide
a valuable input for further research regarding the partitioning of
verification models for hybrid systems.
Oehlerking and Theel [46] automatically decompose hybrid au-
tomata into strongly connected components preserving stability (i.e.,
minor changes of input values lead to appropriate changes in out-
put values) rather than safety, with extensions to stochastic hybrid
systems [47]. They, however, neither consider reuse, nor specify or
decompose external behavior.
Summary. Current approaches do not focus on (i) verification mod-
els, and (ii) partitioning of internal or external component behavior
based on formal semantics with verification complexity in mind.

2.2.2 Reuse-based Approaches.

Bohrer et al. [3] build hybrid systems models of roller coasters
from components of individual track pieces. Parametric line seg-
ments/arcs are pre-verified to support certain properties (e.g., bounds
on max. acceleration) and can be repeatedly instantiated manually
to build a 2D model of tracks. There is, however, no focus on sup-
porting automatic component selection, i.e., in their terms, to find
lines/arcs that together model a track spline, but their components
could serve as evaluation benchmark for further research.
Neema et al. [44] propose component-based model synthesis by
design-space exploration. Components are put in a refinement hier-
archy (i.e., design space), each providing several implementations.
Goal is to find instances that form complete coverage of the system,
obeying the hierarchy and design constraints (e.g., max. implemen-
tation cost). Although not focused on verification models and safety
properties, its methods for finding specific implementations in large
libraries turn out useful.
Loos et al. [34] focus on reuse of models and prove safety of a
distributed car control system using quantified differential logic [48],
so verify a property for any number of cars on a highway (e.g., avoid
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Figure 2: State of research

crashes). Similarly, Metelo et al. [38] target the n-reservoir problem,
where water tank components constantly drain water filled by a
single hose, assuring a min. water level verified after composition
using linear hybrid automata. However, the approaches are strictly
limited to components of uniform shape and a fixed component
structure—the user merely chooses the number of components (i. e.,
components cannot be composed or reused in later models).
Summary. Current approaches (i) are restricted to specific scenar-
ios with limited libraries of components having fixed and uniform
structure, (ii) mostly select component candidates manual, while
composition is partly automated, and (iii) do not focus on incomplete
component coverage and the resulting residual models.

2.3 Validation of Verification Models
Even after decomposition, formal verification is costly, often requir-
ing human guidance. To prevent futile or vacuous proofs, prior vali-
dation techniques can check if a model adequately represents reality
and is fit for verification. In the following, validation approaches are
distinguished weather they ensure that the model (i) satisfies mod-
eling requirements, i.e., analyze how the model is expressed (e.g.,
contradiction-free), i.e., model-driven approaches and (ii) satisfies
domain requirements, i.e., captures what the model has to express
(i.e., system under consideration), i.e., data-driven approaches.

2.3.1 Model-Driven Approaches.

Cimatti et al. [7, 8] introduce the OTHELLO language to auto-
matically validate system behavior requirements with an SMT solver

by integrating temporal logic with hybrid aspects. Besides coun-
terexamples, diagnostic information w.r.t. failed validation attempts
is provided, comprising an unsatisfiable core to identify the causal
requirements. Even though formalized requirements can be inter-
preted as specifications of desired system behavior, the approach
is limited to temporal properties and does not aim at validation of
hybrid models and associated contracts.
Nuzzo et al. [45] present the CHASE framework for CPS require-
ment engineering by discrete time models, components and contracts.
CHASE bases on linear temporal logic (LTL) to analyze consistency
and compatibility of contracts. An external tool validates a specified
property and synthesizes a Python implementation from consistent
specifications. The validation of hybrid system components and
contracts with continuous dynamics is not an issue.
Hentschel et al. [18] propose a symbolic execution approach for
discrete Java programs, allowing validation of their behavior by
full execution path exploration [4, 30]. Similarly, Majumdar et al.
[35] present a symbolic execution approach for closed-loop CPS, by
discretizing the behavior of a linear plant, yielding a discrete-time
sequence of states instead of continuous evolution. However, neither
approach focuses on hybrid systems verification models. Rather
they act as potential starting points for a model-driven validation
approach.
Summary. Current approaches (i) mostly focus on contract vali-
dation based on designated specification formalization, but (ii) do
not focus on verification models that comprise internal and external
behavior. Feedback varies by approaches by giving insight into pos-
sible response directions. Finally, symbolic execution approaches do
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not focus on hybrid system verification models, and their symbolic
execution trees require adaptation to CPS.

2.3.2 Data-Driven Approaches.

Kang et al. [25] use UPPAAL-SMC [12], a statistical model
checking tool for timed systems, to check system properties with
limited degree of confidence by monitoring simulation runs in the
automotive domain. Validation feedback depends on queries (e.g.,
probability estimate and comparison), guiding the process. They,
however, do not use external data (e.g., from a dedicated simulation
model) to validate if a hybrid verification model behaves as intended.
Clarke et al. [9], Stursberg et al. [54] present a counterexample-
guided abstraction refinement approach for hybrid systems by cre-
ating abstractions thereof and validating that they actually behave
as the original system. If so, it suffices to verify the abstraction.
Spurious counterexamples (do not fulfill specification, but are not
accepted by the original model) result in a model refinement, which
is possible since all locations of the original model are mapped onto
single states in the abstraction. Their validation of models, however,
is limited to closely related models and abstractions, and does not
consider independent data that cannot be directly mapped to the
original model.
Jin et al. [23] target model specification synthesis and simulation
for data-driven validation. A manually provided template formula
in temporal logic, expressing the target property (e.g., start moving
in y seconds with speed x) together with the simulation data is used
to find, based on falsification, values satisfying the template, thus
fulfilling the target property. With this approach it is, however, not
possible to ensure that a model behaves as indicated by data obtained
from an external source.
Bartocci et al. [1] use a three step approach to localize faults in
Simulink/Stateflow models: (i) simulate the model guided by tests
containing input traces and localize erroneous parts, (ii) use trace
diagnostic to identify causal variables, and (iii) use these variables
to find components potentially involved in specification violation.
Additional use of external data is not tackled in their approach.
Summary. Current data-driven validation approaches (i) mostly
base their analysis on data created by simulation of the model itself
and (ii) are not focused on ensuring that the targeted model actually
behaves as intended based on external data, but rather that it fulfills
specific defined properties. This goes inline when taking a look into
current CPS simulation approaches (e.g., [24, 31]), requiring man-
ual behavior inspection, instead of providing automated techniques
comparing simulations/data with the modeled behavior to ensure
that a verification model behaves as desired.

3 Research Roadmap
The following roadmap is intended to address the challenges in the
modeling- and validation phase of the engineering process of Fig. 1
as identified in our state-of-the-art survey in the previous section.
Overall, our findings have revealed that, while the verification phase
is well supported through formal verification tools (e.g., [17]) and
proof-aware model transformation methods (e.g., [43]), further re-
search is necessary in order to facilitate modeling and validation
by putting forward (i) design techniques for decomposition of ver-
ification models and (ii) analytic techniques for their validation to
support the entire CPS verification model engineering process. In

particular, the following research goals and according challenges are
considered to be of major importance:
Goal 1a: Partitioning Mechanisms for Decomposition. Techniques
to partition system behavior should be developed which are able
to deal with both, implicit and explicit links within the intertwined
discrete controllers and physical processes. Complementing these
techniques, an appropriate contract mechanism is needed in order to
facilitate formal verification of the resulting hybrid system compo-
nents while preserving overall system correctness.
Goal 1b: Reuse Mechanisms for Decomposition. Techniques to
identify pre-verified components are necessary which comprise parts
of the required system behavior. In addition, smart selection mecha-
nisms have to be provided for component coupling and for matching
component parameters such that system safety is provably preserved.
Finally, component and contract candidates should be at least semi-
automatically outlined for the residual model.
Challenges. It has to be emphasized that, identifying component
candidates is especially crucial, since the goal is not only to fa-
cilitate reuse with increased cohesion and reduced coupling, but
also to reduce verification complexity; this simultaneously asks for
(i) substantial adjustments of component contracts to support inter-
component communication, (ii) explicit links (e.g., communication,
sensing) and implicit links through physical phenomena (e.g., time,
motion), and (iii) strict formal requirements (e.g., no overlapping
component variables). Naturally, a necessary prerequisite for reuse
mechanisms are component libraries, which have been introduced
in previous work, e.g., [6] (collection of Simulink models) and our
hybrid systems component library targeting various domains, like
traffic control [40], vehicle cruise control [41], robotics and train
control [42].
Goal 2a: Model-driven Validation Mechanisms. Techniques that
expose the hybrid discrete-continuous model behavior during a proof
should be put forward in order to, e.g., visualize model traces and
map model elements to proof steps to foster user interaction. More-
over, concepts are needed allowing to analyze model quality at-
tributes, absent additional external data, to determine, e.g., if certain
assumptions are satisfiable.
Goal 2b: Data-driven Validation Mechanisms. Techniques to com-
pare models to external data for compliance with domain require-
ments have to be developed, allowing, e.g., real-world test data and
simulations. These techniques should subsequently also allow to
localize and improve unsatisfactory model parts.
Challenges. Checking modeling requirements demands comprehen-
sive analysis of the model’s internal and external behavior, chal-
lenged by the infinite number of system states arising from the com-
bined cyber- and physical behavior. Checking domain requirements
must base on supplemental CPS data (e.g., obtained by simulation
or testing), as verification models tend to be vigorously abstracted.
Such data is, however, discrete in nature (e.g., recorded at discrete
time intervals), requiring to bridge the gap to hybrid verification
models by discovering how discretized data can be mapped to the
component behavior while retaining its contracts, facilitating error
localization in invalid models. Techniques for fast comparisons be-
tween a model and a system, can be found in the field of artificial
intelligence, where hybrid system diagnosis [37] aims at discovering
errors in systems by comparing the observed behavior of a system
to a predicted behavior described by a model (e.g., [10, 11]).
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4 Resumé
With the research goals presented in this paper, we hope to: (i) con-
ceptualize novel design and analytic engineering techniques to re-
duce verification effort, partly based on existing SWE techniques be-
ing vigorously extended towards the characteristics of CPS, (ii) demon-
strate applicability with a prototypical tool suite supporting these
techniques, and (iii) gain insights into the relationship between mod-
ularity, reusability, and functional suitability in CPS verification.
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