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Abstract. Metamodel evolution is prevalent in Model-Driven Engineering, ne-
cessitating the co-evolution of dependent artifacts like models and transforma-
tions. Whereas model co-evolution has been extensively studied, the co-evolution
of transformations and especially its substantial ingredient in terms of OCL ex-
pressions has received little attention up to now. Thus, the goal of this paper is a
systematic analysis of potential impacts of metamodel evolution on OCL expres-
sions in model transformations. For this, a complete and minimal set of atomic
metamodel changes has been derived from Ecore, which is analyzed with respect
to its effects on structural complexity and information capacity. This analysis
builds the basis for investigating the impacts concerning syntactical conformance
and scope of affected OCL expressions. Finally, we report on lessons learned
gained from establishing the set of changes and examining the impacts thereof.

1 Introduction

Model-Driven Engineering (MDE) proposes the use of models to conduct software de-
velopment on a higher level of abstraction [1]. Thereby, model transformations play a
vital role for systematic transformations of models conforming to different metamodels
(MMs). Just like any other software artifact, MMs evolve, necessitating the co-evolution
of dependent artifacts like models and transformations [10].

While the automated co-evolution of models has been subject to extensive research
in the past (cf., [9] for a survey), the automated co-evolution of transformations has
been less examined so far (cf., e.g., [4–6, 13]). Especially the co-evolution of Object
Constraint Language (OCL) [18] expressions has not been a major focus up to now,
despite the fact that OCL expressions are used to perform complex queries on the input
models [2, 22]. Therefore, they represent a substantial ingredient in rule-based model
transformation languages, such as ATL [11] or QVT [17].
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To tackle this limitation, this paper focuses on the co-evolution of OCL expres-
sions in model transformations by first proposing a complete and minimal set of atomic
changes focusing on structure, which has been systematically derived from the Ecore4

meta-MM, enabling the definition of arbitrary evolutions of Ecore-based MMs. All
changes of this set are subsequently analyzed concerning their effects on the MM with
respect to structural complexity, i.e., the number of instantiable MM elements, and in-
formation capacity, i.e., the potential number of instances of the MM, since these two
criteria are significant for the impacts on OCL expressions which will be revealed in the
remainder of this paper. Second, the potential impacts of these changes on OCL expres-
sions are investigated by systematically analyzing the impacts of each of these changes
concerning affected OCL expressions, revealing non-breaking and breaking impacts [7]
with respect to syntax and scattering of impacts considering their scope, being local, in
case that OCL expressions use the changed MM element itself, or global, if they use
inherited versions thereof. Thus, this investigation builds the foundation for identifying
resolution actions to co-evolve syntactically broken OCL expressions and serves as ba-
sis for implementing an impact analysis tool, constituting the first and fundamental step
towards the automated co-evolution of OCL expressions in model transformations.

Outline: Section 2 systematically analyzes the impacts of MM evolution on OCL
expressions. While lessons learned are presented in Section 3, related work is surveyed
in Section 4. Finally, Section 5 concludes the paper with an outlook to future work.

2 Systematic Impact Analysis

In this section, role and importance of OCL in model transformations are highlighted,
before the complete and minimal set of changes as well as the investigation of impacts
of each change on OCL expressions are presented. Although OCL might also be used in
other contexts, e.g., to specify MM constraints restricting the instantiability of the MM,
we focus on the co-evolution of OCL in model transformations. Nevertheless, this work
might also be applied to other application contexts. A detailed investigation of impacts
on OCL constraints in MMs is, however, left to future work.

2.1 Role and Importance of OCL in Model Transformations

In order to illustrate the role and importance of OCL, Figure 1 shows an excerpt of the
well-known Class2Relational transformation5, serving as a running example through-
out the paper. From the example one might see that OCL expressions are used in two
indispensable roles [13]. First, OCL is used in bindings to query elements of the source
model, which are used to produce the target model (cf., e.g., “cl.package+’ ’+cl.id” cal-
culating the values for the target attribute Table.name). Second, OCL is utilized in con-
ditions to steer the control flow (cf., e.g., “cl.abstract=false” to transform non-abstract
classes, only). Through these two essential roles, OCL expressions constitute large parts
of transformation definitions [2, 22], and thus, it is of utmost importance to consider
OCL in detail in the context of transformation co-evolution.

4 http://eclipse.org/modeling/
5 For a complete example see: http://www.eclipse.org/atl/atlTransformations/



abstract rule Element2Named { 
  from elem : Class!Element 
  to named : Relational!Named ( 
    name <- elem.id ) 
} 
rule Class2Table extends Element2Named { 
  from cl : Class!Class (cl.abstract = false) 
  to table : Relational!Table ( 
    name <- cl.package  
            + '_'  
            + cl.id, 
    col <- cl.attr, 
    key <- cl.attr->first() 
     ) 
} 
rule Attribute2Column extends Element2Named { 
  from attr : Class!Attribute  
  to col : Relational!Column ( 
    type <- attr.type )  
} 
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Fig. 1. Running Example: Class2Relational

In general, model transformations depend on three distinct MMs, being (i) the
source MM, (ii) the target MM, and (iii) the transformation MM (cf. Fig. 1). Thereby,
OCL expressions depend on the source MM by means of a so-called “domain conforms
to”-relationship [15] and the OCL MM as part of the transformation MM by means
of a “conforms to”-relationship [11]. This is, since OCL expressions are used to query
source models and do not refer to concepts of the target MM. Therefore, this paper fo-
cuses on the evolution of the source MM and its impact on OCL expressions. For this, a
systematic set of changes is needed, which will be the focus of the next two subsections.

2.2 Complete and Minimal Set of Changes

A systematic set of changes, as a prerequisite for investigating impacts, has to fulfill
two criteria – completeness to allow for any possible change and minimality to avoid the
analysis of redundant changes. To fulfill both, we focus on atomic changes, transferring
the MM from one consistent state, i.e., conforming to Ecore [20], to another one.

Example. Before proposing the systematic set of atomic changes, four exemplary
atomic changes (cf. Fig. 1) with their effects on structural complexity and information
capacity of the MM are discussed. First, the attribute Element.id has been renamed to
name (cf. 1 in Fig. 1), being updative, i.e., a state change, by nature. Although this
causes neither a change in structure nor a change in information capacity, OCL ex-
pressions are affected. Second, the attribute Class.package has been deleted (cf. 2 in
Fig. 1), being destructive by nature, thus, decreasing structural complexity and informa-
tion capacity, which impacts OCL expressions significantly, since the deleted element
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Fig. 2. Derived Set of Atomic Changes for Ecore-based MMs

must not be accessed anymore. Third, the reference Class.attr has been changed from
ordered to unordered (cf. 3 in Fig. 1), being again updative by nature, leaving struc-
tural complexity and information unaffected, but, however, affecting OCL expressions.
Finally, the attribute Attribute.multivalued of type Boolean has been created (cf. 4 in
Fig. 1), being constructive by nature, therefore increasing both, structural complexity
and information capacity, since this attribute might now be instantiated with true or
false, without, however, affecting OCL expressions.

Systematic Set of Changes. Going beyond these four exemplary changes, Figure 2
shows the relevant excerpt of Ecore, including all elements for defining structure, while
disregarding (i) properties for code generation (e.g., volatile), (ii) derived properties
(e.g., required), since they may be led back from other properties (e.g., lowerBound),
and (iii) operations (e.g., EOperation), since the focus is on MMs defining structure and
not behavior. For deriving all constructive and destructive changes, one has to resort to
all concrete meta-classes, e.g., EClass. For receiving all updative changes, i.e., state
changes of features, one has to refer to all meta-features, e.g., EClass.abstract. The
resulting set of atomic changes is shown in Figure 2 as well as in Table 2.

Criteria. Before analyzing the impacts of the changes on OCL expressions, their ef-
fects with respect to (i) structural complexity and (ii) information capacity are analyzed,
being increasing, neutral, or decreasing. Changes affecting structural complexity indi-
cate impacts in accessing MM elements in OCL expressions and might be evaluated by
counting the number of instantiable MM elements [19]. In contrast, changes concerning
information capacity indicate impacts on the results of OCL expressions and might be
evaluated by counting the potential number of all valid instances of a MM [16].

Evaluation. In the following, the set of changes is evaluated (cf. Table 2).
Constructive/Destructive Changes: All constructive changes have an increasing ef-

fect on both, structural complexity and information capacity, since they increase the
number of instantiable MM elements and by this also the potential number of valid
instances. In contrast, all destructive changes have the exact opposite effect.

Updative Changes: Whereas all constructive as well as destructive changes behave
equally with respect to our criteria, updative changes do not and might be further sub-
divided into four groups according to their behavior.



Group 1 Renaming Updates: The first group includes updates on ENamedEle-
ment.name and EEnumLiteral.value, i.e., renames, being neutral with respect to both,
structural complexity and information capacity.

Group 2 Moving Updates: This group regards updates on containment references,
i.e., EPackage.eSuperPackage, EClassifier.ePackage, EStructuralFeature.eContaining-
Class, as well as EEnumLiteral.eEnum, which enable the movement of a feature from
one container to another one. Such updates increase structural capacity in the target
container, but decrease structural complexity in the source container. Since the features
are still available in the MM, yet at another position, the effect on the information
capacity is neutral, i.e., not affecting the number of valid instances.

Group 3 Restricting/Relaxing Updates: The third group considers updates on re-
stricting or relaxing the instantiability of MM elements, comprising the features ab-
stract of EClass, upperBound, lowerBound, and unique of ETypedElement as well as all
features of EAttribute and EReference. Their effect on structural complexity is neutral,
but their effect on information capacity is either increasing or decreasing, depending on
the concrete state change. For instance, in case of an increase of feature lowerBound,
the number of valid instances decreases, since more values are required. In contrast, a
decrease of lowerBound has the opposite effect. Furthermore, type specialization has
decreasing effect on information capacity, since the set of valid instances decreases. In
contrast, type generalization has increasing effect on information capacity. Please note
that feature ETypedElement.ordered has neutral effect on both, structural complexity
and information capacity, but impacts the underlying OCL datatype (cf. Sect. 2.3).

Group 4 Constructive/Destructive Updates: Finally, this group considers updates
on types, i.e., EClasses themselves, or the datatypes of EStructuralFeatures. This group
may be further subdivided into two categories according to their effects. First, the ad-
dition of eSuperTypes and pulling up of EStructuralFeatures have increasing effect on
information capacity, while their effect on structural complexity is increasing for the
addition of eSuperTypes and both, increasing and decreasing for EStructuralFeatures,
analogously to moving updates. Second, the deletion of eSuperTypes and pushing down
of EStructuralFeatures has decreasing effect on information capacity, while their effect
on structural complexity is decreasing for the removal of eSuperTypes and again both,
increasing and decreasing for EStructuralFeatures.

2.3 Impact Analysis

In the following, impacts of MM evolution on OCL expressions are exemplified and on
basis of this, dedicated criteria are derived, which are finally evaluated with respect to
the complete and minimal set of changes.

Example. To reveal impacts of MM evolution on OCL expressions, the running ex-
ample is utilized again: first, the renaming of the attribute Element.id (cf. 1 in Fig. 1)
has no effect with respect to structural complexity and information capacity, but break-
ing impact on the syntax of all OCL expressions accessing the element either directly or
indirectly via inherited versions thereof, i.e., the impact scatters. Second, the deletion
of the attribute Class.package (cf. 2 in Fig. 1) naturally has breaking impact on all
OCL expressions accessing this element, since the structure has been changed in a de-
structive way, and since belonging to a leaf class, the impact does not scatter. Third, the



Bag Sequence Set OrderedSet

upperBound = 1 unique/ordered not applicable 

unique = true and ordered = true 

unique = true and ordered = false 

unique = false and ordered = true 

unique = false and ordered = false 

upperBound > 1

Ecore Meta-Feature

lowerBound

Scalar 
Type

OCL Type

Collection

no impact on OCL type

Table 1. Resulting OCL Types out of Ecore Settings

change of the reference Class.attr from ordered to unordered, i.e., ordered=false (cf. 3
in Fig. 1), has breaking impact, although the structural complexity is unaffected, i.e., the
feature is still accessible. However, it causes a change of the internally employed OCL
collection type from OrderedSet to Set and by this, invalidates the usage of now unde-
fined operations such as first(). In this context, Table 1 shows the possible Ecore settings
related to collections and the resulting OCL collection type. Finally, the creation of the
attribute Attribute.multivalued (cf. 4 in Fig. 1) naturally has no impact.

Criteria. As one might see from the exemplary discussion above, changes may
have potential impact on the syntax of OCL expressions being either non-breaking or
breaking. Moreover, a change exhibits a certain scope, i.e., the scattering of the impact,
being local, i.e., OCL expressions using the MM element itself, or global, i.e., on OCL
expressions using inherited versions thereof.

Evaluation. In the following, all changes are systematically evaluated with respect
to these criteria. Please note that the evaluation assumes that changed MM elements
have been used by at least one OCL expression and the worst case scenario is consid-
ered, i.e., changes are evaluated as breaking, if there exists at least one case that breaks
the OCL expression. Since the vast majority of changes have local impact regarding the
scope as long as they concern elements in leaf classes, this criterion is discussed for
exceptional cases, only. The detailed results of the evaluation may be found in Table 2.

Constructive/Destructive Changes: Constructive changes do not have any impact
on OCL expressions, since newly created elements can not have been referred to. In
contrast, destructive changes always have breaking impact on OCL expressions, since
having a destructive effect on the structure.

Updative Changes: Updative changes are evaluated on basis of the groups intro-
duced in Section 2.2, in the following.

Group 1 Renaming Updates: Although renames do neither affect structural com-
plexity nor information capacity, their impact is nevertheless breaking, since renamed
elements are no longer accessible under their original name.

Group 2 Moving Updates: Since moves change the structure of instances by chang-
ing the position of elements, the impact on OCL is always breaking.

Group 3 Restricting/Relaxing Updates: Although these updates leave the structural
complexity unaffected, they impact information capacity, which may also break the syn-
tax of OCL expressions. This is since different settings of features such as ETypedEle-
ment.ordered result in different OCL datatypes (cf. Table 1). For example, changing
the feature ordered from true to false implies a change from the OCL collection type
OrderedSet to Set, thereby invalidating, e.g., the usage of the operation first().

Group 4 Constructive/Destructive Updates: This group is divided into two cate-
gories concerning their effect with respect to information capacity as already mentioned
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above. First, updates increasing information capacity are comparable to constructive
changes and thus, non-breaking. Second, updates decreasing information capacity are
comparable to destructive changes and are thus, breaking. The scope of these updates
is local, unless eSuperTypes are removed, affecting inheriting elements and therefore,
having global impact.

3 Lessons Learned

This section discusses lessons learned gained from (i) establishing the complete and
minimal set of changes as well as from (ii) investigating impacts.

Universal Applicability of Change Set Derivation Procedure. Although we fo-
cused on one specific meta-MM, i.e., Ecore, the approach of deriving constructive and
destructive changes from concrete meta-classes as well as updative changes from all
meta-features is universally applicable since it might be applied to any meta-metamodel.

Atomic Changes Allow for Non-redundant Impact Analysis. Since the employed
change set is minimal comprising atomic changes, only, it allows for non-redundant im-
pact analysis. In contrast, a set of composite changes might include overlaps, e.g., “Ex-
tract Class” and “Extract Superclass” both include the change “Create EClass”. Com-
posite changes, however, might held more information to be exploited for co-evolution.

State-Changes of Meta-Features are Pivotal. As might be seen in Table 2, all
changes of meta-features have been broken down into several cases, explicating differ-
ent state changes. This has been necessary, since different state changes entail different
effects on structural complexity and information capacity and, consequently, impact
OCL expressions differently, e.g., the state change of upperBound from 1 to > 1 has
breaking impact, whereas the state change from > 1 to another number > 1 has not.

Increase of Structural Complexity Breaks Models, but not OCL. All construc-
tive changes as well as updates with constructive effects (cf. part of group 4 ) that in-
crease structural complexity never break OCL expressions. This is in contrast to model
co-evolution where the introduction of required elements has breaking impact on mod-
els, since models rely on a different kind of relationship to their MM, i.e., “conforms
to”, while transformations “domain conform to” their source and target MMs.

Changes not Affecting Structural Complexity may Break OCL. Impact analysis
revealed that changes not affecting structural complexity, e.g., updates of group 3 ,
may nevertheless induce a syntactical breakage of OCL expressions in certain cases as
explicated above. This is, since changes of group 3 may induce implicit type changes
of the underlying OCL datatypes and by this, change the set of valid operations.

4 Related Work

Subsequently, related work is evaluated with respect to its focus, supported changes,
impact analysis on OCL, and support by a prototypical implementation (cf. Table 3).

Regarding the focus of co-evolution in a specific technical space, two groups of
approaches exist. Most closely related, the first group of approaches targets the co-
evolution of transformations employing OCL expressions [5, 6, 13] in the technical
space of Ecore, whereby the co-evolution of the OCL-part is considered particularly
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by one of them [6], only. More widely related since not basing on Ecore and by this
entailing a different set of changes, but nevertheless facing similar challenges, the sec-
ond group concentrates on the co-evolution of OCL constraints as parts of UML class
diagrams [3, 12, 14], with one exception basing on MOF [8].

Considering the supported changes, six approaches [3, 5, 6, 8, 12, 13] partially al-
low for constructive changes, five of those [5, 6, 8, 12, 13] partially consider destructive
changes, and updative changes are partially supported by all approaches. Thus, no ap-
proach covers a complete change set. However, the surveyed approaches additionally
consider composite changes, which will be one line of future work as detailed below. By
concentrating on composite changes, no approach presents a minimal change set, which
is different to our work providing a systematically derived, minimal set of changes.

Regarding the impact on OCL, four approaches [6, 8, 13, 14] consider breaking and
non-breaking impacts on the syntax, whereby one of them [6] considers impacts par-
tially, only. Considering the scope of impact on OCL, no approach regards this. Finally,
six approaches [3, 5, 6, 8, 13, 14] provide an implementation, while a sole approach is
conceptual, only, like the work presented in this paper.

In summary, one might see that the work presented in this paper is unique with
respect to the complete and minimal set of changes and a systematic in-depth investi-
gation of impacts. This is in contrast to related approaches, which rather concentrate on
fully supporting co-evolution for smaller sets of selected composite changes.

5 Conclusion & Future Work

This paper provided a systematic investigation of impacts of MM evolution on OCL
expressions in model transformations. Basing thereupon, several lines of future work
remain open. First, resolution actions to resolve violations caused by MM evolution
have to be identified. Their goal will be to perform local repairing by establishing a
view simulating the old MM version, e.g., in case of decreasing the upperBound from
> 1 to 1, the now single-valued feature will be wrapped into a collection. In case that
multiple changes have been performed on a single MM-element, the resolution actions
should be chained analogous to the idea presented in [21]. This chaining will represent
a first step towards the support for composite changes out of atomic changes, which will
be the next step in our research agenda. Moreover, we plan to investigate impacts and



resolution actions for complete transformation definitions, i.e., not only parts written
in OCL, thereby also focusing on impacts caused by an evolution of the target MM.
Finally, we will implement the conceptual approach presented in this paper.
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1. Bézivin, J.: On the Unification Power of Models. SoSym 4(2) (2005)
2. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A Definitive Guide. In: Formal

Methods for Model-Driven Engineering. Springer (2012)
3. Correa, A., Werner, C.: Applying Refactoring Techniques to UML/OCL Models. In: UML

2004. Springer (2004)
4. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary Togetherness: How to Manage Cou-

pled Evolution in Metamodeling Ecosystems. In: ICGT. Springer (2012)
5. Garcés, K., Vara, J., Jouault, F., Marcos, E.: Adapting transformations to metamodel changes

via external transformation composition. SoSym (2013)
6. Garcı́a, J., Diaz, O., Azanza, M.: Model Transformation Co-evolution: A Semi-automatic

Approach. In: Software Language Engineering. Springer (2013)
7. Gruschko, B., Kolovos, D., Paige, R.: Towards Synchronizing Models with Evolving Meta-

models. In: Int. Workshop on Model-Driven Software Evolution (2007)
8. Hassam, K., Sadou, S., Gloahec, V.L., Fleurquin, R.: Assistance System for OCL Constraints

Adaptation during Metamodel Evolution. In: SMR. IEEE (2011)
9. Herrmannsdörfer, M., Wachsmuth, G.: Coupled Evolution of Software Metamodels and

Models. In: Evolving Software Systems. Springer (2014)
10. Iovino, L., Pierantonio, A., Malavolta, I.: On the Impact Significance of Metamodel Evolu-

tion in MDE. JoT 11(3) (2012)
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