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Abstract—Human operators in today’s control centers, such
as air or road traffic control, need to monitor a plethora of
information obtained from diverse sources. To support them in
detecting critical situations within this information flood and
taking timely actions, operators thus need adequate information
fusion and decision support systems. Research efforts on such
dedicated Situation Awareness (SAW) systems have concentrated
on assisting the operator in managing the current situations.
However, little focus has been so far on integratively supporting
the different phases of knowledge management in SAW systems,
which encompasses the acquisition, representation, validation,
maintenance and reuse of knowledge gathered for and during the
use of these systems, such as configuring and maintaining suitable
situation templates and exploiting already assessed situations. If
operators and domain experts are not supported in these tasks,
however, this may discourage them from a successful adoption
of such systems in real-world control center applications, as user
studies revealed. Based on these, and the lessons learned from the
application of our SAW system implementations BeAware! and
CSI to the domain of road traffic control, we therefore propose
a first step towards a tool suite fostering knowledge management
in SAW systems, which stretches from the configuration phase
of the system to its runtime maintenance in the light of evolving
environments and user needs.

I. INTRODUCTION

Situation Awareness Systems. Human operators in today’s
control centers (e.g., air or road traffic control) need to monitor
a plethora of information obtained from diverse sources. To
assist them in detecting critical situations within this infor-
mation flood and taking timely actions, they need suitable
fusion of information and support for decision making, as
provided by so-called Situation Awareness (SAW) systems.
By reporting event combinations that require the operator’s
focus, i.e., situations, these systems reduce the cognitive load
on the operator by targeting her attention towards such critical
occurrences. Template-based SAW systems [1] allow for the
specification and detection of specific situation types (STs)
of interest and have proven their value for detecting a priori
known, recurring patterns in a range of different application
domains (e.g., maritime surveillance tasks [2] or road traffic
monitoring [3]). In this sense, they are a kind of knowledge-
based system, as these STs formulate the knowledge about
the sought-after real-world situations and must be provided by

domain experts. However, their usefulness hinges on the ade-
quate specification of the STs of interest, i.e., the maintenance
of that situational knowledge.

Knowledge Management. Consequently, a need for dedicated
specification tools has been recognized from the earliest de-
velopments on template-based SAW systems on [4]. How-
ever, user studies as well as our experiences with our own
SAW frameworks indicated that the application to real-world
problem domains requires adequate support beyond mere
representation of the situational knowledge, i.e., STs. Firstly,
tool support for establishing of the appropriate situational
knowledge base (KB) is needed. This is since: (i) Domain
experts need to transform their potentially tacit knowledge to
explicit representations of the situations of interest, but may
be hampered by the knowledge acquisition bottleneck, as user
studies on control center operators revealed [5]. Especially
the specification of evolving situations, i.e., the behavior of
a situation over time, has been identified to be a difficult task.
(ii) Current tools pursue a purely top-down approach, thus lack
support for determining the “fit” of the specified situational
knowledge to real world data (i.e., validating the suitability of
the represented situational knowledge), as well as exploiting
the situational knowledge gathered during runtime, such as the
encountered situation instances and tracked operator actions
and preferences, which could be reused during situation as-
sessment for refining predictions and action recommendations.
Secondly, tool support for maintaining the situational KB is
needed. This is due to the i) ever-evolving nature of both
the environment under control, but also ii) changes of the
system and iii) its usage by control center operators, therefore
a one-shot establishment of the situational knowledge turns
out to be insufficient, requiring a continuous adaption and
refinement of the situational KB. However, this is scarcely
supported in current SAW systems, as our survey on the
evolution support of SAW systems revealed [6]. Overall, tool
support for an integrative situational knowledge management
for SAW systems involving the human domain expert in the
loop is currently lacking.

Contribution. Therefore, in this paper we introduce our con-
cepts on SEM2Suite, a tool suite supporting the broader
management of situational knowledge for SAW systems.



SEM2Suite assists domain experts in (i) specifying STs
by (ii) fostering knowledge acquisition and (iii) validation
regarding potential situations of interest, (iv) maintaining the
SAW system, i.e., assure its “fit” to evolving environments and
usage needs, and information use and reuse, as it allows to (v)
explore and (vi) systematically exploit encountered situations
and undertaken actions.

Structure of the Paper. In the next section, we attempt at
identifying the different tasks regarding the management of
situational knowledge encountered in SAW systems, exempli-
fied on our own previous work on a SAW framework for
control center applications. In Sec. III, we discuss related
work addressing knowledge management (KM) issues of SAW
systems, before introducing SEM2Suite, a tool suite for KM
in SAW systems, in Sec. IV. Finally, Sec. V presents an
outlook on future work.

II. KNOWLEDGE MANAGEMENT TASKS IN SAW
SYSTEMS

In literature, a series of different KM processes comprising
partly different tasks can be found (e.g., [7], [8], [9], [10]) —
however, w.r.t. managing the knowledge relevant for template-
based SAW systems, up to now no common understanding
has been gained so far. Although Jakobson’s framework of
Situation Management [11] serves as a valuable basis and
addresses some KM-related issues of SAW systems (such
as highlighting the central role of the Situation Model, and
characterizing the concepts of Situation Acquisition and the
Situation Memory), its aim is on characterizing the different
functional processes and tasks necessary in SAW systems. No
further characterization is provided w.r.t. the specific tasks
required to build and maintain the situational KB.
Thus, basing on this broad body of literature, in the following
we elaborate on those KM tasks, and their challenges and
open issues, which we identified as foremost relevant. We
base on findings reported in literature and our experiences on
evaluating our own template-based SAW-Systems BeAware!1

[3], [12], [13] and CSI2 [3], [14] in the domain of road
traffic management (RTM), supported by our project partner,
Austria’s highway agency ASFINAG3. In these ontology-
driven SAW systems, domain experts transfer their domain
knowledge to the SAW system by specifying STs representing
the sought-after real-world behavior (thus populate the Model
KB, as shown in Fig. 1), which are then translated to rules.
During situation assessment (SA), the SAW system’s Inference
Engine matches data obtained from the observed environment
against this rule base. Matched rules trigger the creation of a
situation instance of the corresponding ST, which is reported
to the control center operator, and stored in the (Situation)
Memory of the KB.

Knowledge Representation doubtlessly denotes one of the
core knowledge-related tasks in template-based SAW systems.
It encompasses the modeling of the domain knowledge,
usually encoded by means of ontologies, and the specification
of the STs of interest in terms of this domain ontology. Thus,
this phase requires both a suitable knowledge representation

1situation-awareness.net
2csi.situation-awareness.net
3www.asfinag.at

control center 
operator 

system evolution 

observed 
environment 

situation evolution 

Memory 

Model 

representation 

Inference 
Engine 

exploitation 

acquisition 
validation 

Domain Knowledge 

HUMAN 

exploration 

KB 

adaptation 

data 

SAW System 

usage evolution 

knowledge base 
evolution 

   actions 

situational 
picture 

Figure 1: The different tasks for managing situational knowl-
edge in SAW systems.

for situations, i.e., situation model for specifying STs, as well
as dedicated tools supporting a user-friendly specification of
these STs. Different tools have been proposed which aim at
supporting domain experts in specifying STs (e.g., [2], [4],
[15]). These mostly employ the JDL situation model [16] as
knowledge representation model for STs, which, however,
does not provide sufficient account of evolving situations,
as has been acknowledged recently [5]. Only [2] supports
the specification of evolving situations, however, does not
allow to characterize the different evolutionary phases (e.g.,
trigger, climax and clearance phase, as distinguished in
[12]), nor criticalities. Whereas highlighting critical, on-going
situations supports human operators in mitigating them in
a reactive way, the ultimate goal of a SAW system should
be to provide proactive or prescriptive support, i.e., alert the
operator already if a situation may be developing towards a
critical situation, thereby, allowing the operator to prevent the
situation from escalating. Therefore, BeAware! supports the
specification of STs along their different evolutionary phases,
as the domain expert could formulate dedicated trigger,
climax and clearance STs. This, however, yields different
situation instances for each phase. In the course of evaluating
the results obtained on real-world data sets, we learned that
we would need a situation evolution model (SEM) allowing
to model situations across their entire lifecycle (as proposed
in [17], [18]) to enable tracking and analysis of evolving
real-world situation instances.

Knowledge Acquisition. The problem of Knowledge Acqui-
sition, i.e., the elicitation of the domain experts’ knowledge,
has been widely acknowledged in the SAW system community
[19], [20]. Prior to specifying STs, the question arises of
what actually would be STs of relevance in the corresponding
application domain. This is complicated by the fact that highly
skilled, experienced experts face more difficulties in articulat-
ing their know-how than novices. Furthermore, the more tacit
knowledge is, the more valuable it tends to be [21]. This is a
crucial factor for template-based SAW systems, which depend



on the externalization of domain experts’ and operators’ know-
how. User studies involving control center operators revealed
that the problem is even more severe regarding the specification
of evolving situations [5]. In order to support domain experts in
leveraging their tacit knowledge, suitable means for knowledge
discovery and data mining facilities should be provided [19],
[20]. Although data mining techniques have already proven
their capability of discovering important information for SAW
applications, existing tools require expertise in data mining.
Therefore, domain experts would need to be provided with
preconfigured analysis functions [22].
From our experience with BeAware!, we can report that espe-
cially the aim to detect evolving situations from their trigger
on introduces novel challenges: Whereas climax situation states
are typically known, their preconditions are often not known
in sufficient detail. This indicates the need for supporting an
incremental acquisition of the required situational knowledge,
starting from the specification and assessment of climax situa-
tion states and providing a “rewind” functionality allowing to
step back in time to investigate on their preconditions.
Furthermore, in our evaluation domain of RTM it turned out
to be completely unrealistic to assume that every potential
situation of interest can be specified a priori. We need to expect
to encounter novel, previously unknown situations at runtime.
Therefore, analogous to the human operator, the SAW system
must be capable of reacting to the unexpected. However,
whereas (data-driven) anomaly detection based techniques for
situation assessment have proven their superiority in these
tasks (e.g., [1], [23]), and hybrid SAW systems have been
proposed that include both, rule-based as well as anomaly de-
tection based situation assessment modules [24], [25], current
SAW systems do not provide means to transfer the results ob-
tained with anomaly detection methods to rule-based situation
assessors (as suggested for future work in [25]). This would
allow to convert the unanticipated to novel knowledge, or to
refine existing STs (e.g., if previously unknown preconditions
or evolutions are detected), thereby maintaining and enhancing
the situational KB. In the light that recent information fusion
models emphasize the need for an integrated approach of
combining data analysis with template-driven approaches [26],
concepts for supporting the acquisition of novel knowledge
based on data analysis techniques are needed.

Knowledge Validation. Whereas knowledge representation
issues have been addressed by providing various ST speci-
fication tools, we have not encountered tool-supported means
to validate the specified STs. However, our experience in the
application of BeAware! to real-world control center settings
indicated a need for considering these issues. Domain experts
should be enabled of validating the modeled STs w.r.t. their
syntactical and semantic correctness (i.e., the specification tool
should provide means to check that the relations specified
within a ST are non-contradictory). Furthermore, we observed
that even a semantically correct ST is of limited use if it fails
to capture the real-world behavior of interest, which we term
the adequacy of a ST. For instance when formulating a ST “An
accident causes a traffic jam”, our system delivered doubtfully
few hits — fewer than would be expected by a domain expert.
As a matter of fact, this was due to improper specifications, as
the mental model of the domain expert did not fully reflect the
behavior observed in the data, requiring to adapt and assess
the specifications several times. Therefore, we conclude that

domain experts require means to assess whether their mental
models “fit” the observed data, i.e., means to validate their a
priori domain knowledge w.r.t. available domain data sets.

Knowledge Adaption. To retain their usefulness over pro-
longed application periods while interfacing dynamic environ-
ments, SAW systems also need to account for various kinds of
evolution: Due to the underlying environment’s evolution, the
STs’ specificity may change over time, i.e., once specified STs
may fail to capture situations of relevance. Operators thus need
to detect this concept drift [27] and adapt the STs accordingly.
Therefore, a one-time configuration of STs would be insuf-
ficient, requiring a configuration management of information
models [26], otherwise the system’s usefulness decreases over
time. Niklasson et al. even concluded that a fully automatic
system would need to maintain a state similar to SAW on its
own [28]. To remain of high value for the operators, the SAW
system needs to maintain the maximum possible degree of
“fitness”, denoting the suitability between knowledge (i.e., the
STs) and the problems confronted (detecting and preventing
critical situations in a dynamically changing environment).
Furthermore, as template-based SAW systems require substan-
tial configuration efforts, means must be provided to capture
as much information as possible in a non-intrusive way. This
could be realized by tracking the operator, thereby allowing
the system to learn from the operators, as well as inferring the
operators’ preferences and changing usage (usage evolution)
and adapting towards those. The specification and mainte-
nance of STs could be simplified if the SAW system could
autonomously, or in an operator-guided fashion, learn STs and
actions of relevance from the operators. This is especially
relevant as valuable tacit knowledge often results in some
observable action, when individuals understand and subse-
quently make use of knowledge [21]. Thereby the tracking
of these observable actions allows to dynamically acquire the
experience and tacit knowledge of operators. Summarizing, in
order to maintain the KB’s “fitness” to the operators’ tasks,
knowledge adaption requires the system to address both self-
adaptivity as well as the incorporation of user-driven changes
at runtime (as also demanded in [26]).

Knowledge Exploration. Operators learn from previously
encountered situations and thus gain more experience, which
in turn enhances their future decisions. Thus, a SAW system
should support Investigative Situation Management [11], i.e.,
provide the operators with means to explore and learn from the
constantly growing situation memory. Operators and analysts
should be enabled of exploring also distinct evolution patterns
(“Why did a situation evolve in a specific way?”, “What would
be the typical evolution?”). Regarding our own experience, our
domain experts also indicated the desire to assess the success
of undertaken actions, which, in case of large-scale events, is
conducted by means of after-action-reviews. Forensic analysis
w.r.t. to undertaken actions (e.g., “What went wrong?”, “What
could have been done better?”) thus requires a means to
assess the effect of actions onto the evolution of encountered
situations, thereby requiring that these actions are tracked and
linked to the persisted situation evolutions.

Knowledge Exploitation. Furthermore, an intelligent SAW
system should be capable of Situation Learning [11], i.e.,
exploit the Situation Memory to enhance its future SA and
predictions. Currently, learning from previously encountered



situations is rarely addressed in rule-based SAW systems, as
opposed to data-driven SA approaches, which by definition
base on observed data, and are capable of learning if they
are continuously incorporating new data (e.g., as in [29]).
Moreover, to enhance the system’s decision support capability
(i.e., support resolution [30]) and aid operators w.r.t. to the
question “What should I do?”, the system should also be able
to retrieve those actions that have yielded the most desirable
outcome in the past. Thereby, it could capture and exploit the
experience of operators by tracking their actions, similar to
the approach of experience retrieval suggested in [31].

Summarizing, Fig. 1 outlines the interplay between the
different KM tasks, which highlights the complexity of KM
in SAW systems. KM in SAW systems is further complicated
by the need for a rapid KB evolution due to environment,
usage, and consequently system evolution. In the light of these
challenges, operators and domain experts would benefit from
tools supporting the identified KM tasks and addressing the
discussed issues.

III. RELATED WORK

In the present section, we elaborate on tools supporting
KM issues in SAW systems.

Knowledge Acquisition. Whereas knowledge acquisition has
been considered an important problem within SAW systems’
research (cf. Sec. II), we did not encounter tools specifically
addressing this issue for template-based SAW systems. The
expert system and inference engine KASER [32] provides a
step towards the generation of novel knowledge, by employing
deductive and inductive reasoning to combine existing rules.
Thereby, a continuously growing, virtual rule space is acquired,
which is exponentially larger than the declared rule space.
However, KASER requires domain experts to initially populate
the rule base with relevant rules, which is supported by
providing various input facilities and auto-completion features
(basing on textual input), but not by means of data-driven
suggestions.

Knowledge Representation. Several tools have been proposed
that aim at facilitating the specification of STs for domain
experts. These, however, provide still limited support regarding
the specification of STs for evolving situations.
Matheus et al. introduced RuleVISor, a custom SWRL rule
editor, which represents a central configuration component
of their Situation Awareness Assistant SAWA [4]. RuleVISor
allows to model STs in terms of a domain ontology, which are
then translated to the corresponding rules.
Edlund et al. also developed a dedicated ST editor, a configura-
tion component within their ontology-driven, rule-based SAW
framework [2]. They especially highlight that it allows for the
specification of evolving situations, by denoting whether the
relations employed within a ST need to hold concurrently or
subsequently. However, this only allows for the specification
of a single evolution path, as alternatives cannot be specified.
Furthermore, as a crucial drawback, their rule engine imple-
mentation detects such situations only after they completed
their overall evolution.
Costa et al. proposed SML, a Situation Modeling Language
allowing for a graphical composition of STs, which are then

automatically translated to JBoss Drools4 rules [15]. However,
whereas they consider the possibility of referring to current
and past situations, a more fine-grained distinction of situation
evolution is not supported. Although their approach allows for
specifying behavior over time, only a single course of events
can be specified. Therefore, it is not possible to specify a
branching ST, which might evolve either one way or the other.

Knowledge Validation. None of the discussed approaches
that allow for the specification of STs provide specific tool-
supported means to directly assess one’s definitions on avail-
able data during specification, in order to examine the validity
and specificity of the proposed STs.

Knowledge Adaption. Furthermore, we did not encounter
specific tool-based support regarding the maintenance of the
(template-based) SAW system, such as detecting concept drift:
Only Edlund et al. state the need that the system must be
capable of incorporating both, long-term rules, as well as rules
that need to be added temporarily, thus are only valid for a
certain time frame [2]. However, they leave the maintenance
of the temporal validity to the operators, as they do not foresee
any automated support to detect when certain rules become
outdated over time, or their specificity changes.
As a first step towards bridging the gap between template-
based and anomaly detection SA approaches, Rhodes et al.
introduced SeeCoast, an SAW system for coastal surveillance
[24]. SeeCoast incorporates both, a rule-based situation as-
sessor, as well as data-driven anomaly detection modules.
Thereby, this SAW system supports both the detection of
known, recurring situation patterns, as well as reacting to
novel situations. However, whereas their anomaly detection SA
module continuously adjusts itself to environmental changes,
by gradually being re-trained on new data, and even learns
from operator feedback, they do not discuss means whether and
how the anomalous situations could be further on integrated
in the existing rule-base. Thus, they do not provide any
suggestions to evolve the system’s KB. A similar approach of
combining rule-based SA with anomaly detection techniques
has been described in [25], which have been neither integrated.
This is, however, suggested as future work.

Knowledge Exploration. Approaches that allow to assess
the situational knowledge the SAW system has gathered over
time, or allow to explore what the system has learned, are
rarely found. Riveiro et al. proposed a visualization interface
that jointly visualizes normal behavioral statistical models
(generated from the data) and expert rules (specified by domain
experts) within a “scatter plot grid”, thereby providing a
means to explore the “knowledge space” of the system [25].
Their visualization aims at exhibiting how well the experts’
knowledge correlates with the models extracted from the data.

Knowledge Exploitation. Currently available template-based
SAW systems do not attempt at systematically reusing the
situation instances accumulating in the situation memory to
refine SA or projection. An interesting approach regarding
the exploitation of experience from expert operators has been
suggested in [31]: Operators’ decisions, i.e., actions, are con-
tinuously tracked, along with the current context (employing a
dedicated Action-Observation-Hypothesis model), and stored

4http://drools.jboss.org



in a KB. This aids junior operators who can retrieve these
experiences for similar contexts.

Concluding, whereas interesting approaches have been
proposed addressing specific KM tasks, we did not encounter
approaches that comprehensively support different KM tasks
in template-based SAW systems, i.e., stretch across knowledge
acquisition, knowledge representation, knowledge validation,
knowledge adaption, knowledge exploration and knowledge
exploitation. Therefore, as a first step towards providing a KM
tool that integratively supports distinct situational KM tasks,
we elaborate on a tool suite that complements SAW systems
by supporting dynamic situational KM.

IV. A TOOL SUITE FOR KNOWLEDGE MANAGEMENT IN
SAW SYSTEMS

In the present section, we propose SEM2Suite, a modular
(situation evolution modeling and maintenance) tool suite (cf.
Fig. 2) complementing SAW systems, which supports KM
tasks in rule-based SAW systems, thus contains modules for:
Knowledge Acquisition: comprises components suited to ex-
plore and mine existing domain data sets, in order to acquire
insights about potentially relevant STs, as well as anomaly
detection components that aim at detecting not yet specified
situations, which may be transferred to the KB (cf. Fig. 2 A ).
Knowledge Representation: comprises a specification pane
that allows to graphically compose Situation Evolution Types
(SETs), based on assembling object types and relation types
from a suitable domain ontology (cf. Fig. 2 B , Fig. 3).
Knowledge Validation: comprises a set of different compo-
nents for supporting the validation of the previously modeled
SETs w.r.t. their syntactical and semantic correctness, as well
as their adequacy, i.e., their “fit” to and specificity on real-
world domain data sets (cf. Fig. 2 C ).
Knowledge Adaption: comprises components that assure self-
adaptivity as well as the incorporation of user-driven changes
at runtime, such as components that detect concept drift within
the monitored environment influencing the specificity of the
modeled SETs, components that allow operators to activate,
deactivate or modify specific SETs, performance monitoring
components that seek to optimize the situation assessor’s per-
formance, and user tracking components that aim at optimizing
the UI towards the user’s preferences (cf. Fig. 2 D ).
Knowledge Exploration: comprises (visual) analytics inter-
faces that allow operators to explore the accumulated situation
memory, i.e., allows to address questions such as “How do sit-
uations typically evolve?” or “What have been good actions in
specific situations?”, thereby also supporting forensic analysis
(cf. Fig. 2 E , Fig. 5).
Knowledge Exploitation: comprises components (cf. Fig. 2)
that aim at reusing the experience accumulated in the situation
memory by refining the prediction on currently observed
situations and the recommendation of the most promising
actions, based on comparing the current situations to similar
situations observed in the past, which are retrieved from the
situation memory. Thereby, it specifically supports real-time
decisions (cf. Fig. 2 F ).

We realize this range of functionality within a flexible, con-
figurable tool suite, as not every monitoring task may require
each aspect, or may provide all prerequisites. For instance the
components for knowledge acquisition, as well as knowledge

validation w.r.t. adequacy, depend on the availability of a
domain data set. If no data set is available, SETs can only be
modeled in a top-down fashion, and be fitted towards the data
at runtime. Finally, it should be emphasized that SEM2Suite
abstracts the modeling concepts from concrete technologies
and implementation details, thereby allowing to interchange
these technologies. In the following, the different components
will be explained in more detail.

A. Knowledge Acquisition

SEM2Suite’s Data Analyzer component represents a
container for interfacing various established data mining tools
suitable for data from SAW systems, such as R5 and Weka-
STPM [33], however, provides a dedicated user interface
tailored towards SAW data sets and applicable, preconfigured
analyses. The employed knowledge discovery tools support
human operators in gaining ideas about potential STs, by
detecting aberrations from the normal environmental picture,
which often correspond to situations of relevance [1], rare
and unusual events, and often co-occurring object types. Fur-
thermore, STs may be autonomously suggested by means of
association rule mining [34], which therefore retrieves objects
in specific relations that may serve as initial ST suggestion
that can be refined by the domain expert.
The Data Analyzer further comprises anomaly detection mod-
ules that report unusual courses of events at runtime, which
may correspond to novel situations. If the operator decides
that a reported anomaly corresponds to a novel SET, the
Data Analyzer extracts the object types and relations between
the encompasses objects, and provides the operator with an
initial SET suggestion, that can be confirmed or refined by the
operator, before it is incorporated into the SET KB. Thus, the
human operator’s expertise can be continuously incorporated.

The Hotspot Analyzer supports the incremental specifica-
tion of SETs: Operators may begin with specifying the climax,
i.e., hotspot, situation state, and let the system assess the
hotspot situation states on the supplied domain data set. Based
on the found situations, the system may automatically try to
infer typical preconditions of these (how were the objects
being part of the hotspot related in earlier timesteps?), and
may already provide the operators with a template including
the inferred, potential relations and object types. On the other
hand, if automatic SET suggestion fails, the operator should be
enabled to sift through the provided examples (by providing
a “rewind” functionality to assess the situation’s history) and
use her experience to infer the likely causalities.

B. Knowledge Representation

A suitable knowledge representation lies at the very heart of
Situation Management (SM) [11], i.e., a model for specifying
templates for real-world situations of interest, and allows the
tracking and persisting of these situations in order to enable
both investigative as well as predictive Situation Management.
To address the knowledge representation challenges regarding
evolving situations reported in Sec. II and account for the dy-
namic evolution of real-world situations, we therefore proposed
a dedicated Situation Evolution Model (SEM) in our previous
work [18], which constitutes a knowledge representation that

5http://www.r-project.org
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Figure 2: An architectural overview on SEM2Suite’s different components and how these interface and interact with a SAW
system’s Situational KB.

allows to model, track and reason upon evolving situations.
Therefore, situation evolution types (SETs) specified by instan-
tiating the SEM for a specific evolving ST of interest denote
the basic knowledge representation utilized by SEM2Suite.

Domain Ontology Configurator. The specification of SETs
requires a suitable domain ontology. In order to allow for a
domain-agnostic SA and SEM2Suite functionality, we there-
fore require to engineer this domain ontology by extending a
generic, i.e., domain independent SAW core ontology (based on
[35]). This SAW core ontology characterizes the basic entities
of relevance in SAW applications, notably Object Types sensed
from the environment, which are characterized by spatial
and temporal properties (e.g., a traffic jam which possesses
a specific location and duration), Relation Types indicating
semantic relationships between such Objects, such as spatio-
temporal relations (e.g., basing on well-known relation calculi
such as Allen’s temporal relations [36] or the Region Con-
nection Calculus [37]), and the SEM, which allows to model
evolving situations. Thus, to develop a concrete SAW control
center application based upon this framework, the SAW core
ontology needs to be extended by a suitable domain-specific
ontology, in order to allow for sensing and reasoning about
the information of relevance of the corresponding domain.
Furthermore, the basic spatio-temporal relations provided by
the framework need to be configured by parametrizations
suitable for the given application domain. For instance, suitable
threshold intervals for spatial relations such as Close and Far
need to be determined, which may substantially differ between
a maritime traffic control center and a highway agency.
In our current prototypical implementation, we follow a UML-

based approach of ontology-engineering [38], by employing
a dedicated UML modeling tool6 for generating a Java class
library comprising the object ontology, database schemes and
corresponding Hibernate7 mappings. Ontology engineering is
thus currently decoupled from SEM2Suite, which expects
to be provided with a Java Archive (jar) comprising the data
access layer generated by the employed modeling tool.

SET Editor. The SET Editor allows for the graphical
specification of Situation Evolution Types (SETs). Fig. 3 shows
a screenshot of our current prototypical implementation of the
SET Editor, which features the diagram for the specified SET
“Wrong-way driver approaching tunnel” (WDApproachesTun-
nel). A SET captures the potential evolutions of real-world
situations by means of a state-transition system, whereby the
states correspond to a particular relational state within the
evolving situation, for instance the state of affairs where an
object of object type “Wrong-way driver” (WD) is in a relation
type “Close” to another object type “Tunnel” (depicted by
the correspondingly named circles in the diagram shown in
Fig. 3). As a monitored real-world situation instance evolves,
in subsequent time steps, at one point the relation between
the observed objects may change, for instance the monitored
wrong-way driver object may come “very close” to the tunnel,
which is modeled as a transition from the situation state type
(SST) “Wrong-way driver close tunnel” to the SST “Wrong-
way driver very close to tunnel”. In order to reference a specific
object across different SSTs, i.e., refer to it throughout its

6Visual Paradigm for UML, http://www.visual-paradigm.com
7http://hibernate.org



Figure 3: A screenshot of the current SEM2Suite prototype, which shows the SET Editor.

evolution, the different object types must be identifiable by
means of an alias (which is unique within a specific SET), as
shown in the Outline View in the lower right section of the
editor screenshot, which highlights the different object refer-
ences (i.e., object types identified by an alias) and relations
employed within a specific SET. A domain expert thus models
the different relational states of evolving situations, i.e., SSTs,
by assembling them from object types and relation types from
the employed domain ontology, which is comprised in the
two views on the left side (the upper one comprises distinct
relation types, the lower one comprises the object ontology),
and specifying the evolution transitions between these SSTs af-
terwards. Real-world situations tracked at runtime correspond
to a specific path throughout their SET, i.e., are persisted as
a list of interlinked SST instances created by matched SSTs
(along with the temporal information how long each of these
“situation snapshots” lasted). Furthermore, the domain expert
can specify additional properties for those SSTs, such as their
evolutionary phase and criticality (visualized by means of the
different colors of the states shown in Fig. 3). SEM2Suite
fosters the reusability of modeled components by allowing to
include already specified SSTs in other SETs. Furthermore,
different action types can be specified for a SST, such as
“closing the tunnel for incoming traffic” (and encompassed

actions, such as “setting the traffic lights”) and “informing
emergency units”, which can be suggested to the operator as
soon as a situation instance of that specific SST is detected.

Translator. Finally, each modeled state needs to be trans-
lated to a rule according to the language the SAW system’s rule
engine employs, such as JBoss Drools Expert8 or Jess9. There-
fore, SEM2Suite requires a dedicated Translator library that
allows to attach the translation rules how a SST pattern can
be translated into the target rule language, i.e., a IF-THEN
pattern. The left-hand side of the rules (IF) needs to match the
Object Types i.e., check the type of the matched object and
bind it to the given alias. Furthermore, a specific translation
for each Relation Type must be implemented.

Optimizer. Since a SST comprises a set of relations, no
ordering is implied on these relations. Regarding the evaluation
of IF-THEN rules, however, the different IF-clauses are pro-
cessed in sequential order. Thus, the ordering of the IF-clauses
matters in the respect that a clause that significantly reduces the
number of matched objects should be prioritized, as it raises
the performance of the rule evaluation, as we evaluated in
[3]. Therefore, a dedicated Optimizer strategy library encodes

8http://www.jboss.org/drools/drools-expert
9http://www.jessrules.com



different optimization patterns targeted at specific rule engines
and application domains. These may provide rules on the
sequential ordering of relation evaluation, such as spatial
relations should be prioritized over temporal relations.

C. Knowledge Validation

Assuring syntactical correctness means to check that the
specification complies with the chosen specification formalism,
i.e., the SEM. The Syntax Checker may validate that Object
Types are referenced by an alias, the arity of relations is met,
and Object References overlap across a single evolution step,
as demanded by the formalism described in [18].

The Semantics Checker goes one step further by assuring
that the specifications correspond to meaningful and possible
real-world situations, by taking into account the semantic inter-
pretations of the relations. For instance a user may erroneously
specify that an accident has occurred inside a tunnel and is
located in front of a tunnel, which is contradictory. To enable
SEM2Suite to perform such semantic checks, this informa-
tion must be provided in the domain ontology, by means of
Conceptual Neighborhood Graphs (CNGs) representing the
epistemic knowledge on how relations of different relation
families can be combined (as elaborated on in our previous
work on exploiting CNGs for situation projection [13]).

Further validation w.r.t. the adequacy of the specified
SETs, i.e., determining whether the specified SETs are indeed
capable of capturing the sought-after real-world situations, can
be conducted with the Adequacy Checker. This component
needs to be provided with a database on data collected from
the corresponding application domain, which is accessible
from the data access layer loaded in the Domain Ontology
Configurator. The Adequacy Checker can be used to assess
Relation parametrizations, such as providing histograms for
the parametrizations of relation families, and object types of
interest. For examples, one may be interested in how the
specificity of the SET “Probably fusing traffic jams” defined
by the relation “traffic jam j1 close to traffic jam j2” changes if
the relation type is changes from close to very close, or if the
threshold intervals of these relation types are adapted (e.g., if
the threshold interval for the relation type very close is changed
from 0 - 1 km to 0 - 2 km, thereby widening the set of matched
relations). Thus, the Adequacy Checker pane provides before
- after histograms, showing the number of situations assessed
with the previous and the new definitions. Thereby, it provides
a means to inspect and adjust the specificity of the specified
SETs, as the domain expert is enabled to incrementally adapt
the relation parametrizations and SET specifications, until
the desired specificity is reached, depending on whether she
wants to receive a multitude of situations, or a smaller set of
results. As investigated on in [24], individual operators exhibit
different preferences regarding the alarm rate, i.e., situation
hit rate. Thus, SEM2Suite thereby provides operators with
a means to configure the SETs’ specificity to their personal
preferences.

D. Knowledge Adaption

The SET Activator provides an interface for operators to
manage the activation and deactivation of SETs at runtime,
thereby allowing the operator to enable and disable the assess-
ment of specific SETs. New SETs can be added and existing

Figure 4: A tentative design draft of the Adequacy Checker,
which highlights the quantity structure observed from the data
for different definitions (e.g., the quantity structure before and
after changing the thresholds).

ones refined, as this component allows to launch the SET
Editor upon a specific SET. However, such adaptions on-
the-fly, during runtime of the SAW system, require the SAW
system to keep track of the specific version of a SET a situation
has been assessed with, therefore, requiring a SET versioning
system, as well as provenance tracking.

The Concept Drift Alerter aims at preserving the desired
specificity of the SETs, in spite of environmental evolution
which may induce concept drift. Therefore, it continuously
assesses the specificity of the activated SETs, and compares it
to their common distributions stored in a KB. Furthermore, this
component also stores the distributions of the environmental
normalcy models, in order to detect changes within the normal
environmental picture indicating concept drift. The Concept
Drift Alerter thus detects if the specificity of a specific SET
changes, and reports it to the operator, who is provided with a
summary of the encountered changes and thus can investigate
on these changes and adapt the SETs accordingly.

The Performance Tracker aims at providing a continuous
runtime tuning of the SAW system, i.e., addresses system
evolution. By performing a fine-grained tracking of the quan-
tity structure of matched objects and relations, depending
on temporal and load contexts, this provides the basis for a
detailed analysis on the optimality of the translated rules. For
instance, it may have been assumed during configuration of the
system that assessing the temporal relations before assessing
the spatial relations would be faster than vice versa. However,
the logs provided by the optimization tracker may reveal that
assessing the spatial relations first would more significantly
reduce the number of matches for the next clauses. Thus, the
Optimizer’s strategies can be adapted accordingly and existing
SETs may be recompiled thereafter.

The Operator-guided Situation Learner analyzes the hu-
man operators’ reporting procedures, such as the semantic
grouping of objects forming a situation for reporting purposes
(as performed by our RTM demonstrators), derives object types
and computes their interrelations, and provides the domain
expert with these SET suggestions, who can again refine these
suggestions.

The Action Tracker records the actions undertaken by the
operators, both routine monitoring actions, as well as actions



that represent a dedicated response to a specific situation,
which are directly linked to the corresponding situation. Over
time, the operator’s experience can be thus collected by the
system, and allows to asses which actions have proven to be
beneficial in which situations.

The Preference Tracker logs the operator’s interaction with
the UI, in order to infer the operator’s preferences and adjust
the display of the operational picture accordingly (e. g., by only
showing the operator’s preferred layers and level of detail).

E. Knowledge Exploration

The Situation Memory Explorer provides Visual Analytics
support for interactively exploring the Situation Memory, in
order to assess the evolution patterns of actually observed
situations. The user can define a context of interest by moving
a spatio-temporal selection frame and different filters. The
Situation Memory Explorer then constructs the corresponding
query and retrieves situations matching the context of interest
from the memory. These situations are mapped onto the
graphical representation of their SET, by aggregating their
different, linked situation snapshots onto their corresponding
SSTs. This allows to highlight the common evolution patterns
of the current context of interest, i.e., which developments are
more likely than others, how long situations last on average
etc. By modifying the context, for instance by panning and
zooming the spatial selection frame (cf. Fig. 5), the user can
assess how these evolution patterns may change under different
contexts. The Situation Memory Explorer further allows to
save a snapshot of the current context and result. The results
obtained with different assessed contexts can be arranged in a
scatter-plot like fashion, in order to compare and contrast the
results. For instance, it may become apparent that situations
in tunnel X tend to develop less critical than situations in
tunnel Y and take less time to be resolved. Based on such
insights, for instance, the causalities for these distinct evolution
patterns may be investigated on, thereby helping to elaborate
on countermeasures.

Figure 5: A design sketch of the Situation Memory Explorer,
showing the spatio-temporal selection pane which allows
to highlight regions and periods of interest. The Evolution
Analysis Pane (at the bottom of the main pane) highlights
the evolution transition frequencies w.r.t. to the selection, as
assessed from the situation memory, thus allowing the operator
to investigate on and contrast local characteristics.

F. Knowledge Exploitation

The Evolution Predictor refines the projection of the cur-
rently observed situation based on retrieving similar situations,
i.e., situations of the same SET, observed in the past. Since a
SET models a state-transition system and all situations of a
specific SET correspond to a path through this state-transition
system, mapping the set of historic, similar situations onto
the SET allows to derive the transition probabilities between
its SSTs: Thus, the transition probability of the monitored
situation’s current SST to the SSTs reachable from this SST
(i.e., potentially succeeding SSTs) can be computed. This
can serve as a prediction estimate on the situation’s most
likely future development. For instance, the majority of historic
“Wrong-way driver approaching tunnel” situations that evolved
through SST “Wrong-way driver close tunnel” may have
developed to SST “Wrong-way driver very close to tunnel”,
which can be visualized by a thicker linewidth of the SET’s
transitions (cf. Fig. 5), whereas only a small portion developed
to SST “Wrong-way driver leaves the motorway”. Thereby,
when monitoring a “Wrong-way driver approaching tunnel”
situation that is currently in the SST “Wrong-way driver close
tunnel”, it can be concluded that its evolution to the state
“Wrong-way driver very close to tunnel” can be considered
to be more probable, i.e., it is more likely that the situation
escalates than that is resolves. The Evolution Predictor further
could employ different situation similarity measures, which
determine the set of historic situations that is considered for
these computations: A similar situation may, in the most
general case, be defined as a situation of the same SET (i.e.,
all historic situations of the same SET would be used, no
matter how old), or, more specifically, as a situation of the
same SET and also a similar spatio-temporal context (e.g., by
only considering situations that occurred on the same weekday,
the same time of day, and/or the same region). Furthermore,
a weighting strategy could be employed, which specifies the
influence of each historic situation instance within the predic-
tion value computation. This allows, for instance, to strengthen
the influence of recently observed situations over situations in
the further past, thereby taking environmental evolution into
account (i.e., recent situations are given a higher weight than
older ones). Since it may be unclear which similarity measure
and projection strategy provides the most accurate results, the
Evolution Predictor thus needs to track its predictions (stored
in the Situation Evolution Prediction KB shown in Fig. 2) and
later on compare it with the actual developments, in order to
be able to optimize its prediction strategy.

The Action Recommender realizes a kind of case-based
reasoning functionality, in order to suggest the best action
for a current situation. It retrieves situations similar to the
current situation from the situation memory, analyzes which
of the actions performed on those (retrieved from the Action
Records KB) have led to the most favorable situation evolution,
and recommends these to the operator. The operator is also
enabled to inspect these historic situations, if she requires
further details on how the past situations evolved. Action
recommendations are stored in a dedicated KB (cf. Fig. 2),
which allows to optimize action recommendations w.r.t. the
operator’s preferences (by comparing action recommendations
with actually performed actions).



V. CONCLUSION AND FUTURE WORK

In the present paper, we characterized the challenges of
KM in SAW systems, based on findings in literature and
experiences gained from the application of our SAW systems
BeAware! and CSI to the domain of RTM. Based on the
identified requirements, we sketched our vision on a tool suite
fostering KM in SAW systems, which especially focuses on
incorporating the dynamic aspects of evolving environments
and user needs. Regarding future work, we aim at completing
our prototypical implementation of this tool suite, and plan to
evaluate the feasibility of our approach in a real-world case
study involving control center operators from our demonstra-
tors in the domain of RTM.
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