
Towards CPS Verification Engineering
Andreas Müller

andreas.mueller@fh-hagenberg.at
University of Applied Sciences

Upper Austria
Hagenberg, Austria

Stefan Mitsch
smitsch@cs.cmu.edu

Computer Science Department
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Werner Retschitzegger
werner.retschitzegger@jku.at

Department of Cooperative Information Systems
Johannes Kepler University

Linz, Austria

Wieland Schwinger
wieland.schwinger

Department of Cooperative Information Systems
Johannes Kepler University

Linz, Austria

Abstract
While formal verification techniques are inevitable to ensure safety
of critical cyber-phyical systems (CPS), engineering techniques to
support the design and analysis of such CPS are still in their infancy.
Therefore, we take a first step towards the provision of appropri-
ate engineering techniques for CPS verification, by providing an
extensive evaluation of the current state of the art, identifying chal-
lenges not yet tackled by existing approaches and by proposing a
research roadmap intended to pave the way towards a fully supported
engineering process for CPS verification models.

CCS Concepts
• Computer systems organization → Embedded and cyber-physical
systems; • Computing methodologies → Model verification and
validation.

ACM Reference Format:
Andreas Müller, Stefan Mitsch, Werner Retschitzegger, and Wieland Schwinger.
2020. Towards CPS Verification Engineering. In The 22nd International Con-
ference on Information Integration and Web-based Applications & Services
(iiWAS ’20), November 30-December 2, 2020, Chiang Mai, Thailand. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3428757.3429146

1 Introduction
The high safety standards imposed on cyber-physical systems (CPS)
urgently require formal verification techniques (e.g., deductive verifi-
cation [49] or reachability analysis [16]). Safety verification at scale
calls for component-based hybrid system models [42], combining the
hybrid nature of discrete controllers and physical processes, along

This material is based on research sponsored by the Austrian Science Fund (FWF)
P28187-N31 and by the AFOSR under grant number FA9550-16-1-0288. The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

iiWAS ’20, November 30-December 2, 2020, Chiang Mai, Thailand
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8922-8/20/11.
https://doi.org/10.1145/3428757.3429146

with contracts describing initial system states (e.g., vehicle stopped
initially) and desired target states (e.g., vehicle does not collide).
Problem. To address the complexity of verification, design tech-
niques for obtaining more manageable components based on ab-
straction (i.e., reducing model details) and decomposition (i.e., par-
titioning models) are essential [15]. In order to ensure that these
components still represent the relevant characteristics of the CPS
under construction, additional analytic techniques are crucial, not
least since formal verification is costly due to human interaction.
These techniques being derived from the fundamental activities in
SW engineering (SWE) [52] are central in a CPS verification model
engineering process and comprise three phases (cf. Fig. 1): (i) a mod-
eling phase in terms of decomposition driven by partition and reuse
based on a system description leading to a component-based model,
(ii) a validation phase leading, in a model-driven and data-driven
way, to a validated model and (iii) a verification phase leading to a
verified model which finally ends up, on basis of appropriate model
transformations, in an executable controller of the CPS in question.
CPS Verification Engineering vs. SWE. Traditional SWE tech-
niques are, however, inapplicable without severe adaptations, as
engineering of CPS verification models differs in several key aspects
[32]: Goal of the process is not a comprehensive system model, but
a model that can be formally verified. As a result, processed artifacts
(i) comprise intertwined discrete and continuous dynamics (hybrid
system models), (ii) are highly non-deterministic, (iii) are vigorously
abstracted to facilitate verification, (iv) target all system relevant
actors, not only the ones being engineered (e.g., obstacle-avoiding
robot and obstacles), and (v) must be unambiguously defined follow-
ing explicitly defined formal semantics. Lack of support in current
CPS engineering techniques for these unique features makes it far
from trivial to create valid component-based hybrid system verifica-
tion models, and presents one of the biggest bottlenecks for applying
formal methods to CPS [51].
Contribution and Paper Structure. Taking a first step towards the
provision of appropriate engineering techniques for CPS verifica-
tion, the contribution of this paper is as follows. Section 2 provides
an extensive evaluation of the current state of the art, based on a
systematic set of criteria and identifies challenges not yet tackled by
existing approaches. Section 3 proposes a research roadmap in order
to overcome these challenges and finally, Section 4 concludes the
paper with a brief resumé.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3428757.3429146
https://doi.org/10.1145/3428757.3429146
https://creativecommons.org/licenses/by/4.0/


iiWAS ’20, November 30-December 2, 2020, Chiang Mai, Thailand Andreas Müller, Stefan Mitsch, Werner Retschitzegger, and Wieland Schwinger

Verification PhaseValidation PhaseModeling Phase

CYBER-PHYSICAL SYSTEM

System 
Description

Sy
st

em
 

Le
ve

l
M

o
d

el
Le

ve
l

COMPONENT-BASED 
MODEL

VALIDATE

Model-Driven

Data-Driven

real world data

valid?

no

yes

VALIDATED
MODEL

VERIFIED
MODEL

VERIFY GENERATEverified?

yes

no

Controller

Verification ToolDECOMPOSE

Partition

EnVe-CPS|Goal 1b 
Reuse Mechanisms for 

Decomposition

Reuse

EnVe-CPS|Goal 2a 
Mechanisms for 

Model-driven Validation
EnVe-CPS|Goal 2a 

Mechanisms for 
Data-driven Validation

Model Transformations
Goal 1a

Goal 1b

Goal 2a

Goal 2b

Figure 1: CPS verification model engineering process: modeling, validation, verification

2 State of Research
In order to give an in-depth overview about the state of research,
approaches tackling different aspects of verification engineering of
CPS are evaluated on basis of a systematic set of comparison cri-
teria (see Fig. 2) which were carefully assembled in a bottom-up
manner on basis of the characteristics of the different approaches.
As intertwined cyber- and physical aspects are inherent to CPS, we
did not consider solely discrete or continuous approaches (e.g., [21],
supporting validation of continuous power systems), but rather fo-
cus on related work covering engineering of both aspects, usually
formalized in hybrid system models. In the following, we first start
with a brief discussion of the wider research context for engineer-
ing CPS verifications, followed by an evaluation of approaches for
decomposition and finally validation of verification models.

2.1 CPS Engineering & Component-based SWE
CPS engineering is increasingly adopting paradigms from traditional
component-based software engineering (CBSE) [52, 55]. Despite
inherent differences as already discussed above, CBSE provides valu-
able input like component identification (e.g., [13, 33]), component
reuse (e.g., [14]), code search engines (e.g., [5, 22, 50]), pragmatic
software reuse (e.g., [20, 36]) and various software metrics (e.g.,
[22, 28, 29, 39, 53]). However, compositional formalisms necessary
for describing desired overall behavior of CPS for verification are
less common and often limited to linear continuous dynamics (e.g.,
assume-guarantee reasoning for hybrid automata [2, 15, 19]).

2.2 Decomposition of Verification Models
Approaches targeting the decomposition of verification models are
evaluated in the following by distinguishing between those, acting in
a top-down manner by partitioning the system into parts and those
adhering to a bottom-up strategy by reusing existing components
from a library such that they comprise the system behavior.

2.2.1 Partitioning-based Approaches.

Kekatos et al. [27] translate Simulink models to SpaceEx verifica-
tion models building a network of hybrid automata. Simulink blocks
containing non-linearities are over-approximated by piecewise affine
approximations, possibly resulting in numerous locations (e.g., sinus

approximated by 40 locations). Further partitioning besides over-
approximation is not supported.
Kebir et al. [26] identify components from object-oriented code
with two bottom-up decompositions: (i) automated clustering with
a fitness function based on coupling and cohesion, and (ii) user-
guided component identification of desired size around pre-selected
key entities. Additionally, heuristics identify interfaces (e.g., based
on method cohesion). Despite its focus on discrete software only,
some techniques like clustering, key entities or heuristics provide
a valuable input for further research regarding the partitioning of
verification models for hybrid systems.
Oehlerking and Theel [46] automatically decompose hybrid au-
tomata into strongly connected components preserving stability (i.e.,
minor changes of input values lead to appropriate changes in out-
put values) rather than safety, with extensions to stochastic hybrid
systems [47]. They, however, neither consider reuse, nor specify or
decompose external behavior.
Summary. Current approaches do not focus on (i) verification mod-
els, and (ii) partitioning of internal or external component behavior
based on formal semantics with verification complexity in mind.

2.2.2 Reuse-based Approaches.

Bohrer et al. [3] build hybrid systems models of roller coasters
from components of individual track pieces. Parametric line seg-
ments/arcs are pre-verified to support certain properties (e.g., bounds
on max. acceleration) and can be repeatedly instantiated manually
to build a 2D model of tracks. There is, however, no focus on sup-
porting automatic component selection, i.e., in their terms, to find
lines/arcs that together model a track spline, but their components
could serve as evaluation benchmark for further research.
Neema et al. [44] propose component-based model synthesis by
design-space exploration. Components are put in a refinement hier-
archy (i.e., design space), each providing several implementations.
Goal is to find instances that form complete coverage of the system,
obeying the hierarchy and design constraints (e.g., max. implemen-
tation cost). Although not focused on verification models and safety
properties, its methods for finding specific implementations in large
libraries turn out useful.
Loos et al. [34] focus on reuse of models and prove safety of a
distributed car control system using quantified differential logic [48],
so verify a property for any number of cars on a highway (e.g., avoid



Towards CPS Verification Engineering iiWAS ’20, November 30-December 2, 2020, Chiang Mai, Thailand

Approach Origin / Formalism Internal Behavior
Kekatos et al. [27] Simulink fixed size

Kebir et al. [26] Object-oriented Software metrics-based & manual
Oehlerking and Theel [46,47] Hybrid automata minimized size

Approach Origin / Formalism Safety
Bohrer et al. [3] Differential dynamic logic (dL) additional proof

Neema et al. [44] Simulink 
Loos et al. [34] Differential dynamic logic (dL) automatic

Metelo et al. [38] Real-Time Maude 

Approach Origin / Formalism
Cimatti et al. [7,8] LTL (timed)

Nuzzo et al. [45] OTHELLO (timed)
Symbolic Execution [18],[35] Discrete program & ODEs 

Approach Source Measure Feedback
Kang et al. [25] Simulation stochastic probability

Clarke et al. [9,54] Counter example exact refined model
Jin et al. [23] Simulation exact counter example

Bartocci et al. [1] Simulation stochastic probability

VA
LI

DA
TI

ON
DE

CO
MP

OS
IT

IO
N

Parameters Library
verification-driven fixed
design constraints-driven extensible


falsification template
trace diagnostics/ model slicing/ spectral analysis input traces

Method Steering
model checking query
model checking 

symbolic execution tree, reachable sequences

Feedback


execution path visualization

Internal Behavior

manual

fixed
 fixed

Pa
rti

tio
ni

ng
Re

us
e

External Behavior
fixed size
heuristics-based


Decomposition
syntactic-based
syntactic-based
syntactic-based

Selection

Mo
de

l-d
riv

en
Da

ta
-d

riv
en

 Residuals





External Behavior
consistency
satisfiability


automatic



counter example, unsatisfiable core
refined program

Internal Behavior How the target component is determined (fixed size, minimized, manual, metrics-based) Internal Behavior How model-driven validation of internal behavior is performed (e.g., execution paths)

External Behavior How the target component's interface and contract is determined (fixed size, heuristics-based) External Behavior How model-driven validation of external behavior is performed (e.g., satisfiability)

Decomposition How decomposition is supported (syntactic-based, semantic-based) Feedback How feedback of model validation is provided (e.g., counter example)

Safety How safety is ensured (automatic, with additional proofs, not at all) Method How data-driven validation is done (e.g., model checking)
Residuals How residual model parts are handled, if library components not fully cover the system (e.g., partitioning) Measure How validity is measured (e.g., stochastic)
Selection How components are selected (automatic, manual, not at all) Steering How validation can be guided (e.g., templates)
Parameters How parameters for reused components are selected (verification-driven, design contraints-driven, not at all) Feedback How feedback for invalid models is provided (e.g., counter example)
Library How is the component library organized (fixed, extensible)

Legend:

DE
CO

M
PO

SI
TI

O
N

Pa
rti

tio
ni

ng
Re

us
e VA

LI
DA

TI
O

N Mo
de

l-
dr

ive
n

Da
ta

-
dr

ive
n

Figure 2: State of research

crashes). Similarly, Metelo et al. [38] target the n-reservoir problem,
where water tank components constantly drain water filled by a
single hose, assuring a min. water level verified after composition
using linear hybrid automata. However, the approaches are strictly
limited to components of uniform shape and a fixed component
structure—the user merely chooses the number of components (i. e.,
components cannot be composed or reused in later models).
Summary. Current approaches (i) are restricted to specific scenar-
ios with limited libraries of components having fixed and uniform
structure, (ii) mostly select component candidates manual, while
composition is partly automated, and (iii) do not focus on incomplete
component coverage and the resulting residual models.

2.3 Validation of Verification Models
Even after decomposition, formal verification is costly, often requir-
ing human guidance. To prevent futile or vacuous proofs, prior vali-
dation techniques can check if a model adequately represents reality
and is fit for verification. In the following, validation approaches are
distinguished weather they ensure that the model (i) satisfies mod-
eling requirements, i.e., analyze how the model is expressed (e.g.,
contradiction-free), i.e., model-driven approaches and (ii) satisfies
domain requirements, i.e., captures what the model has to express
(i.e., system under consideration), i.e., data-driven approaches.

2.3.1 Model-Driven Approaches.

Cimatti et al. [7, 8] introduce the OTHELLO language to auto-
matically validate system behavior requirements with an SMT solver

by integrating temporal logic with hybrid aspects. Besides coun-
terexamples, diagnostic information w.r.t. failed validation attempts
is provided, comprising an unsatisfiable core to identify the causal
requirements. Even though formalized requirements can be inter-
preted as specifications of desired system behavior, the approach
is limited to temporal properties and does not aim at validation of
hybrid models and associated contracts.
Nuzzo et al. [45] present the CHASE framework for CPS require-
ment engineering by discrete time models, components and contracts.
CHASE bases on linear temporal logic (LTL) to analyze consistency
and compatibility of contracts. An external tool validates a specified
property and synthesizes a Python implementation from consistent
specifications. The validation of hybrid system components and
contracts with continuous dynamics is not an issue.
Hentschel et al. [18] propose a symbolic execution approach for
discrete Java programs, allowing validation of their behavior by
full execution path exploration [4, 30]. Similarly, Majumdar et al.
[35] present a symbolic execution approach for closed-loop CPS, by
discretizing the behavior of a linear plant, yielding a discrete-time
sequence of states instead of continuous evolution. However, neither
approach focuses on hybrid systems verification models. Rather
they act as potential starting points for a model-driven validation
approach.
Summary. Current approaches (i) mostly focus on contract vali-
dation based on designated specification formalization, but (ii) do
not focus on verification models that comprise internal and external
behavior. Feedback varies by approaches by giving insight into pos-
sible response directions. Finally, symbolic execution approaches do



iiWAS ’20, November 30-December 2, 2020, Chiang Mai, Thailand Andreas Müller, Stefan Mitsch, Werner Retschitzegger, and Wieland Schwinger

not focus on hybrid system verification models, and their symbolic
execution trees require adaptation to CPS.

2.3.2 Data-Driven Approaches.

Kang et al. [25] use UPPAAL-SMC [12], a statistical model
checking tool for timed systems, to check system properties with
limited degree of confidence by monitoring simulation runs in the
automotive domain. Validation feedback depends on queries (e.g.,
probability estimate and comparison), guiding the process. They,
however, do not use external data (e.g., from a dedicated simulation
model) to validate if a hybrid verification model behaves as intended.
Clarke et al. [9], Stursberg et al. [54] present a counterexample-
guided abstraction refinement approach for hybrid systems by cre-
ating abstractions thereof and validating that they actually behave
as the original system. If so, it suffices to verify the abstraction.
Spurious counterexamples (do not fulfill specification, but are not
accepted by the original model) result in a model refinement, which
is possible since all locations of the original model are mapped onto
single states in the abstraction. Their validation of models, however,
is limited to closely related models and abstractions, and does not
consider independent data that cannot be directly mapped to the
original model.
Jin et al. [23] target model specification synthesis and simulation
for data-driven validation. A manually provided template formula
in temporal logic, expressing the target property (e.g., start moving
in y seconds with speed x) together with the simulation data is used
to find, based on falsification, values satisfying the template, thus
fulfilling the target property. With this approach it is, however, not
possible to ensure that a model behaves as indicated by data obtained
from an external source.
Bartocci et al. [1] use a three step approach to localize faults in
Simulink/Stateflow models: (i) simulate the model guided by tests
containing input traces and localize erroneous parts, (ii) use trace
diagnostic to identify causal variables, and (iii) use these variables
to find components potentially involved in specification violation.
Additional use of external data is not tackled in their approach.
Summary. Current data-driven validation approaches (i) mostly
base their analysis on data created by simulation of the model itself
and (ii) are not focused on ensuring that the targeted model actually
behaves as intended based on external data, but rather that it fulfills
specific defined properties. This goes inline when taking a look into
current CPS simulation approaches (e.g., [24, 31]), requiring man-
ual behavior inspection, instead of providing automated techniques
comparing simulations/data with the modeled behavior to ensure
that a verification model behaves as desired.

3 Research Roadmap
The following roadmap is intended to address the challenges in the
modeling- and validation phase of the engineering process of Fig. 1
as identified in our state-of-the-art survey in the previous section.
Overall, our findings have revealed that, while the verification phase
is well supported through formal verification tools (e.g., [17]) and
proof-aware model transformation methods (e.g., [43]), further re-
search is necessary in order to facilitate modeling and validation
by putting forward (i) design techniques for decomposition of ver-
ification models and (ii) analytic techniques for their validation to
support the entire CPS verification model engineering process. In

particular, the following research goals and according challenges are
considered to be of major importance:
Goal 1a: Partitioning Mechanisms for Decomposition. Techniques
to partition system behavior should be developed which are able
to deal with both, implicit and explicit links within the intertwined
discrete controllers and physical processes. Complementing these
techniques, an appropriate contract mechanism is needed in order to
facilitate formal verification of the resulting hybrid system compo-
nents while preserving overall system correctness.
Goal 1b: Reuse Mechanisms for Decomposition. Techniques to
identify pre-verified components are necessary which comprise parts
of the required system behavior. In addition, smart selection mecha-
nisms have to be provided for component coupling and for matching
component parameters such that system safety is provably preserved.
Finally, component and contract candidates should be at least semi-
automatically outlined for the residual model.
Challenges. It has to be emphasized that, identifying component
candidates is especially crucial, since the goal is not only to fa-
cilitate reuse with increased cohesion and reduced coupling, but
also to reduce verification complexity; this simultaneously asks for
(i) substantial adjustments of component contracts to support inter-
component communication, (ii) explicit links (e.g., communication,
sensing) and implicit links through physical phenomena (e.g., time,
motion), and (iii) strict formal requirements (e.g., no overlapping
component variables). Naturally, a necessary prerequisite for reuse
mechanisms are component libraries, which have been introduced
in previous work, e.g., [6] (collection of Simulink models) and our
hybrid systems component library targeting various domains, like
traffic control [40], vehicle cruise control [41], robotics and train
control [42].
Goal 2a: Model-driven Validation Mechanisms. Techniques that
expose the hybrid discrete-continuous model behavior during a proof
should be put forward in order to, e.g., visualize model traces and
map model elements to proof steps to foster user interaction. More-
over, concepts are needed allowing to analyze model quality at-
tributes, absent additional external data, to determine, e.g., if certain
assumptions are satisfiable.
Goal 2b: Data-driven Validation Mechanisms. Techniques to com-
pare models to external data for compliance with domain require-
ments have to be developed, allowing, e.g., real-world test data and
simulations. These techniques should subsequently also allow to
localize and improve unsatisfactory model parts.
Challenges. Checking modeling requirements demands comprehen-
sive analysis of the model’s internal and external behavior, chal-
lenged by the infinite number of system states arising from the com-
bined cyber- and physical behavior. Checking domain requirements
must base on supplemental CPS data (e.g., obtained by simulation
or testing), as verification models tend to be vigorously abstracted.
Such data is, however, discrete in nature (e.g., recorded at discrete
time intervals), requiring to bridge the gap to hybrid verification
models by discovering how discretized data can be mapped to the
component behavior while retaining its contracts, facilitating error
localization in invalid models. Techniques for fast comparisons be-
tween a model and a system, can be found in the field of artificial
intelligence, where hybrid system diagnosis [37] aims at discovering
errors in systems by comparing the observed behavior of a system
to a predicted behavior described by a model (e.g., [10, 11]).



Towards CPS Verification Engineering iiWAS ’20, November 30-December 2, 2020, Chiang Mai, Thailand

4 Resumé
With the research goals presented in this paper, we hope to: (i) con-
ceptualize novel design and analytic engineering techniques to re-
duce verification effort, partly based on existing SWE techniques be-
ing vigorously extended towards the characteristics of CPS, (ii) demon-
strate applicability with a prototypical tool suite supporting these
techniques, and (iii) gain insights into the relationship between mod-
ularity, reusability, and functional suitability in CPS verification.

References
[1] Ezio Bartocci et al. 2018. Localizing Faults in Simulink/Stateflow Models with

STL. In Proc. Hybrid Systems: Computation and Control Conf. ACM, 197–206.
[2] Sergiy Bogomolov et al. 2014. Assume-Guarantee Abstraction Refinement Meets

Hybrid Systems. In Hardware and Software: Verification and Testing - 10th Int.
Haifa Verification Conf. (LNCS), Eran Yahav (Ed.). Springer, 116–131.

[3] Brandon Bohrer et al. 2018. CoasterX: A Case Study in Component-Driven Hybrid
Systems Proof Automation. In 6th IFAC Conf. on Analysis and Design of Hybrid
Systems (IFAC-PapersOnLine), Alessandro Abate et al. (Eds.). Elsevier, 55–60.

[4] Robert S. Boyer et al. 1975. SELECT - A Formal System for Testing and Debugging
Programs by Symbolic Execution. SIGPLAN Not 10, 6 (1975), 234–245.

[5] Gianluigi Caldiera and Victor R. Basili. 1991. Identifying and Qualifying Reusable
Software Components. IEEE Computer 24, 2 (1991), 61–70.

[6] Shafiul Azam Chowdhury et al. 2018. Automatically finding bugs in a commercial
cyber-physical system development tool chain with SLforge. In Proc. Conf. on
Softw. Eng. ACM.

[7] Alessandro Cimatti et al. 2009. Requirements Validation for Hybrid Systems. In
Computer Aided Verification Conf. (LNCS), Ahmed Bouajjani and Oded Maler
(Eds.). Springer.

[8] Alessandro Cimatti et al. 2012. Validation of requirements for hybrid systems: A
formal approach. ACM Trans. Softw. Eng. Methodol. 21, 4 (2012), 22:1–22:34.

[9] Edmund M. Clarke et al. 2003. Verification of Hybrid Systems Based on
Counterexample-Guided Abstraction Refinement. In Tools and Algorithms for
the Construction and Analysis of Systems Conf. (LNCS), Hubert Garavel and John
Hatcliff (Eds.). Springer.

[10] Matthew J. Daigle et al. 2015. A Structural Model Decomposition Framework
for Hybrid Systems Diagnosis. In Proc. of the 26th Int. Workshop on Principles of
Diagnosis. CEUR-WS.org, 201–208.

[11] Matthew J. Daigle et al. 2018. Diagnosis of Hybrid Systems Using Structural
Model Decomposition. In Fault Diagnosis of Hybrid Dynamic and Complex
Systems, Moamar Sayed-Mouchaweh (Ed.). Springer, Cham, 179–207.

[12] Alexandre David et al. 2011. Time for Statistical Model Checking of Real-Time
Systems. In Computer Aided Verification - 23rd Int. Conf., Proc. (LNCS), Ganesh
Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 349–355.

[13] Dejan Desovski and Bojan Cukic. 2007. A Component-Based Approach to
Verification and Validation of Formal Software Models. In Architecting Dependable
Systems IV (LNCS). Springer.

[14] William B. Frakes and Kyo Kang. 2005. Software Reuse Research: Status and
Future. IEEE Trans. Software Eng. 31, 7 (2005), 529–536.

[15] Goran Frehse et al. 2004. Assume-guarantee reasoning for hybrid I/O-automata
by over-approximation of continuous interaction. In IEEE Conf. on Decision and
Control, CDC, Vol. 1.

[16] Goran Frehse et al. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In
Computer Aided Verification Conf. Proc. (LNCS). Springer.

[17] Nathan Fulton et al. 2015. KeYmaera X: An Axiomatic Tactical Theorem Prover
for Hybrid Systems. In Conf. on Automated Deduction, Proc. (LNCS). Springer.

[18] Martin Hentschel et al. 2014. Symbolic Execution Debugger (SED). In Runtime
Verification, Proc. (LNCS). Springer.

[19] Thomas A. Henzinger et al. 2001. Assume-Guarantee Reasoning for Hierarchical
Hybrid Systems. In Hybrid Systems: Computation and Control, Proc. (LNCS),
Vol. 2034. Springer.

[20] Reid Holmes and Robert J. Walker. 2012. Systematizing pragmatic software reuse.
ACM Trans. Softw. Eng. Methodol. 21, 4 (2012), 20:1–20:44.

[21] Zhenyu Huang et al. 2006. Model validation with hybrid dynamic simulation. In
2006 IEEE Power Engineering Society General Meeting.

[22] Oliver Hummel. 2008. Semantic component retrieval in software engineer-
ing. Ph.D. Dissertation. Univ. of Mannheim, Germany. https://madoc.bib.uni-
mannheim.de/1883/

[23] Xiaoqing Jin et al. 2013. Mining requirements from closed-loop control models.
In Hybrid systems: computation and control, Proc. ACM.

[24] T. Junjie et al. 2012. Cyber-physical systems modeling method based on Modelica.
In 2012 IEEE Int. Conf. on Software Security and Reliability Companion. 188–191.

[25] Eun-Young Kang et al. 2017. Verification and Validation of a Cyber-Physical
System in the Automotive Domain. In IEEE Conf. on Softw. Quality, Reliability

and Security Companion. IEEE.
[26] Selim Kebir et al. 2012. Quality-Centric Approach for Software Component

Identification from Object-Oriented Code. In Joint IEEE/IFIP Conf. on Softw.
Architecture & Europ. Conf. on Softw. Architecture. IEEE.

[27] Nikolaos Kekatos et al. 2017. Constructing verification models of nonlinear
Simulink systems via syntactic hybridization. In IEEE Conf. on Decision and
Control. IEEE.

[28] Marcus Kessel and Colin Atkinson. 2015. Measuring the Superfluous Functionality
in Software Components. In ACM SIGSOFT Symp. on Component-Based Softw.
Eng., Philippe Kruchten et al. (Eds.). ACM.

[29] Marcus Kessel and Colin Atkinson. 2016. Ranking software components for reuse
based on non-functional properties. Inf. Sys. Frontiers 18, 5 (2016), 825–853.

[30] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394.

[31] Xenofon D. Koutsoukos et al. 2018. SURE: A Modeling and Simulation Inte-
gration Platform for Evaluation of Secure and Resilient Cyber-Physical Systems.
IEEE Proc. 106, 1 (2018).

[32] E.A Lee. 2008. Cyber Physical Systems: Design Challenges. In IEEE Symp. on
Object Oriented Real-Time Distrib. Comp. (ISORC 2008).

[33] Keith Levi and Ali Arsanjani. 2002. A goal-driven approach to enterprise compo-
nent identification and specification. Commun. ACM 45, 10 (2002), 45–52.

[34] Sarah M. Loos et al. 2011. Adaptive Cruise Control: Hybrid, Distributed, and
Now Formally Verified. In Symposium on Formal Methods (LNCS). Springer.

[35] Rupak Majumdar et al. 2012. CLSE: Closed-Loop Symbolic Execution. In NASA
Formal Methods Symp. Proc. (LNCS). Springer.

[36] Soha Makady and Robert J. Walker. 2013. Validating pragmatic reuse tasks by
leveraging existing test suites. Softw., Pract. Exper. 43, 9 (2013), 1039–1070.

[37] Sheila A. McIlraith et al. 2000. Hybrid Systems Diagnosis. In Hybrid Systems:
Computation and Control. Springer.

[38] Andre Metelo et al. 2018. Towards the Modular Specification and Validation
of Cyber-Physical Systems: A Case-Study on Reservoir Modeling with Hybrid
Automata. In Computational Science and Its Applications (LNCS). Springer.

[39] Marko Mijač and Zlatko Stapic. 2015. Reusability Metrics of Software Compo-
nents: Survey. In Centrl. Europ. Conf. on Inform. and Intell. Sys. Univ. Zagreb.

[40] Andreas Müller et al. 2015. Verified Traffic Networks: Component-based Verifica-
tion of Cyber-Physical Flow Systems. In 18th Int. Conf. on Intelligent Transporta-
tion Systems. 757–764.

[41] Andreas Müller et al. 2016. A Component-Based Approach to Hybrid Systems
Safety Verification. In Integrated Formal Methods - 12th Int. Conf., Proc. (LNCS),
Erika Ábrahám and Marieke Huisman (Eds.). Springer, 441–456.

[42] Andreas Müller et al. 2018. Tactical contract composition for hybrid system
component verification. STTT 20, 6 (2018), 615–643.

[43] Andreas Müller, Stefan Mitsch, Wieland Schwinger, and André Platzer. 2018.
A Component-Based Hybrid Systems Verification and Implementation Tool in
KeYmaera X (Tool Demonstration). In Cyber Physical Systems. Model-Based
Design - 8th International Workshop. Revised Selected Papers (Lecture Notes in
Computer Science), Vol. 11615. Springer, 91–110.

[44] Sandeep Neema et al. 2003. Constraint-Based Design-Space Exploration and
Model Synthesis. In Embedded Software, Conf. (LNCS), Rajeev Alur and Insup Lee
(Eds.). Springer.

[45] Pierluigi Nuzzo et al. 2018. CHASE: Contract-based requirement engineering for
cyber-physical system design. In Design, Automation & Test in Europe Conf. &
Exhib. IEEE.

[46] Jens Oehlerking and Oliver E. Theel. 2009. Decompositional Construction of
Lyapunov Functions for Hybrid Systems. In Hybrid Systems: Computation and
Control, Proc. (LNCS). Springer.

[47] Jens Oehlerking and Oliver E. Theel. 2009. A Decompositional Proof Scheme
for Automated Convergence Proofs of Stochastic Hybrid Systems. In Automated
Technology for Verification and Analysis, Proc. (LNCS). Springer.

[48] André Platzer. 2012. A Complete Axiomatization of Quantified Differential
Dynamic Logic for Distributed Hybrid Systems. Logical Methods in Computer
Science 8, 4 (2012).

[49] André Platzer. 2018. Logical foundations of cyber-physical systems. Springer,
Cham, Switzerland.

[50] Steven P. Reiss. 2009. Semantics-based code search. In Conf. on Softw. Eng., Proc.
IEEE, 243–253.

[51] Kristin Yvonne Rozier. 2016. Specification: The Biggest Bottleneck in Formal
Methods and Autonomy. In Verified Software. Theories, Tools, and Experiments
Conf. (LNCS).

[52] Ian Sommerville. 2011. Software engineering (9. ed.). Pearson, Boston, MA.
[53] Kathryn T. Stolee et al. 2016. Code search with input/output queries: Generalizing,

ranking, and assessment. Journal of Systems and Software 116 (2016), 35–48.
[54] Olaf Stursberg et al. 2003. Specification-Guided Analysis of Hybrid Systems

Using a Hierarchy of Validation Methods. IFAC Proc. Volumes 36, 6 (2003),
289–294.

[55] Tassio Vale et al. 2016. Twenty-eight years of component-based software engi-
neering. Journal of Systems and Software 111 (2016), 128–148.

https://madoc.bib.uni-mannheim.de/1883/
https://madoc.bib.uni-mannheim.de/1883/

	Abstract
	1 Introduction
	2 State of Research
	2.1 CPS Engineering & Component-based SWE
	2.2 Decomposition of Verification Models
	2.3 Validation of Verification Models

	3 Research Roadmap
	4 Resumé
	References

