
Towards Using UML 2 for Modelling Web

Service Collaboration Protocols

Gerhard Kramler1, Elisabeth Kapsammer2, Werner Retschitzegger2, Gerti
Kappel1

1 Business Informatics Group, Vienna University of Technology, Austria
{kramler, gerti}@big.tuwien.ac.at

2 Department of Information Systems, Johannes Kepler University of Linz, Austria
{ek, werner}@ifs.uni-linz.ac.at

Abstract. In a web environment, graphical specifications of service col-
laborations which focus on the protocols of collaborating services are
especially important, in order to attain the desired properties of inter-
operability and loose coupling. Different to modelling of generic software
component collaborations, additional requirements must be considered,
including security and transaction aspects, and the characteristics of spe-
cific target technologies such as ebXML and BPEL. This paper describes
a UML-based approach for platform independent modelling web service
collaboration protocols, which takes into account the specific require-
ments, and supports mappings to relevant target technologies.

1 Introduction

Web services are being used for the coordination of communicating processes,
e.g., in the automation of business collaborations such as the standard airline
ticketing example. Specification of such collaborations in a manner that facil-
itates interoperability and loose coupling is provided by a so-called collabora-

tion protocol, which provides a global public view on multiple cooperating web
services. Collaboration protocols, also called choreographies [13] or conversa-
tion policies [7], can be specified using languages like ebXML Business Process
Specification Schema (BPSS) [11] and Web Services Choreography Description
Language (WS-CDL) [13].

Related to collaboration protocols are interface specification and implemen-
tation of a web service. An interface describes the public aspects of a web service,
including both its provided and required operations as well as its observable be-
havior. The behavioral aspect of an interface is also called choreography [5, 12],
orchestration [5], and abstract process [1]. Web service interfaces are specified
using languages like WSDL, BPEL, and WSCI. An implementation (also called
executable process [1]) is the private aspect of a web service, specified by a
language such as BPEL, Java, etc.

Using current Web Services languages, i.e., BPEL and WSDL for the specifi-
cation of web service collaborations brings up three problems: (1) the languages
are XML-based, lacking a standardized graphical representation, which would

ease modelling and understanding of collaboration protocols, (2) there is no
support for collaboration protocols but only for individual interfaces, leading to
potential consistency problems [4], and (3) the level of abstraction is too low for
conveniently expressing transactions, as specifically useful in business collabora-
tions [3].

Although there are approaches addressing these problems, no complete solu-
tion has been found yet. There is a UML profile for BPEL [6] addressing problem
(1). WS-CDL complements BPEL by addressing problem (2) but does not pro-
vide a graphical representation. BPSS addresses (3) and there is also a UML
representation for BPSS [10] addressing (2), however, these approaches does not
support Web Service specification languages and lack flexible specification of
intra-transactional interactions. One of the origins of BPSS, the UN/CEFACT
Modeling Methodology (UMM) addresses (1-3) but it is limited to the domain
of business collaborations and not supporting the specifics of Web Service tech-
nology.

Our approach to cope with the identified problems is a UML-based modelling
technique that supports platform independent modelling of web service collabo-
ration protocols and that is closely aligned with BPEL and BPSS concepts. The
contributions of our work are as follows:

– The semantics of UML 2 are refined for applying it to collaboration protocol
modelling. This way, no new language and notation need to be invented and
problems (1-2) are addressed.

– Different levels of abstraction are supported, thereby supporting both top-
down and bottom-up development and addressing problem (3).

– Our modelling constructs support much of the expressive power of BPSS
and BPEL, such that a mapping to the target technologies can be defined.
Although a detailed mapping is subject of further work, a sketch of the
mapping to the target technologies is presented

The levels of abstraction are introduced in Section 2. The used UML diagrams
and specific semantics are elaborated in sections 3–5. A mapping of UML to the
target technologies is sketched in Section 6. A brief comparison of our approach
to related work is given in Section 7. For the reader not mature in the used
technologies, the appendix provides a brief overview of the major concepts of
BPEL, BPSS, and UML 2.

2 The Big Picture

The main idea of our approach is to explore UML’s existing modelling concepts
for collaboration protocol modelling. Therefore, we attempt to identify modelling
concepts in UML that are similar to those of the target technologies. Since
in many cases no direct equivalence can be found, we first define a platform
independent modelling technique, and in a second step define a mapping to
specific platforms.

2

Our proposed modelling technique supports modelling of collaborations at
three different levels of abstraction, as shown in Fig. 1. The different levels
are interrelated by refinement and usage relationships, meaning that elements
specified in one level are refined at lower levels, and conversely, specification
elements can be re-used at upper levels. Thus both top-down and bottom-up
development is supported.

The collaboration level is concerned with participants and their collaboration
and communication relationships, thus providing an overview of a collaboration.
This is expressed in the collaboration model, a UML collaboration diagram.

The transaction level considers transactions and transactional processes, each
transaction being performed by a set of participants in collaboration. This level
abstracts from the distribution of state and control in a collaboration to provide
a convenient high-level model. Two kinds of models are proposed in this level.
The object model uses class diagrams and protocol state machines to define the
attributes and states of objects that are used as pre- and post-conditions of
transactions. The activity model, a UML activity diagram, defines transactional
processes, which refine collaborations as defined in the collaboration level.

The interaction level specifies the messages actually exchanged among par-
ticipants, thus being at a low level of abstraction. Again two kinds of models are
proposed. The message content model is a class diagram defining the content of
messages. The interaction model, a UML interaction diagram, defines the details
of a transaction in terms of message exchanges among the participants, thus
refining the individual transactions of the activity model.

The following sections discuss how UML is employed to realize the models
introduced above, i.e., how a subset of UML 2 is used and what the specific
interpretation of the employed UML concepts is.

3 Collaboration Level

All of the modelling concepts of UML’s collaboration diagrams are used in the
collaboration model, with specific interpretation and restrictions as follows.

A collaboration models the overall situation of collaborating participants at
an abstract level. A collaboration can be used within other collaborations as
a sub-collaboration, with the roles of the sub-collaboration bound to roles of
the using collaboration. A behavior specification can be attached, either as an
activity model or an interaction model. In case collaborations are defined solely
by sub-collaborations, the behavior specification may be omitted, meaning that
there are no behavioral dependencies among the sub-collaborations (except of
any pre- and post-conditions defined by the sub-collaborations’ behaviors). In
that case, the collaboration acts as an abstract grouping mechanism which can
be used to capture, e.g., business areas.

A role represents a collaboration participant. An optional read-only con-
straint means that a particular role must be fulfilled by the very same partici-
pant throughout the whole collaboration, i.e., it must not change dynamically,

3

S i m p l e S C M

: S h i p T o
O r d e r

S u p p l i e r
: O b t a i n
C a t a l o gC l i e n t

S i m p l e S C MS i m p l e S C M

: S h i p T o
O r d e r

S u p p l i e r
: O b t a i n
C a t a l o gC l i e n t

C r e a t e O r d e r
S h i p G o o d s

S h i p T o O r d e r

O r d e r
O r d e r

[a c c e p t e d]

C a n c e l O r d e r O r d e r
[c a n c e l e d]

C r e a t e O r d e r
S h i p G o o d s

S h i p T o O r d e r

O r d e r
O r d e r

[a c c e p t e d]

C a n c e l O r d e r O r d e r
[c a n c e l e d]

O r d e r
o r d e r I d
v a l u e

s m O r d e r { p r o t o c o l }

s h i p p e d

a c c e p t e d

d e n i e d

s h i p D e n i e d

c a n c e l e d

O r d e r I t e m

c d S h i p T o O r d e r

O r d e r
o r d e r I d
v a l u e

s m O r d e r { p r o t o c o l }

s h i p p e d

a c c e p t e d

d e n i e d

s h i p D e n i e d

c a n c e l e d

O r d e r I t e m

c d S h i p T o O r d e r

r e q u e s t (q : O r d e r R e q u e s t)

r e s p o n s e (r : O r d e r R e s p o n s e)

s i g n a l (r R e c e i p t : S i g n a l M e s s a g e)

s d C r e a t e O r d e r (o u t o : O r d e r)

B u y e r S e l l e r
r e q u e s t (q : O r d e r R e q u e s t)

r e s p o n s e (r : O r d e r R e s p o n s e)

s i g n a l (r R e c e i p t : S i g n a l M e s s a g e)

s d C r e a t e O r d e r (o u t o : O r d e r)

B u y e r S e l l e r

O r d e r R e q u e s t
o r d e r I d
v a l u e

O r d e r R e s p o n s e
o r d e r I d
i s P o s i t i v e

A c t i o n M e s s a g e

c d O r d e r M e s s a g e s

O r d e r R e q u e s t
o r d e r I d
v a l u e

O r d e r R e s p o n s e
o r d e r I d
i s P o s i t i v e

A c t i o n M e s s a g e

c d O r d e r M e s s a g e s

C o l l a b o r a t i o n M o d e l

O b j e c t M o d e l A c t i v i t y M o d e l

M e s s a g e C o n t e n t M o d e l I n t e r a c t i o n M o d e l

Co
lla

bo
ra

tio
n

Le
ve

l
Tr

an
sa

cti
on

Le
ve

l
In

ter
ac

tio
n

Le
ve

l

r e f i n e s / u s e s

u s e s

u s e s

r e f i n e s / u s e s

Fig. 1. Abstraction levels and kinds of models

although the participant may not be known at the very beginning of the collab-
oration.

A connector between a set of roles means that these roles communicate with
each other directly.

Example 1. Fig. 2 (left) shows the “SimpleSCM” (Simple Supply Chain Man-
agement) collaboration between two roles, client and supplier. The collaboration
uses two sub-collaborations, the specification of one of them is included in Fig. 2
(right). There is no behavior attached to the “SimpleSCM” collaboration, mean-
ing that the two sub-collaborations can be performed independent of each other.
The sub-collaboration “ShipToOrder” specifies that the two roles, “Buyer” and
“Seller”, communicate with each other. The behavior of that collaboration will
be further discussed in Example 3.

4 Transaction Level

4.1 Object Model

The object model specifies the objects (i.e., both data structure and their be-
havior) that the collaborative transactions operate on. These objects represent
the knowledge common to some or all participants of the collaboration. Note
that objects are different from messages. Messages specify the data exchanged

4

 S i m p l e S C MS i m p l e S C M

B u y e r S e l l e r

S h i p T o O r d e rS h i p T o O r d e r

: S h i p T o
O r d e r

S u p p l i e r
: O b t a i n
C a t a l o gC l i e n t

b u y e r s e l l e r

Fig. 2. A simple supply chain collaboration (left) and the sub-collaboration “ShipTo-
Order” in detail (right)

among participants, whereas objects specify requirements on the participants’
data resources. In many cases, messages represent updates to the objects.

For the purpose of collaboration protocol modelling, only those attributes
and states are necessary which are needed for defining the coordination logic,
including control flow and data flow constraints. If no decision conditions and no
constraints on data are needed, the collaboration object model can be omitted.

Since the collaboration object model must not prescribe the objects used
by the participants internally, only interfaces and protocol state machines are
used, depicted in a class diagram and state machine diagrams respectively. An
interface specifies the structure of collaboration-relevant data. Only attributes
and associations are used, no operations. A protocol state machine is used to
specify the states and permissible state transition of such an interface. The states
will be used as pre- and post-conditions of transaction specifications (see below),
and the transitions and any transition conditions will be used for consistency
checks with the use of objects in activity models. Therefore neither triggering
events nor transition conditions need to be specified formally.

Example 2. Fig. 3 (left) shows a class diagram for the data relevant to the “Ship-
ToOrder” collaboration. The specification of the permissible states of an “Order”
is shown in the protocol state machine in Fig. 3 (right). Note that transition
events are modelled only informally, transition conditions are modelled not at
all.

4.2 Activity Model

The activity model specifies the behavior of a collaboration in terms of transac-
tional processes, using UML activity models. A UML activity is used to define a
transactional process, each action within that process representing a transaction
performed collaboratively by two or more participants of the overall collabora-
tion. Each transaction may in turn be refined by another activity model, or by
an interaction.

We emphasize that - opposite to the usual interpretation of activity diagrams
- a collaboration activity does not prescribe centralized control. Rather, it repre-
sents emergent behavior of all the participants, i.e., each of the participants must

5

« i n t e r f a c e »
O r d e r

o r d e r I d
v a l u e

s m O r d e r { p r o t o c o l }

s h i p p e d

a c c e p t e d

d e n i e dc r e a t e

s h i p

s h i p D e n i e d

c a n c e l e dc a n c e l

« i n t e r f a c e »
O r d e r I t e m

* i t e m

1

c d S h i p T o O r d e r

Fig. 3. A data structure used in the collaboration (left) and its permissible behavior
(right)

behave such that the resulting behavior of the overall collaboration corresponds
to the defined collaboration activity.

An activity models the behavior of a collaboration or the behavior of a com-
posite transaction in terms of a process of actions among the participants (cf.
Fig. 4). Its input and output parameters define pre- and post-conditions in terms
of collaborative objects (with state constraints) consumed and produced by the
activity, respectively. Additional pre- and post-conditions on object values can
be defined. Top-level activities, i.e., activities used to define the behavior of a
collaboration, must not have parameters.

An activity partition represents a collaboration participant, which can be
associated with actions and object nodes. Since modelling concepts are associ-
ated with more than one participant, we cannot use the traditional notation of
swimlanes; we use the textual notation of UML2 (cf. “(Buyer, Seller)” in Fig. 4).

An action represents a transaction between two or more participants (e.g.,
“CreateOrder” in Fig. 4). Therefore, it must be associated with at least two
partitions. Only behavior invocation actions are allowed, and invoked behavior
has to be specified either in terms of another collaboration activity model which
thus defines a complex sub-transaction, or in terms of an interaction model
defining a simple sub-transaction. The pins of an action must correspond to the
parameters of the invoked behavior. Furthermore, the participants involved in
the invoked behavior must be the same as the ones the action is associated with.

Object nodes, namely pin, centralBuffer, and parameter represent pre- and
post-conditions of actions and activities (e.g. “Order” in Fig. 4). They must
be typed by one of the classes or interfaces of the object model. Like actions,
object nodes must be assigned to at least two participants, meaning that the
pre- and post-conditions apply to those participants. Pins in particular must be
associated to a subset of the participants that the pin’s action is associated with;
parameters similarly. If a parameter is of direction inout, the state constraining

6

the outgoing object node must be reachable from the state constraining the
incoming object node, i.e., integrity of the state machines must be preserved.

A key constraint is a specific kind of constraint which specifies for an object
node that some of the attributes of the objects contained in the node must be
unique among all concurrent instances of the activity. In other words, the key
attributes must unambiguously identify the activity instance. This is correspond-
ing to BPELs concept of correlation set. A key constraint defined for one object
node implies the same constraint for all object nodes reachable by object flow,
i.e., through data flow edges or through actions with inout parameters. Since key
constraints are not natively supported by UML, the proprietary notation “{key:
field1, field2, ...}” is introduced.

All of UML’s control nodes are applicable. Regarding the join node, we in-
troduce an extension to support specifying how objects (of potentially different
types) that flow from the multiple input flows are joined into a single object flow-
ing out of the join. This extension is necessary since the work-around of using an
explicit action to do the transformation conflicts with the semantics of an action
in our approach. Therefore, our proposed solution is to add a transformation be-
havior on the join node, with one input parameter for each incoming flow, and
one output parameter delivering the joined object. A similar extension could be
designed for the fork node, although in that case the transformation capability
of object flows can be used for a work-around. Note that these extensions are
not specific to our approach but generally applicable.

The basic control flow edges are applicable, however certain restrictions must
be met to produce realizable collaboration protocols. A control flow can only be
modelled between actions which share at least one participant, otherwise no one
of the participants of the succeeding action would have knowledge about when
to start. Similarly for forks, joins, decisions, and merges. We did not yet consider
UML’s advanced concepts such as interrupts, edge weight, etc.

Also object flow edges can only be used with restrictions. First, object flow is
only allowed if the target object node is assigned to a subset of the participants
that the source object node is assigned to. Second, in case of non-deterministic
choice, i.e., when multiple data flows originate from an object node, the one
action will be selected which is initiated first. To allow for unambiguous decision
detection, at least one participant must be involved in all of the alternative
actions, and the actions must be distinguishable by the first message that is
exchanged (cf. interaction level). Regarding the advanced features of data flow
edges, transformation behavior is required to support chaining of actions with
differently structured output and input objects; other features such as multi-cast
and edge weight have not been considered.

Example 3. The activity shown in Fig. 4 defines the behavior of the “ShipTo-
Order” collaboration. It comprises the “CreateOrder” action which, in case of
success, is followed either by “ShipGoods” or “CancelOrder”, based on a non-
deterministic choice. Object nodes are used to define pre- and post-conditions
on the actions, in particular, state constraints and a key constraint.

7

(B u y e r , S e l l e r)
C r e a t e O r d e r

(B u y e r , S e l l e r)
S h i p G o o d s

S h i p T o O r d e r

(B u y e r , S e l l e r)
O r d e r

(B u y e r , S e l l e r)
O r d e r

[a c c e p t e d]
(B u y e r , S e l l e r)

C a n c e l O r d e r

{ k e y : o r d e r I d }
{ v a l u e < 1 0 . 0 0 0 }
(B u y e r , S e l l e r)

O r d e r
[e l s e]

[in
ac

ce
pt

ed
]

(B u y e r , S e l l e r)
O r d e r

[c a n c e l e d]

Fig. 4. Activity model of the “ShipToOrder” collaboration

An activity may be used to specify the behavior of a collaboration. If the
collaboration is used as a top-level collaboration, its activity must not have
input and output parameters (e.g., as in Fig. 4). Furthermore, if the collaboration
is composed of sub-collaborations, the composite collaboration’s activity must
include (i.e., invoke) its constituent collaborations’ activities.

5 Interaction Level

5.1 Message Content Model

The message content model specifies the requirements on message contents. The
message model can be specified either completely or in an abstract way. A com-
plete message model defines the message contents unambiguously, i.e., all ex-
changed documents are specified. Conversely, an abstract message model speci-
fies only the minimal requirements, as needed for the collaboration specification.
It will be aligned with the object model, by using the same attributes and, if ap-
propriate, by directly including parts of the object model. An abstract message
model facilitates re-use of variants of complete message models, e.g., different
business document standards could be supported. In that case, the abstract mes-
sage model must only include a subset of the data supported by the different
document standards.

The concepts used in the message model are interfaces and classes. Interfaces

are used to specify an abstract message model. Interfaces can have attributes,
associations, and operations that implement queries based on the interfaces.
Classes are used to specify complete message models. Again, message classes
can have attributes, associations, and query operations. The relationship to an
abstract message model is specified by implementation relationships. A class im-
plements the interface’s attributes and associations. For specifying XML-related
characteristics of message contents, an appropriate UML profile has to be used
[2].

Example 4. The example in Fig. 5 shows an abstract message model for the
messages in the “ShipToOrder” collaboration. The messages are based on generic
ebXML messages “SignalMessage” and “ActionMessage”.

8

« i n t e r f a c e »
S i g n a l M e s s a g e
i s P o s i t i v e

« i n t e r f a c e »
O r d e r R e q u e s t

o r d e r I d
v a l u e

« i n t e r f a c e »
O r d e r R e s p o n s e

o r d e r I d
i s P o s i t i v e

« i n t e r f a c e »
A c t i o n M e s s a g e

c d O r d e r M e s s a g e s

Fig. 5. Abstract messages used by the “CreateOrder” interaction

5.2 Interaction Model

The interaction model specifies the interactions among the participants of a
transaction in terms of asynchronous message exchanges. The behavior of indi-
vidual participants is considered, i.e., the notion of a shared state is no longer
maintained, but rather different states of the participants and the means of
synchronization and coordination need to be defined. Interaction models are in-
tended to be used at a low level of granularity and complexity with request/response
as minimal interaction patterns. They refine actions or collaborations. If an in-
teraction model is used to refine an individual action, its parameters must be
compatible.

Interaction models must specify how participants achieve a common outcome
of the transaction, i.e., at the end of an interaction the participants must know
the common outcome in terms of the interaction’s output data and the transac-
tion’s state. The tasks performed by the participants are, however, out of scope
of a collaboration model. It is only the overall transaction which represents a
common/synchronous task.

Modelling concepts are those of UML interaction diagrams, with a few ex-
ceptions, as well as some additional constraints.

A lifeline represents a participant from the collaboration.

A message defines a communication between two participants. Only asyn-
chronous messages must be used, as synchronous messages make a statement
about message processing, which by definition is out of scope of a collaboration
protocol. Message arguments are limited to be either constants, or parameters
of the interaction, or symbolic names representing wildcards. If, within a single
interaction, the same symbolic name is used in different messages, it means that
the contents is the same. Symbolic names may refer to lifelines, meaning that a
reference to the corresponding participant is being communicated.

Regarding interaction fragments, i.e., control flow structures, the following
constraints must be met in order to obtain a realizable collaboration protocol.
Guards on interaction fragments must be completely specified (using OCL),
based on interaction parameters and on message arguments that are sent from

9

or received by the participant on which the guard is specified, i.e., the participant
that initiates the first message in the interaction fragment. For simplicity, the
model is limited to LL(1)-like traces, i.e., for each lifeline each incoming message
must unambiguously determine the following control path.

A data flow constraint is a UML constraint used to relate the contents of
individual messages to each other as well as to the input and output param-
eters of the interaction. We distinguish three classes of data flow constraints.
Deterministic data flow constraints define equality of data items in different
messages or parameters. They are required for key constraints (see below) and
for specification of post-conditions. Non-deterministic constraints may also use
inequations. Conditional constraints use implications. They are required to spec-
ify post-conditions in case of alternative control flow paths. Data flow constraints
must be defined based solely on interaction parameters and message arguments,
such that both sender and receiver of the involved messages are able to observe
the constraint variables.

A participation constraint is used to interrelate data flow and participants.
A participation constraint relates a lifeline with the contents of a message or
a parameter, meaning that a reference to the concrete participant playing that
role is being communicated. Participation constraints are an extension to UML’s
capability of using parameters as lifelines, and to using lifelines as symbolic
names of message arguments, as defined above.

A key constraint specifies, for a message, that some of the message’s argu-
ments (or argument’s attributes) must be unique among all concurrent instances
of the interaction. In other words, the message must unambiguously identify the
interaction instance based on the specified key. Note that sender and recipient
(lifelines) may also be used as key components. The same set of key attributes
typically appears in a series of succeeding messages. Only the first message of
such a series must have a key constraint, the applicability to succeeding mes-
sages is implied by deterministic data flow constraints. Data flow constraints also
specify the flow of key constraints on input and output parameters, as defined in
the activity model. If a key constraint is already defined on an input parameter,
no additional message key constraint is required for the same set of attributes.
Since key constraints are not natively supported by UML, proprietary notation
“{key: field1, field2, ...}” is introduced.

A time constraint must be specified such that there is at least one participant
able to observe it. Observable are interaction parameters and messages sent to
and received by the participant.

A post-condition specifies the outcome of the interaction in terms of con-
straints on the output parameters. The same rules as to data flow constraints
apply. Furthermore, the post-condition constraints must be observable by all
participants who are assigned to the respective output parameter. The resulting
value of all output parameters must be defined, and in case of alternative con-
trol flows, each of the flows must lead to a defined output. In case of alternative
output parameter sets, for each set there must be a flow defining it completely.

10

Concepts of UML related to the specification of individual participants are
not used, other than message send and receive. Although it would be possible to
use concepts such as participant attributes, sate, and execution occurrences, it is
not necessary for collaboration specification and therefore not used to maintain
loose coupling.

Example 5. The interaction depicted in Fig. 6 corresponds to a BPSS interac-
tion pattern. It comprises a request and a response message, and accompanying
acknowledgement signal messages. Positive acknowledgement messages are a pre-
requisite for the interaction to proceed successfully. The data flow constraints
shown on the right correlate the “orderId” attributes of the “OrderRequest”
and “OrderResponse” messages, and, conditionally, the “isPositive” attributes
of the “OrderResponse” and “rReceipt” messages. The post-condition defines the
state and value of the output parameter. In particular, the “order” is in state
“accepted” only if “rReceipt” was positive, otherwise it is in state “denied”.

r e q u e s t (q : O r d e r R e q u e s t)

r e s p o n s e (r : O r d e r R e s p o n s e)

s i g n a l (q R e c e i p t : S i g n a l M e s s a g e)

s i g n a l (q A c c e p t a n c e : S i g n a l M e s s a g e)

s i g n a l (r R e c e i p t : S i g n a l M e s s a g e)

{ 0 . . 2 4 }

s d C r e a t e O r d e r (o u t o : O r d e r)

[q R e c e i p t . i s P o s i t i v e]

« p o s t c o n d i t i o n »

o p t

o p t [q A c c e p t a n c e . i s P o s i t i v e]

{ 0 . . 2 }

{ 0 . . 2 }

{ 0 . . 4 }

o i n a c c e p t e d o r o i n d e n i e d ;
r R e c e i p t . i s P o s i t i v e i m p l i e s o i n a c c e p t e d ;
n o t r R e c e i p t . i s P o s i t i v e i m p l i e s o i n d e n i e d ;
o . v a l u e = q . v a l u e ; o . o r d e r I d = q . o r d e r I d

B u y e r S e l l e r

{ n o t r . i s P o s i t i v e
i m p l i e s n o t
r R r e c e i p t . i s P o s i t i v e }

{ q . o r d e r I d = q R e c e i p t . o r d e r I d ;
q . o r d e r I d = q A c c e p t a n c e . o r d e r I d ;
q . o r d e r I d = r . o r d e r I d ;
q . o r d e r I d = r R e c e i p t . o r d e r I d }

{ k e y : o r d e r I d }

Fig. 6. Interaction refining the “CreateOrder” action

Presumably, transactions are often defined based on generic interaction pat-
terns such as the one used in Example 5. Such generic interaction patterns can
be supported by means of interaction templates having template parameters for
specification of participants, message types, and timing constraints.

11

6 Mapping to Target Technologies

In this section we want to clarify the relationships between the proposed mod-
elling concepts and concepts of the target technologies by sketching a possible
mapping between the two. The mappings, as shown in Table 1, demonstrate
feasibility and limitations of such an attempt, but are not elaborated in full
detail.

Designing the mapping to BPSS is relatively straight forward, although not
all concepts can be mapped (cf. Table 1). The mapping to BPEL is much more
difficult, since it actually involves two steps. First, the collaboration protocol
has (at least conceptually) to be transformed into a set of interfaces for the par-
ticipating web services, and then each of these interfaces has to be transformed
to BPEL. In particular, this means that for each partition of a top-level activity
a separate BPEL specification has to be produced, which covers only a part of
the activity; similarly for interactions. Furthermore, detection and to some ex-
tent also handling of failures depends on implementation decisions, therefore a
mapping can only be defined by assuming some generic implementation.

When roughly comparing the expressiveness of our approach to BPSS, BPSS
has several limitations, e.g., the focus on 2 participants, predefined interaction
patterns, no key constraints, only limited constraints on message data. On the
contrary, our approach lacks specification of atomicity, failure handling, and the
“onInitiation” control flow dependency. In comparison to BPEL, BPEL lacks
a support of re-usable behavior specification, and has restrictions on message
properties which limit expressiveness of key constraints. Also, non-deterministic
choice with different initiators is cumbersome to express in BPEL. Our approach,
on the other hand, lacks support for exception handling, compensation, and event
handling.

7 Related Work

Several approaches to graphically modelling collaboration protocols exist, related
to BPSS and based on UML. Considering the web services area, most research
deals with modelling of interfaces and implementation of individual web services
rather than with collaboration protocols.

Kim [10] takes an approach very similar to ours in that he investigates how
UML (version 1.x) diagrams can be used to graphically specify collaboration
protocols with an automatic mapping to BPSS. His solution covers the transac-
tion level and the interaction level. At the transaction level, activity diagrams
are used. Furthermore, sequence diagrams are used also at the transaction level,
with synchronous messages used to represent transactions. This way, behavior
of multi-party collaboration protocols is modelled. At the interaction level, both
interaction diagrams and class diagrams are used. The major difference of our
approach is that we support data flow constraints, both at the interaction level
and at the transaction level. Furthermore, our approach is not bound to the lim-
itations imposed by BPSS and is therefore more expressive regarding possible
interaction patterns and collaboration processes.

12

M UML BPSS BPEL

c collaboration - binary collaboration protocol, or
multiparty cp., or business trans-
action

role process party
connector partner link type and partner

(limited to binary connectors)
-

collaboration
use

- (see nesting of activities) composition of business activities
(limited to 2 participants)

o interface XSD type -
protocol sm. - -

a activity - binary cp. (2 participants only)
or multi-party cp. (restrictions on
control flow and data flow)

partition abstract process, or scope if a
nested activity

authorized role

action scope including the mapping of
the invoked activity/interaction

binary cp. or business transaction
(limited to 2 participants)

object node variable -
key constr. property and correlation set -
control node structured activity (limited to reg-

ularly structured control flow)
equivalent control nodes, except of
decision which is mapped to tran-
sition constraints

control flow structured activity transition
data flow variable assignment -
non-determ.
choice

a switch on opaque data, or a pick,
depending on who is deciding

transitions without mutually ex-
clusive guards

m interface message properties (limited to
simple data types)

-

class XSD type XSD type

i interaction - business transaction (limited to
predefined interaction patterns)

lifeline abstract process or nested scope predefined
message invoke or receive+reply, and a

variable for holding the message
predefined signal or business mes-
sage

fragment structured activity -
data flow
constr.

variable assignment (limited to
equality constr.) and a correlation
if related to a key constraint

-

participation
constr.

assignment not allowed

key constr. correlation set and related prop-
erty aliases (limited to simple data
types and equality constraints)

-

time constr. - predefined timeToPerform, etc.
pre-/post-
conditions

- pre-/post-conditions (informal)

Table 1. Mapping of UML concepts in the different models to BPSS and BPEL

13

UMM [9] provides not only a rich set of UML-based modelling concepts for
B2B collaboration protocols, but also methodological guidance ranging from re-
quirements elicitation to implementation design. UMM has provided the concep-
tual foundation of BPSS, and since then it was further improved. In particular,
it now supports so-called business entities, i.e., business domain objects which
are modelled in terms of class diagrams and state diagrams. Furthermore, a
business collaboration protocol (the equivalent to a BPSS binary collaboration
protocol) can use business entities to define pre- and post-conditions of business
transactions. Business entities and their use in business collaboration protocols
are very similar to our object model and its use in the activity model. The dif-
ference is that business entities capture business semantics, whereas our object
model is defined in technical terms. In particular, our object model is formally
connected to the messages exchanged in the interaction level, thereby creating
an aggregated form of data flow constraint, which is not the case with business
entities.

There exists also a mapping from a subset of UMM to BPEL [8]. It supports
the UMM/BPSS interaction patterns, as well as the control flow of business col-
laboration protocols. In comparison to our approach, that mapping is elaborated
in full detail. It considers, however, only a subset of the concepts defined in our
models. Difficult mapping problems, e.g., non-deterministic choice, or mapping
of failure handling, are still open issues.

The approach described in [7, 4] is not restricted to the business domain
but supports web service collaboration protocols in general. Collaboration pro-
tocols are specified in terms of a state machine, with states representing the
global state of the collaboration, and state transitions representing messages ex-
changed among its participants. A strong point of this work is that it supports
formal verification of consistency between global behavior, i.e., the collabora-
tion protocol, and local behavior of participants, i.e., the interface. In contrast
to our approach, only the interaction level is considered, no notion of transac-
tion is provided. Furthermore, it is a purely conceptual model without graphical
notation.

8 Summary and Outlook

We have presented a technique for modelling collaboration protocols, which seeks
to support the main concepts of both BPSS and BPEL by exploring the features
of UML 2. The modelling technique generalizes some of the key concepts of
BPSS and UMM, resulting in a language which is no longer specific to the B2B
domain but rather supports generic transactional collaboration protocols.

However, several important issues remain open for further research:

– Specification of failures and failure handling has not yet been addressed.
At the transaction level, extensions to the activity model are required that
cope with failure handling in order to realize transactional properties of
long running transactions. At the interaction level, failures of the messaging
system have to be considered.

14

– Non-functional properties such as security and transactional characteristics
are still missing. In particular, the respective requirements of BPSS are of
interest.

– The mapping to the target technologies has to be elaborated in more detail,
to enable automatic code generation. Furthermore, support for WS-CDL
would be logical but has not yet been included.

– Finally, to support better integration in a software development process, it
would be interesting to consider the relationship of collaboration protocol
models to models of web service interfaces and deployments.

References

1. BEA, IBM, Microsoft, SAP, and Siebel. Business Process Execution
Language for Web Services, Version 1.1. http://ifr.sap.com/bpel4ws/

BPELV1-1May52003Final.pdf, May 2003.

2. M. Bernauer, G. Kappel, and G. Kramler. Representing XML Schema in UML –
A Comparison of Approaches. In Proceedings of the 4th International Conference
on Web Engineering (ICWE2004), 2004.

3. M. Bernauer, G. Kappel, G. Kramler, and W. Retschitzegger. Comparing WSDL-
based and ebXML-based Approaches for B2B Protocol Specification. In Proceed-
ings of the 1st International Conference on Service Oriented Computing (ICSOC
2003), 2003.

4. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach
to design and analysis of e-service composition. In WWW, pages 403–410, 2003.

5. DERI. Web Service Modeling Ontology - Standard, WSMO Working Draft. http:
//www.wsmo.org/2004/d2/v02/, March 2004.

6. T. Gardner. UML Modelling of Automated Business Processes with a Mapping
to BPEL4WS. In Object-Oriented Technology: ECOOP 2003 Workshop Reader,
ECOOP 2003 Workshops, Darmstadt, Germany, July 21-25, 2003, Final Reports.
Springer LNCS 3013, 2004.

7. J.E. Hanson, P. Nandi, and S. Kumaran. Conversation support for Business Process
Integration. In Proceedings 6th IEEE International Enterprise Distributed Object
Computing Conference (EDOC-2002), pages pp. 65–74.

8. B. Hofreiter and C. Huemer. Transforming umm business collaboration models to
bpel. In Proc. of the OTM Workshop on Modeling Inter-Organizational Systems
(MIOS 2004), oct 2004.

9. B. Hofreiter, C. Huemer, and K.-D. Naujok. Un/cefact’s business collaboration
framework - motivation and basic concepts. In Proc. of the Multi-Konferenz
Wirtschaftsinformatik (MKWI 2004), mar 2004.

10. H. Kim. Conceptual Modeling and Specification Generation for B2B Business
Processes based on ebXML. volume 31 of SIGMOD Record.

11. UN/CEFACT and OASIS. ebXML Business Process Specification Schema, Version
1.01. http://www.ebxml.org/specs/ebBPSS.pdf, May 2001.

12. W3C. Web Service Choreography Interface (WSCI) 1.0, W3C Note. http://www.
w3.org/TR/wsci, August 2002.

13. W3C. Web Services Choreography Description Language Version 1.0, W3C Work-
ing Draft. http://www.w3.org/TR/ws-cdl-10/, October 2004.

15

9 Appendix - Review of Major Technology Concepts

As a prerequisite to the main part, we review the major specification concepts
supported by the target technologies, as they define the requirements on the
expressiveness of our platform independent modelling technique. Furthermore,
we give a brief overview of the relevant concepts of UML 2 used in our approach.

We have chosen BPEL and BPSS as potential target technologies, for the
following reasons. BPSS because it is a collaboration protocol language and it
provides interesting higher-level concepts, i.e., transactions. And BPEL because
it is well accepted and it provides powerful specification concepts for web service
interfaces and implementations. Since BPEL supports interface and implemen-
tation rather than collaboration protocols, it is only an indirect target language.
Nevertheless, its specification concepts should be supported also at the collabo-
ration protocol level.

9.1 BPSS Concepts

BPSS, as a collaboration protocol specification language, supports the specifi-
cation of emergent behavior, i.e., behavior that emerges from a group of col-
laborating web services. Behavior as specified by BPSS is not intended to be
used as instructions for some execution engine, but rather defines constraints
on the observable behavior of the participants in the collaboration. If all of the
participants follow the constraints imposed on them according to their role in
the collaboration protocol, the collaboration will be able to achieve the common
goal.

The distinguishing feature of BPSS is that it is based on the concept of
business transaction, which is an interaction between two parties leading to either
a successful outcome or having no effect at all (atomicity property). A business
transaction is defined by one out of a set of predefined interaction patterns. These
interaction patterns are an extension of the request/reponse pattern, and can be
configured in terms of the types of documents exchanged, timing and security
constraints required, etc. Specification of failures is supported in two aspects.
First, application-level failures can be defined in terms of negative responses.
Second, system-level failures such as connection failure or protocol failure are
supported by predefined exception states. In both cases it is assumed that the
business transaction had no business effect, i.e., was rolled back.

A binary collaboration protocol specifies the collaboration between two par-
ties, based on business transactions and nested binary collaboration protocols
(these two are called business activities). Like a business transaction, a binary
collaboration protocol exhibits the atomicity property. A binary collaboration
protocol is defined by its constituent collaboration activities and the control flow
dependencies between them. No data flow is supported at the level of binary col-
laboration protocols; however, the guard condition of a transition can be defined
based on the documents exchanged in the preceding business transaction.

Failures in binary collaboration protocols can be specified in that it can lead
to different result states, indicating either success or failure, and, in case of

16

failure it is assumed that the overall binary collaboration protocol has no busi-
ness effect, i.e., was rolled back. Failure handling is specified by means of specific
transition conditions support conditional branches, depending on whether a pre-
ceding collaboration activity succeeded or failed. Using this simple mechanism,
failure handling to the effect of compensating transactions can be designed, al-
though no specific compensation concept is available.

A multi-party collaboration protocol defines a set of interrelated binary col-
laboration protocols. A Multi-party collaboration protocol supports no transac-
tional properties and only limited means for behavior specification.

9.2 BPEL Concepts

BPEL, in combination with WSDL, supports specification of both implementa-
tion and interfaces of an individual web service.

BPEL is based on WSDL port types which define the operations provided
by a web service. So-called service link types are introduced to define a mutual
usage relationship between two port types.

A process specifies the executable behavior of a web service. A process may
communicate with multiple partner web services, the relationship to each partner
being defined by a service link type. A process is defined in a block-structured
manner, with basic statements being variable assignment and the communica-
tion primitives receive, reply, and invoke. Available control flow structures are
sequence, flow (parallelism), choice, and pick (choice based on event selection).
A scope is a nested part of a process which supports exception handlers, a com-
pensation handler, and event handlers. Using these mechanisms, it is possible
to design user-defined failure handling. The coordination between collaborating
web services in the presence of failures, however, is out of scope of BPEL.

Specific concepts are provided with regard to data handling. First, so-called
properties provide abstract accessors to message contents, which can be refined
for particular message types in terms of property aliases. Second, based on prop-
erties, correlation sets can be defined, which facilitate unambiguous association
of a given message to its corresponding process instance. Finally, partner refer-

ences are specific data types enabling run-time selection and communication of
partners.

An abstract process is a view on an executable process, which specifies an
interface of a web service. An abstract process is an incomplete behavior spec-
ification in that it is allowed to omit any parts of internal (non-observable)
behavior. Specifically concerning data flow, so-called opaque data is supported,
i.e., data which appears in the process but its computation is not defined.

9.3 UML 2 Concepts

UML 2 provides a set of specification concepts covering structural and behav-
ioral aspects. We briefly review those relevant to our work. Note that we take
advantage of the enhanced concepts of UML 2 opposite to UML 1, particularly
collaboration, protocol state machine, activity, and interaction.

17

A class defines individual objects in terms of their structure, functionality,
and associations to other objects. Furthermore, a behavior specification such as a
state machine can be attached to a class. An interface is similar in concept, with
the difference that it does not provide an instantiable specification but rather a
set of constraints on an object. Behavioral constraints can also be attached in
terms of a protocol state machine.

A collaboration defines the structural aspect of a set of collaborating objects
in terms of the participating roles and their communication relationships. Like
an interface, a collaboration is not directly instantiable but provides a specifica-
tion for a set of objects that are intended to participate. Any kind of behavior
specification such as an activity or an interaction can be attached. A behavior
specification used in this way defines emergent behavior of all the participants
rather than behavior executed by an individual object.

A state machine defines the executable behavior of an object, in terms of the
object’s state and permissible state transitions. A protocol state machine is a
state machine restricted to defining observable behavior. In particular, transitions
in a protocol state machine can only be defined in terms of pre- and post-
conditions, rather than by actions performed during the transition.

An activity is a petri-net based behavior specification, comprising actions
with input and output, and control flow and data flow between those actions.
A set of predefined actions is available, including one to invoke other behavior
specifications. Data flow tokens may be typed by a class or interface.

An interaction specifies the observable behavior of a set of collaborating
objects, in terms of the participants and a set of allowed and forbidden traces
of message exchanges among these participants. A particular focus is on timing
of messages. An interaction cannot specify executable behavior; nevertheless,
control flow structures such as loops and alternatives are available.

18

