
Deep Learning for Cognitive Load Monitoring:
A Comparative Evaluation

Andrea Salfinger
Department of Cooperative Information Systems

Johannes Kepler University Linz
Linz, Austria

andrea.salfinger@cis.jku.at

ABSTRACT
The Cognitive Load Monitoring Challenge organized in the UbiT-
tention 2020 workshop tasked the research community with the
problem of inferring a user’s cognitive load from physiological mea-
surements recorded by a low-cost wearable. This is challenging due
to the subjective nature of these physiological characteristics: In
contrast to related problems involving objective measurements of
physical phenomena (e.g., Activity Recognition from smartphone
sensors), subjects’ physiological response patterns under cognitive
load may be highly individual, i.e., expose significant inter-subject
variance. However, models trained on datasets compiled in labo-
ratory settings should also deliver accurate classifications when
applied to measurements from novel subjects. In this work, we
study the applicability of established Deep Learning models for
time series classification on this challenging problem. We examine
different kinds of data normalization and investigate a variant of
data augmentation.
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1 INTRODUCTION
Motivation. Inferring a user’s current cognitive load by interpret-
ing physiological measurements sensed non-invasively from her
body (e.g., heart rate or skin response measurements) offers many
promising applications to enhance our interaction with our steadily
increasing number of technical devices, such as smartphones and
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smart watches. For example, this would allow equipping our smart-
phones with notification management capabilities so that we do
not get interrupted while performing cognitively demanding tasks.
Especially low-cost wearables (such as smart wristbands) with wide-
spread adoption thus offer promising potential for implementing
this goal [7]. However, to realize this vision, we require reliable clas-
sification models capable of inferring a user’s current cognitive load
from such superficial surrogate measurements. To tackle this goal,
the Cognitive Load Monitoring Challenge has been initiated [17],
which promotes a labeled dataset for cognitive load inference from
measurements obtained with a Microsoft Band 2 [6]. This dataset
comprises the recordings of several subjects participating in an
experimental setting measuring their physiological responses to
the two experimental conditions of experiencing cognitive load vs.
resting. The resulting time series measurements of the four phys-
iological variables monitored with the wristband have been split
into time windows of a length of 30 seconds each, and annotated
with a unique identifier (ID) associating each record to the sub-
ject the measurements have been obtained from. In the training
dataset, each time window has been labeled with the associated
experimental condition, i.e., the subject’s underlying cognitive state
(cognitive load vs. resting), which should be used for developing
a classification model that achieves the best-possible accuracy on
predicting the withheld labels of the test set.
Challenges. The key challenge of this evaluation setup lies in the
fact that the measurements in training and test set have been col-
lected from mutually exclusive sets of subjects, mimicking realistic
scenarios. As we will examine, the physiological responses to ex-
periencing cognitive load seem to expose highly different patterns
across different individuals. Hence, this presumably represents a
more difficult learning setting than problems from related areas
utilizing measurements of objective physical forces, like Activity
Recognition based on smartphone sensors (e.g., using gyroscope
and accelerometer) [12]. Consequently, our models need to be capa-
ble of cross-subject transfer learning, i.e., need to be able to extract
patterns from the subjects in the training set that successfully gen-
eralize to the novel subjects in the test set.
Contributions.While traditional approaches for time series classi-
fication hinge on feature engineering and thus often require expert
knowledge of the signals to be interpreted, we conjecture that the
multivariate nature of the problem may be particularly suited for
the automated feature learning capability of Deep Learning (DL)-
based models. Therefore, the goal of the present study is to probe
the applicability of DL-based approaches developed for time series
classification (TSC) to this cognitive load monitoring problem. We
benchmark several state-of-the-art DL for TSC architectures on
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this dataset, and investigate the problem of cross-subject transfer
learning by examining the impacts of two different dataset normal-
ization strategies. We also contribute our findings on additional
training setups we experimented with, notably a variant of data
augmentation (upsampling).
Structure of the Paper. In the next section, we discuss the state
of the art on related classification and recognition problems. We
then present the experimental details of the provided dataset and
challenge, before introducing our comparative evaluation and con-
cluding with our main findings.

2 RELATED WORK
The increasingly wide-spread adoption of ubiquitous continual sens-
ing technology in the form of smartphones and wearables, paired
with the possibility of automatically converting these massive
amounts of sensor data into useful predictive models usingmachine
learning, has been opening up a plethora of novel applications to
assess and exploit a user’s current personal and environment con-
text. In this vein, probably most closely related to the problem of
cognitive load monitoring with wearables would be the problem of
Activity Recognition (AR), which seeks to exploit data sensed from a
user’s smartphone to classify their current activity and has received
considerable research interest for almost a decade [12]. On related
activity recognition challenges [11], state-of-the-art approaches
correspond to complex ensembles of classifiers joining both tra-
ditional, feature-engineering based machine learning approaches,
as well as more recent DL-based architectures [5]. Interestingly,
in [5] it has been analyzed that most models reach rather similar
accuracies, and combining them into an ensemble yields a low-
percentage increase in accuracy. Whereas it seems reasonable that
these approaches to AR may provide valuable starting points for
addressing the present cognitive load monitoring problem, we also
note considerable differences in the nature of the problem: The
employed smartphone sensors rather measure objective physical
forces (such as acceleration), whereas our wristband-recorded data
comprises physiological measurements that should be correlated to
an underlying cognitive state, both of which are presumably highly
individual, i.e., may show considerable between-subject variation.
Hence, this introduces additional complexity into the classification
problem.

Technically, this classification problem corresponds to a binary,
multivariate time series classification (TSC) problem. Historically,
TSC has been studied in statistics (e.g., yielding approaches like
ARIMA), as well as “classical” machine learning (ML) approaches,
i.e., approaches requiring hand-crafting of discriminative features.
Up-to-date approaches of such classical ML usually involve complex
ensembles of various individual classifiers, such as the Hierarchical
Vote Collective of Transformation-based Ensembles (HIVE-COTE)
[1, 14, 15], representing the state of the art on most datasets from
the UCR/UEA Time Series Dataset Repository [4].

As an alternative to ML approaches requiring “manual” feature
engineering, the past decade has been marked by the surge of Deep
Learning (DL), which denotes neural networks that autonomously
extract discriminative feature representations across their multiple
layers suitable for solving the classification problem. DL has also
been excelling on sequence-based data in the form of specialized

architectures such as Recurrent Neural Networks (RNNs) and 1-D
Convolutional Neural Networks (CNNs) [8, 13, 16], which also have
demonstrated competitive results on TSC [10]. Interestingly, DL
has focused TSC less than other application domains (like natural
language processing), which is presumably due to the rather limited
size of classic TSC datasets, whereas DL typically requires large
datasets allowing it to successfully generalize given its high number
of parameters and thus many degrees of freedom.

Based on the findings in [5, 10], in this work we decided to fo-
cus on DL-based approaches to this TSC problem, motivated by
their feature learning capabilities and inherent ability to deal with
multivariate data, whereas most classical TSC approach require ded-
icated strategies for incorporating multivariate time series, such as
concatenating the individual features’ time series, or column ensem-
bling [15]. Rather than spending our efforts on feature engineering
and selection, we were interested in examining the preprocessing
and training steps that would optimally phrase our prediction prob-
lem for the DL architectures examined. Essentially, the question
we are pursuing is how well such DL approaches can be applied
“out-of-the-box” to this dataset and problem, without incorporating
any expert knowledge about the signals at hand nor sophisticated
signal processing.

3 BACKGROUND AND PREPROCESSING
In the provided dataset, four different types of physiological mea-
surements have been recorded from subjects performing tasks un-
der two experimental conditions, cognitive load (label 0) vs. resting
(label 1). Using a Microsoft Band 2, Galvanic skin response (GSR),
heart rate (HR), RR intervals (RR) and skin temperature (Temp) have
been recorded, each sampled at 1Hz. Hence, the dataset consists of
30 second-windows of recordings, which thus comprise a sequence
of 30 measurements for each variable. For each subject, 50% of the
taken samples correspond to the cognitive load condition and 50%
to resting, thus corresponding to a binary classification problem
on a balanced dataset. Hence, we are dealing with a multivariate
TSC problem characterized by homogeneous time (comprising 30
uniformly distributed time steps), four variables and two classes
of cognitive load. The particular challenges lie in the rather small
size of the dataset, the rather small window size (30 seconds), as
well the per-subject effects, which we will examine in the following.
The provided training dataset comprises labeled samples obtained
from 18 subjects, whereby between 14 and 41 measurements have
been collected per subject (on average 35 measurements per subject,
which are balanced - i.e., for each experimental condition, roughly
the same amount of samples has been acquired), thus yielding a
very small training dataset with only 632 samples in total. The
test dataset to be classified contains measurements taken from 5
different subjects. Hence, our model should be capable of transfer-
ring the discriminative patterns extracted from the training subject
distributions to the unseen test subject distributions.

To mimic this evaluation setting in our model selection process,
we thus partitioned the provided training set into the following 66%-
17%-17% split required for our model development: We split the 18
training subjects into a development test set (dev-test) for estimat-
ing the models’ generalization performance comprising 3 subjects
(we randomly selected subjects ’8a1ep’, ’b7mrd’, and ’7swyk’), a
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Figure 1: A comparison of three different subjects’ (globally
normalized) measurement series. Color coding: red: resting,
blue: cognitive load

development validation set (dev-val) for parameter tuning compris-
ing 3 subjects (we randomly selected subjects ’yljm5’, ’5gpsc’, and
’f3j25’), and assigned the remaining 12 subjects to our development
training set (dev-train).

As our physiological measurements are on different scales, we
next need to transform each feature into the range [0, 1] to convert
our dataset to a numeric range that neural networks can handle well.
Since we examined our measurements to be clearly non-Gaussian,
we choose to normalize our data rather than employ standardization.
However, we identified two potential options for normalizing:

– global normalization: In our first approach to normalization,
we use min-max scaling to convert each time series to the range
between zero and one. Instead of directly selecting the minimum
and maximum values of dev-train, we set larger and lower, physio-
logically feasible values for minimum and maximum, respectively,
to prevent that test subjects may have lower or higher values than
previously seen. This normalization approach preserves the relative
distances between different subjects’ measurements, thus allows to
assess subject-specific differences on a common scale. Fig. 1 shows

the plots for three different subjects’ measurement series obtained
with this global normalization.

– per-subject normalization: As Fig. 1 suggests, there might in-
deed exist subject-specific patterns. In particular, we observed that
different subjects may have different offsets with respect to their
measurements’ mean values. Since it is unclear whether this may
be beneficial for the classification problem, or rather confound the
problem, which might depend more on relative variations in the
signal irrespective of the actual magnitude, we therefore also in-
vestigate the efficacy of using a per-subject normalization approach,
which performs min-max scaling individually for each subject. This
diminishes the effects of the different means of the individual sub-
jects’ measurements, thus might help in better discriminating the
relative differences in the subjects’ discriminative patterns (see
comparison in Fig. 2).

To increase the size of our rather small dataset and prevent over-
fitting, we also experimented with data augmentation techniques
by adding altered versions of the training data: We experimented
with time shifting by adding variations of the training data where
the multi-variate sample sequences have been shifted up to ten time
steps back or forth. However, training on this augmented dataset led
to deteriorated performance than training on the limited, original
data, hence we conclude that this augmentation rather led to con-
founding the original signal than making the extracted signal more
robust. Therefore, in the following we report our results obtained
on training on the original, normalized training dataset.

4 MODELS AND COMPARATIVE ANALYSIS
In terms of accuracy, the baseline to beat would be 51%, representing
the majority class (1) in our dev-test set. We also include a conven-
tional ML classifier from the sktime package [15] to examine how
the DL-based models compare to it, by training a time series forest
(TSF) classifier (comprising 200 random forests), which represents
an interval-based TSC approach. We use column concatenation to
adapt the TSF to our multivariate problem. TSF classifiers provide a
highly suited baseline here, as these can directly operate on the raw
data without requiring normalization, thus allowing to include a
classifier which does not depend on a suitable normalization choice.

Next, we employ simple versions of established types of Recurrent
Neural Networks (RNNs) [8] to get an impression of the overall
difficulty of the problem. We start with small architectures using a
limited number of hidden units, to account for our small training
dataset size. We evaluate several basic configurations comprising
RNNs using Gated Recurrent Units (GRUs) [2] as well as RNNs
using LSTM cells [9]. As the results indicated roughly comparable
performance, we did not attempt at performing a systematic grid
search on the optimal network architecture configuration. We train
with standard keras [3] hyperparameter settings (unless explicitly
stated), and train each model on dev-train for 1100 epochs (unless
explicitly stated). During training, we evaluate the model’s accuracy
on the hold-out validation set (dev-val) in each epoch, and usemodel
checkpointing to save the best model obtained in this training run.
Table 1 reports the results we obtained on dev-test after training
n models for different model configurations in this fashion, which
seeks to smooth out the stochastic components of training and
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(a) global normalization (b) per-subject normalization

Figure 2: Comparison of different normalization strategies on the GSR measurements.

thus should reveal the overall model capacities of different model
architectures on this problem.

We observed that LSTM-based models generally obtained higher
accuracies on the dev-train set (> 80%) than GRU-based models, but
both achieved similar accuracies on dev-test, possibly suggesting
that LSTMs tend to overfitting to the training data.

Except for these popular RNNs, we also probed the two top-
performing DL approaches for TSC identified in the comparative
evaluation conducted in [10]. We based upon their open source im-
plementation offered in the Python package sktime-dl to evaluate
the architectures Fully Convolutional Network (FCN) and Residual
Network (ResNet), also motivated by the superior performance of
a ResNet-based approach reported for a similar AR problem in [5].
Technically, these two architectures represent entirely different
approaches to the previously evaluated recurrent architectures, as
these aggregate temporal information via convolution operations.

Table 1 presents the results obtained with these models, for
both the global as well as the per-subject normalization. As we
can see, global normalization in general yields better predictive
performance. Thus, trying to alleviate the inter-subject differences
simply by means of performing normalization on the subject-level
seems to be an insufficient approach, which would probably re-
quire more sophisticated processing for shifting different subjects’
measurements into a common frame of reference. In general, the
results across the different classes of models surprisingly appear
relatively comparable. ResNet, one of the most complex models
tested, achieves close to 100% accuracy on the training data, but
interestingly, does not beat simpler classifiers by a considerable
margin.

Whereas FCN and ResNet represent quite deep and complex
architectures, which require comparatively long training times

(hence, we could only evaluate a smaller number of models in Ta-
ble 1), the evaluated RNNs represent compact models with a small
memory footprint, comparatively fast training and competitive
results, which represent clear advantages over the convolutional
architectures (note that the comparative TSC evaluation conducted
in [10] did not include RNN-based models). However, upon inspect-
ing the models’ confusion matrices (see Table 2 for an excerpt), it
becomes clear that most models, in particular the RNN-based ones
(but also the TSF), seem to exhibit a systematic bias towards the
cognitive load class, by consistently classifying a large portion of
samples to this class. This represents a rather surprising finding
given the carefully balanced dataset, which comprises an equal
share of both cognitive load and resting samples for each subject.
Hence, we conclude that apparently, the characteristics of the rest-
ing class somehow might be more difficult to learn for the model.
We thus hypothesize that by stratifying the data such that resting
samples are more frequently shown to the model during training,
the optimization problem could be more forced towards considering
the resting class. In the simplest setting, we can achieve this effect
by simply duplicating all resting samples and reshuffling, which
practically means that each resting sample will be shown twice to
the model. We denote this artificial replication of samples of one
class as “upsampling” this class. As shown in the last column block
of Table 1, this indeed might lead to a slight increase in accuracy –
however, this trick has to be exercised with caution, and needs a
careful model selection process based on the test dataset (dev-test).
Whereas some training runs yield improved and more balanced
confusion matrices (see Table 3), others might result in an artificial
bias for the resting class, induced by the upsampling of this class.
As expected, increasing upsampling by choosing an even higher
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Model Type Global Normalization Per-subject Normalization Per-subject Norm. & 2:1 upsampling Global Norm. & 2:1 upsampling
n µ σ min. max. µ σ min. max. µ σ min. max. µ σ min. max.

Stacked LSTM: H1 10
LSTM cells, H2 5 LSTM
cells, no regularization

10 0.53 0.04 0.47 0.59 0.49 0.05 0.42 0.58 0.53 0.04 0.48 0.63 0.55 0.05 0.44 0.63

Stacked LSTM: H1 10
LSTM cells (20% dropout),
H2 5 LSTM cells (20%
dropout)

10 0.55 0.05 0.47 0.63 0.50 0.03 0.45 0.57 0.52 0.04 0.45 0.58 0.54 0.05 0.48 0.62

GRU: H1 (5 GRUs), no
regularization

10 0.59 0.04 0.52 0.64 0.55 0.04 0.50 0.64 0.52 0.02 0.49 0.56 0.53 0.01 0.51 0.55

Stacked GRUs: H1 10
GRUs,H2 5 GRUs, no reg-
ularization

10 0.59 0.05 0.50 0.66 0.53 0.05 0.44 0.59 0.51 0.03 0.47 0.56 0.61 0.03 0.57 0.67

sktime-dl:
FCN (max. 2000 epochs) 3 0.60 0.04 0.55 0.64 0.58 0.02 0.57 0.60 0.62 0.03 0.57 0.65 0.61 0.03 0.58 0.65
ResNet (max. 300 epochs) 5 0.64 0.04 0.56 0.70 0.60 0.03 0.55 0.64 0.59 0.03 0.56 0.64 0.63 0.04 0.55 0.66

No Normalization No Normalization No Normalization No Normalization
µ σ min. max. µ σ min. max. µ σ min. max. µ σ min. max.

sktime:
TSF (200 random forests) 10 0.56 0.02 0.52 0.60 0.56 0.02 0.52 0.60 0.56 0.02 0.52 0.60 0.56 0.02 0.52 0.60
Baseline: 0.51 0.51 0.51 0.51

Table 1: Mean (µ), standard deviation (σ ), min. and max. of accuracy obtained with different model configurations (averaged
over n models trained for each configuration). Hi denotes hidden layer i.

replication factor for the resting class definitely deteriorates per-
formance again, as this introduces an artificial bias towards the
resting class.

5 CONCLUSION & LESSONS LEARNED
In the present work, we compared the performance of different
types of DL-based TSC approaches on a publicly available cognitive
load monitoring dataset. As our assessment revealed, most model
classes yielded relatively comparable results, whereby we conclude
that architectures based on GRUs deliver the most competitive
results when factoring in the trade-offs between prediction accu-
racy, model size and complexity and training times. With careful
model selection, their performance is roughly on par with the far
more complex ResNets, which presumably can be further tuned by
evaluating a wider range of hyperparameter settings and architec-
ture configurations (e.g., identifying the optimal number of hidden
neurons and layers). The fact that the best-performing model only
achieved an accuracy of 70% suggests that this cognitive load mon-
itoring task represents a considerably hard problem, most likely
due to the between-subject variance and limited dataset size, which
renders this problem particularly difficult for DL-based approaches.
However, our evaluated approaches have shown to be competitive
with a classical ML approach tested (a time series forest classifier).
We studied the effects of two different normalization approaches
for preprocessing the data on the resulting accuracy, finding that
a global normalization yields higher predictive accuracy than a
subject-based normalization strategy.We further experimented with
upsampling the samples of the resting class by a factor of two, in or-
der to mitigate the models’ inherent bias. Most models evaluated, in
particularly the RNN-based ones, exposed a systematic bias towards
the cognitive load class on the balanced dataset, possibly suggesting
that the underlying characteristics of the resting class seemed to
be more difficult to extract. We sought to mitigate this effect by
adopting a two-fold “upsampling” strategy for the resting samples,
i.e., showing the models the resting samples twice as often during

training, which, however, only yields marginal improvements on
some type of models only and demands careful model selection to
weed out models biased towards the upsampled class. Further in-
creasing the “upsampling” proportion, as to be expected, conversely
led to deteriorated results, which changed the dataset characteris-
tics and problem too substantially, thus inducing a wrong bias for
the resting class.

We hope that these findings on optimizing the preprocessing
for and training of established DL approaches contributes to the
understanding of their suitability for cognitive load monitoring. As
directions for future work, we note that additional improvements
on predictive accuracy could be obtained by creating an ensemble
of several classifiers, as well as a more systematic evaluation of
different neural architecture configurations.
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