
Consistent Co-Evolution of Models and
Transformations

Angelika Kusel, Jürgen Etzlstorfer, Elisabeth Kapsammer,
Werner Retschitzegger, and Wieland Schwinger

Johannes Kepler University Linz, Austria
[firstname.lastname]@cis.jku.at

Johannes Schönböck
University of Applied Sciences

Upper Austria, Hagenberg, Austria
[firstname.lastname]@fh-hagenberg.at

Abstract—Evolving metamodels are in the center of Model-
Driven Engineering, necessitating the co-evolution of depen-
dent artifacts like models and transformations. While model
co-evolution has been extensively studied, transformation co-
evolution has received less attention up to now. Current ap-
proaches for transformation co-evolution provide a fixed, re-
stricted set of metamodel (MM) changes, only. Furthermore,
composite changes are treated as monolithic units, which may
lead to inconsistent co-evolution for overlapping atomic changes
and prohibits extensibility. Finally, transformation co-evolution is
considered in isolation, possibly inducing inconsistencies between
model and transformation co-evolution. To overcome these limita-
tions, we propose a complete set of atomic MM changes being able
to describe arbitrary MM evolutions. Reusability and extensibil-
ity are supported by means of change composition, ensuring an
intra-artifact consistent co-evolution. Furthermore, each change
provides resolution actions for both, models and transformations,
ensuring an inter-artifact consistent co-evolution. Based on our
conceptual approach, a prototypical implementation is presented.

I. INTRODUCTION

Model-Driven Engineering uses models as first-class arti-
facts throughout the software life-cycle [1], which conform
to their respective abstract syntax being defined in terms of
metamodels (MMs). However, like any other software artifact,
MMs are subject to constant change, i.e., they evolve, caused
by, e.g., changing requirements [2], [8], [16], [21]. Through
the evolution of the MM, the conformance between the MM
and dependent artifacts, e.g., models and transformations, may
be violated, which hinders further processing thereof. Thus,
automatic co-evolution is indispensable to re-enable the pro-
cessing of models and the execution of model transformations.
While model co-evolution has been studied extensively (cf.
[10] for a survey), transformation co-evolution is currently less
understood, although first works exist (cf. e.g., [5], [6], [13]).

However, current approaches for transformation co-
evolution provide support for a fixed, restricted set of MM
changes, only, mostly basing on composite changes such as
common refactorings in MMs, but neglecting other MM evolu-
tion scenarios. Furthermore, these approaches do not consider
the composite nature of refactorings, i.e., composite changes
are treated as monolithic units. Hence, this hinders reusability
and endangers consistency of resolution actions for overlap-
ping atomic changes across different composite changes, i.e.,
intra-artifact consistency. For example, the composite changes
ExtractSuperClass and InlineSubClass both require moving of

features, which should be handled consistently across them.
Finally, current approaches treat transformation co-evolution
in isolation, i.e., the same semantics for model co-evolution
and transformation co-evolution is not ensured [10], termed
as inter-artifact consistency. For example, if the composite
change ExtractSubClass retypes instances to the new subclass,
transformations should still be able to transform them.

This paper presents a systematic set of composable atomic
MM changes based on our previous works [14], [15] on
inspecting potential variation points between two Ecore-based
MMs, which is now enhanced with heterogeneities between
different versions of a MM. Thus, our change set goes beyond
commonly considered atomic changes such as create, delete,
or update, which may induce ambiguities during co-evolution
[20]. For every atomic change, dedicated resolution actions for
models and transformations are defined. Consequently, a set
of reusable and composable atomic MM changes is provided.
Composite changes such as refactorings solely compose the
resolution actions of atomic changes to provide extensibility.
Thus, (i) an intra-artifact consistent co-evolution is ensured,
since resolution actions of atomic changes may be reused
across different composite changes and (ii) an inter-artifact
consistent co-evolution is ensured, since the same co-evolution
semantics is applied for models and transformations. Finally,
a prototypical implementation of our conceptual approach
is presented, which provides resolution actions for Ecore-
based models as well as rule-based transformation languages,
whereby we focussed on the evolution of the source MM as
well as the declarative part of ATL [12] in a first step.

The paper is structured as follows: Section II introduces
a running example, whereas Section III presents the set of
reusable atomic MM changes on basis of Ecore. In Section IV,
resolution actions for each change are presented, while in
Section V we report on our prototypical implementation.
Finally, in Section VI we discuss related work, before our
approach is critically discussed in Section VII.

II. RUNNING EXAMPLE

This section introduces a simple running example to illus-
trate the main concepts of our approach. It encompasses an
extract of the well-known Class2Relational transformation and
demonstrates an evolution of the source MM0 and its effects
on models and transformations.

978-1-4673-6908-4/15 c© 2015 IEEE MODELS 2015, Ottawa, ON, Canada
Foundations

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

116

M
M
 Evolution

Class
name:String

Attribute
name:String

Type
type:String

t

Class Attribute
type:String

Element
name:String

attr

rule Package2Schema {
from s : Class!Package
to t : Relational!Schema (
name <- s.name,
tables <- s.c)

}
rule Class2Table {
from s : Class!Class
to t : Relational!Table (
name <- s.name,
col <- s.a)

}
rule Attribute2Column {
from s : Class!Attribute
to t : Relational!Column (
name <- s.name,
type <- s.t)

}
rule Type2Type {
from s : Class!Type
to t : Relational!Type (
type <- s.type)

}

Table

Column
col

Named
name:String

Type
type:String

type

-- co-evolved transformation
…
…
…

Transform
ation

Co‐Evolution

Class2Relational Transformation Definition0Class MM0

Class MM1

Relational MM0

Class2Relational Transformation Definition1

Source MM Transformation between MMs Target MM

a

?

Exemplary Class M1

4. Inline Class4. Inline Class

6. Rename Reference6. Rename Reference

3. Delete Class3. Delete Class

Relational M0

Package
name:String

Schema

a1:Attribute
name="Name"

c1:Class
name="Person"

t1:Type
type="String"

ta

a2:Attribute
name="Address"

a t

a3:Attribute
name="Salary"

t2:Type
type="Integer"

ta

p1:Package
name="Company"

conforms to

conforms to

conforms to

Transformation Run0
input output

executes

Type.allInstances()
->isUnique(t|t.type)

executes

Transformation Run1
input

c1:Column
name="Name"

t1:Table
name="Person"

t1:Type
type="String"

typecol

c2:Column
name="Address"

col
type

c3:Column
name="Salary"

t2:Type
type="Integer"

typecol

s1:Schema
name="Company"

Relational M1 conforms to
output

Inter‐Artifact Consistent Co‐
Evolution is Necessary

1
1

Exemplary Class M0

1. Delete Reference1. Delete Reference

c

tables

Goal: re‐establish syntactic
and semantic correctness tables

c

5. Extract Superclass5. Extract Superclass

not
conforms to

domain conforms to
codomain
conforms to

codomain
conforms to

not domain
conforms to

M
odel

Co‐Evolution

domain
conforms to

‐
‐

2. Delete Attribute2. Delete Attribute

‐
Δ

Δ

Intra‐Artifact Consistent
Co‐Evolution is Necessary

??
Figure 1. Running Example: Class2Relational

During the evolution of the source MM0, six changes with
diverse impacts on the dependent artifacts have been applied
(cf. Fig. 1). First, second, and third the class Package with
its features Package.name and Package.c have been deleted.
Forth, the composite change Inline Class has been applied,
which moved the attribute Type.type to the class Attribute and
deleted both, the reference Attribute.t and the class Type. Fifth,
the composite change Extract Class has been applied, which
created a new common superclass Element for the classes
Class and Attribute to hold the common attribute name. Finally
and sixth, the reference Class.a has been renamed to Class.attr.

Given a transformation T0 which maps models M0 con-
forming to MM MM0 to models N conforming to MM NN,
the evolution of MM0 to MM1 via a fixed repertoire of MM
changes gives rise to a co-evolution of T0 to T1 as well as M0

to M1 by some resolution actions to re-establish (i) syntactical
correctness and (ii) semantic correctness, i.e., the original
version of the target model Relational M0 should be preserved
as far as possible. Thus, for supporting semantic correctness,
it is essential to perform transformation co-evolution consis-
tently with model co-evolution (cf. inter-artifact consistency).
Moreover, in doing so, T1 may be guaranteed to take models
M1 conforming to MM1 to models N conforming to NN.

Consequently, the information that the values of At-
tribute.type have been distinct in the original version Relational

M0, as explicated in Fig. 1 by a corresponding OCL constraint,
has to be incorporated when co-evolving the Class2Relational
transformation definition. Thus, a composable change set al-
lowing to describe arbitrary MM changes with accompanying
resolution actions is needed, which is able to not only represent
the transformation co-evolution itself, but is also aware of the
model co-evolution semantics. In the next section, a change
set fulfilling these requirements is presented.

III. A SYSTEMATIC SET OF ATOMIC MM CHANGES

In this section, a systematic set of atomic changes is intro-
duced to describe arbitrary MM evolutions and co-evolution
semantics for models and transformations, thereby targeting an
inter-artifact consistent co-evolution. This set builds the basis
to build composite changes by reusing the atomic changes
to ensure intra-artifact consistent co-evolution. For this, we
extend our previous work by (i) regarding the declarative
part of ATL along with OCL, (ii) considering also models as
dependent artifacts instead of transformations only, and (iii)
introducing means for composition of resolution actions.

A. Minimal and Complete Change Set Derived from Ecore

To be able to describe arbitrary evolutions, a systematic
set of MM changes is needed. Therefore, we build upon
our previous works [14], [15], [24] on inspecting potential

117

variation points between two Ecore-based MMs, which is
briefly recapped in the following, before it is enhanced by
dealing with heterogeneities between different MM versions.
The initial change set has been designed with two criteria in
mind, namely (i) completeness to allow for any possible MM
evolution and (ii) minimality to avoid the redundant analysis
of changes as may be the case for overlapping atomic changes
contained within composite changes, since those changes are
a potential source of intra-artifact inconsistencies during the
co-evolution.

The resulting change set itself comprises three groups of
changes, namely (i) constructive changes, i.e., changes adding
new MM elements, (ii) destructive changes, i.e., changes
deleting existing MM elements, and (iii) updative changes, i.e.,
changes altering existing MM elements. While the first and the
second group have been derived by resorting to all concrete
meta-classes, e.g., EClass, since those may be instantiated
and, thus, may result in the addition or the deletion of MM
elements, the latter group has been obtained by referring to
all meta-features, e.g., EClass.abstract, since those may result
in a change of an existing MM element (cf. Fig. 2).

B. Extended Change Set to Avoid Co-Evolution Ambiguities

However, not all changes of the above presented complete
and minimal change set carry an unambiguous co-evolution
semantics, and thus, may entail a heavy user involvement
in the co-evolution process, i.e., the user must decide for a
specific co-evolution action on a per-artifact basis, which may
lead to an inter-artifact inconsistent co-evolution. To exem-
plify this, one might revisit the running example. Thereby,
one might recognize that changes of the same type need
a different co-evolution semantics, i.e., they are ambiguous.
One example thereof is the atomic change Delete Class,
which is applied twice: (i) referring to the class Package
and (ii) referring to the class Type within the context of
the composite change Inline Class (cf. Fig. 3). While for (i),
instances of the class Package should be deleted, entailing
a real information loss, for (ii) the information contained
within Type instances should be moved to Attribute instances.

‐ Delete EENumLiteral‐ Delete EENumLiteral

ETypedElement
ordered:boolean
unique:boolean
lowerBound:int
upperBound:int

EClassifier
...

ENamedElement
name:String

EDataType
...

EAttribute
...

EEnum
...

EEnumLiteral
…

EClass
abstract:boolean

Δ Update Name

Δ Update Ordered

Δ Update Lower‐
Bound/UpperBound

Δ Update
abstract

eContainingClass

eSuperTypes

eAttributeType

yp
Δ Update

eAttributeType

EStructuralFeature
... EReference

containment:booleanΔ Update
Containment

eEnum
Δ Update eEnumΔ Update eEnum

eReferenceType
Δ Update eReferenceType

+ Create EClass

+ Create EAttribute

+ Create EReference

+ Create EDataType

‐ Delete EClass

‐ Delete EAttribute

‐ Delete EReference

‐ Delete EDataType

Legend:

Δ Update
eOpposite

eOpposite

Δ Update
eSuperType

EPackage
...

+ Create EPackage

‐ Delete EPackage

+ Create EENumLiteral+ Create EENumLiteral

+ Create EEnum

‐ Delete EEnum

eSuperPackageg

Δ Update
eSuper‐
Package

ePackage

Δ Update ePackage

Δ Update Unique

Δ Update eContainingClass

+... Constructive ‐... Destructive Δ... Updative

Figure 2. Minimal and Complete Change Set Derived from Ecore

Class
name:String

Attribute
name:String

Type
type:String

t

Class Attribute
type:String

Element
name:String

attr

Class MM0

Class MM1a

4. Inline Class

6. Rename Reference6. Rename Reference

3. Delete Class3. Delete Class

Package
name:String

Type.allInstances()
->isUnique(t|t.type)

1
1

1. Delete Reference1. Delete Reference
c

5. Extract Superclass5. Extract Superclass

‐ ‐ 2. Delete Attribute2. Delete Attribute‐ Δ

Δ
4.2. Delete Reference4.2. Delete Reference
4.3. Delete Class4.3. Delete Class

4.1. Move Attribute4.1. Move Attribute

MM Evolution

‐
‐

Δ
Δ

Figure 3. Ambiguous Atomic Changes

Consequently, one specific MM change may exhibit differ-
ent co-evolution semantics. Thus, we argue to decide for a
specific co-evolution semantics already in the MM evolution
process and to extend the above change set on basis of a
systematic classification of potential MM heterogeneities that
might occur during the evolution process. Thus, the resulting
extended change set carries unambiguous resolution actions
and builds the basis for composition, to avoid intra-artifact
inconsistencies, stemming from overlapping changes across
composite changes. Hence, the question arises, which MM
changes may exhibit ambiguous co-evolution semantics.

To answer this question, one has to resort to the effects a
specific MM change may entail. In our previous works [14],
[15], we classified these effects along the criteria structural
complexity and information capacity. While the former refers
to the effects on the number of instantiable types a MM change
may entail, the latter refers to the effects on the potential
number of valid instances. Actually, changes modifying the
structural complexity may exhibit ambiguous co-evolution
semantics, since for added as well as removed instantiable
types, the concrete co-evolution semantics is unclear. This
is since it is unknown whether an inherent mapping exists
between an added or deleted element in MM1 and some
element in MM0 (as is the typical case in a refactoring). Thus,
a added or deleted element in MM1 may exhibit some hidden
relation (mapping) to elements in MM0 necessitating different
co-evolution semantics. Hence, to get unambiguous changes,
one needs to introduce specific changes for constructive and
destructive changes to explicate these inherent mappings.

Systematic Set of Mapping Situations. To obtain a system-
atic set of potential mapping situations, one might combine all
core concepts of a MM, i.e., classes (denoted as C), attributes
(denoted as A), and references (denoted as R) with potential
cardinalities (denoted as N, 1, and 0), as shown by the feature
model in Fig. 4. Each constructive or destructive change might
actually represent one of the arising combinations, e.g., when
referring to the change Delete Class “Package”, this would
represent a C2C with cardinality 1:0, since the class Package
has been deleted without any compensating element, whereas
the change Delete Class “Type” would represent a C2C with
cardinality N:1, since N=2 classes (classes Type and Attribute)
have been merged into one (class Attribute). Hence, spe-
cific subchanges for constructive and destructive changes are
needed for each potential combination to achieve an extended

118

Mapping
Situation

0:1 1:N N:1 1:0

MM0‐MM1 Concept
Cardinality

Metamodeling
Concept

C2CC2C A2AA2A R2RR2R 1:1

required XORLegend:

Figure 4. Potential Mapping Situations

change set exhibiting an unambiguous co-evolution semantics,
as presented in the following. In addition, dedicated changes
dealing with inheritance in MMs have been introduced.

Unambiguous Change Set. The consideration of special-
ized kinds of changes results in the change MM shown
in Fig. 5. For each constructive change (cf. CreateClass,
CreateAttr, and CreateRef), dedicated subchanges for the car-
dinalities 0:1 and 1:N have been introduced, since a newly
created element may represent either a new element without
any inherent mapping or a partition of an existing element.
Concerning the latter, we differentiate the cases that either the
instances have been projected or selected to obtain partitions
following the common partitioning cases well-known from
relational database design (cf. vertical versus horizontal parti-
tioning [18]). In case of vertical partitioning, it may further be
differentiated, if the new partition holds redundant information
(e.g., in case of a 1..1 relationship between the partitions – cf.
VClassSplitter), or distinct information, only (e.g., in case of
a *..1 relationship between partitions – cf. DistVClassSplitter).
In case of classes, a constructive change might also introduce
changes concerning inheritance, represented by the classes
CreateSubclass or CreateSuperclass in the MM.

Likewise for each destructive change (cf. DeleteClass,
DeleteAttr, and DeleteRef), dedicated subchanges for the car-
dinalities 1:0 and N:1 have been introduced, since a deleted
element may represent either an element without any com-
pensating element, incurring a real information loss or may
represent an element that has been merged into another ele-
ment. Furthermore, again the distinction between vertical and
horizontal merging has been introduced, accordingly. In case
of classes, dedicated subclasses to deal with inheritance have
been introduced (cf. DeleteSubClass and DeleteSuperClass).

For reasons of completeness, updative changes are depicted
as well, for which more details may be found in [15].

C. Composition of Changes for Intra-Artefact Consistency

The proposed set of changes builds the basis for composite
changes by reusing atomic changes, thereby allowing for an
intra-artifact consistent co-evolution for overlapping atomic
changes across composite changes. Fig. 5 depicts exemplary
composite changes on top of the atomic changes. For example:
the composite change InlineClass composes either the change
VClassMerger or DistVClassMerger, depending on whether
the instances of MM0 have been distinct or not, as well as
an arbitrary number of MoveFeature changes. Likewise the
composite change ExtractClass composes either the change

VClassSplitter or DistVClassSplitter, as well as again an ar-
bitrary number of MoveFeature changes. To highlight such
overlapping changes across the exemplary shown composite
changes, dedicated common superclasses have been intro-
duced (cf. MovingChange, PullingUpChange, and Pushing-
DownChange). Moreover, this set of changes is extensible,
since new compositions of atomic or existing composite
changes may be built on top of them. However, a dedicated
composition language is subject to future work.

IV. INTER-ARTIFACT-CONSISTENT RESOLUTION ACTIONS

Based on the systematic classification of changes, resolu-
tion actions re-establishing syntactic correctness as well as
semantic correctness in (i) models and (ii) transformations are
introduced. Finally, the actual composition and execution order
of resolution actions are discussed.

A. Resolution Actions for Models

For each change a resolution action for models has been
defined (cf. Table I), basing on existing literature (cf. e.g.,
[9]). Subsequently, the resolution actions are described along
the two criteria structural complexity & information capacity.

Changes Increasing Structural Complexity & Informa-
tion Capacity. In general, no resolution action for changes
that increase structural complexity and information capacity
(cf. changes with heterogeneity 0:1 in Table I) are required,
since no existing MM elements are altered. The only exception
is, if a new element is required, since in this case default values
for attributes, references, and objects need to be created.

Changes Increasing Structural Complexity. Changes in-
creasing structural complexity, but not influencing informa-
tion capacity (cf. changes with heterogeneity 1:N as well as
CreateSubclass and CreateSuperclass in Table I), demand
for specific resolution actions for (i) vertical partitioning, (ii)
horizontal partitioning, and (iii) changes in the inheritance
hierarchy. For vertical partitioning, instances have to be
vertically split, whereby one has to consider the relationship
between the partitioned classes. In case of an 1..1 relationship
(VClassSplitter in Table I), every object needs to be split and
results in a new instance of class X, whereas in case of a *..1
relationship (DistVClassSplitter in Table I), new instances of
class X arise for distinct values, only. For horizontal partition-
ing, the instance set needs to be split. Finally, changes in the
inheritance hierarchy again involve a split of the instance set,
but this time along the inheritance hierarchy.

Changes Decreasing Structural Complexity & Informa-
tion Capacity. Changes, decreasing both, structural complex-
ity and information capacity (cf. changes with heterogeneity
1:0 in Table I), entail a deletion of the corresponding instances
as shown in Table I, and thus, cause information loss.

Changes Decreasing Structural Complexity. Changes de-
creasing structural complexity, but not influencing information
capacity (cf. changes with heterogeneity N:1, DeleteSubclass
and DeleteSuperclass in Table I) require the inverse resolution
actions as applied for changes increasing structural capacity.

119

1:
N

1:
N

I.D
.

0:
1

AtomicChange

CreateClass

ConstructiveChange

CreateStructFeature

DistVClassSplitter

CreateSubclass

VClassSplitter

CreateAttr CreateRef

CreateNewAttr CreateNewRef

HAttrSplitter

CreateNewClass

HRefSplitter

C2C A2A R2R

VAttrSplitter

CreateSuperclass Constructive

1:
0

N
:1

N
:1

I.D
.

DestructiveChange

DeleteClass DeleteStructFeature

HClassMerger

VClassMerger

DeleteOldClass

DeleteAttr

HAttrMerger

DeleteOldAttr

DeleteRef

HRefMerger

DeleteOldRef

DistVClassMerger

C2C A2A R2R

VAttrMerger

DeleteSubclass

DeleteSuperclass
Destructive

1:
1 UpdativeChange

...

RenamingUpdates MovingUpdates

RelaxingUpdates RestrictingUpdates

ConstructiveUpdates DestructiveUpdates

MoveFeature AddSuperType

......

PullUpFeature

PushDownFeat.

...

...
DecrLowerBound

GeneralizeType

IncrLowerBound

SpecializeType

Updative

Composite Changes

InlineSuperClass

CompositeChange

1

InlineClass

1

1

xor

1
...

1..*

ExtractClass ExtractSuperClass

1

1

MovingChange

1

1..*

ExtractSubClass InlineSubClass

1

1..*

1

RemoveSuperType

SplitClass MergeClasses

1
1..*

1..*

1
1..*

1..*

Atomic Changes

HClassSplitter

vC
Sp

lit
te
r

xor

1

dV
C
Sp

lit
te
r

cr
N
ew

R
ef

m
ov
eF

ea
tu
re
s

cr
Su

pe
rC
la
ss

PullingUpChange

pu
llU
pF

ea
tu
re
s

PushingDownChange

pu
sh
D
ow

nF
ea
tu
re
s

hR
Sp

lit
te
r

hA
Sp

lit
te
r

hC
Sp

lit
te
r

vC
M
er
ge
r

dV
C
M
er
ge
r

dO
ld
R
ef

dS
up
er
C
la
ss

dS
ub
C
la
ss

hR
M
er
ge
r

hA
M
er
ge
r

hC
M
er
ge
r

cr
Su

bC
la
ss

Figure 5. Change Metamodel

B. Resolution Actions for Transformations

Based on the resolution actions for models, this subsection
presents resolution actions for rule-based model transforma-
tions (cf. Table I, which depicts the resolution semantics on
basis of ATL snippets – being a popular rule-based transfor-
mation language). For achieving syntactic & semantic cor-
rectness, we propose a conceptual approach that establishes a
virtual view on source MM1, which maps the newly structured
input models conforming to the source MM1 such that they
appear to the transformation in the original structure, i.e.,
conforming to the source MM0. For changes on features, this
virtual view is realized by ATL helpers (as proposed in [15]),
whereas for classes this virtual view is realized by rewriting the
ATL transformation itself, since ATL helpers do not allow for
the definition of virtual classes. Subsequently, the resolution
actions are described groupwise again.

Changes Increasing Structural Complexity & Informa-
tion Capacity. As for models, no specific resolution actions
on transformations are required for these changes (cf. changes
with heterogeneity 0:1 in Table I), since no transformation
rules or bindings may have targeted newly created elements.

Changes Increasing Structural Complexity. Changes with
heterogeneity 1:N in Table I again have to consider the cases
of (i) vertical partitioning, (ii) horizontal partitioning, and (iii)
changes in the inheritance hierarchy with different resolution
actions for classes and features, as detailed in the following.

Concerning the vertical partitioning of classes, on rule level
no specific resolution is required, since the information of the
split instances may be accessed over the introduced reference,
i.e., only the feature access has to be co-evolved accordingly.
In contrast, the vertical partitioning of attributes demands for
a resolution by a corresponding inverse function, which may
be realized by a dedicated helper in ATL. For example, if a

VAttrSplitter splits a string attribute into two, then an inverse
function is needed, which merges those string values again to
retain the original value for the transformation.

Regarding the horizontal partitioning of classes, the res-
olution must provide dedicated copies of the original rule,
whereby the arising rules need to be set to match for instances
of correct type (either the original type or the newly introduced
type). To achieve this, transformation rules need to be copied
and rewritten (by means of a HOT - cf. Section V).

Concerning inheritance, no resolution is required for the
change CreateSubclass, if the transformation language sup-
ports the concept of type substitutability, i.e., if a rule may be
applied to all instances of class A, then this rule may also be
applied to all instances of all subclasses of A (cf. [23]), which
is the case for ATL. In contrast the change CreateSuperclass,
may require the introduction of a corresponding filter criterion.
However, no resolution is required, if the newly introduced
class is abstract, since no instances may exist.

Changes Decreasing Structural Complexity & Informa-
tion Capacity. As for models, resolution for these changes
(cf. changes with heterogeneity 1:0 in Table I) needs to delete
all transformation rules matching for the deleted class in T0

as well as all bindings accessing the deleted features.
Changes Decreasing Structural Complexity. Resolution

actions for this type of changes (cf. changes with heterogene-
ity N:1 as well as DeleteSubclass and DeleteSuperclass in
Table I) (i) have to ensure that no rules match anymore for
classes that have been deleted during the merge process to
achieve syntactic correctness and (ii) have to provide means
to gain again access to the previously separated information
in MM0 to achieve semantic correctness. In case of a vertical
merge the rule that matched for elements of the deleted
class X needs to be deleted and the rule that matches for

120

Table I
CO-EVOLUTION TABLE: MODEL AND TRANSFORMATION CO-EVOLUTION

Elem. Type Name of Change
MM Evolution Hetero-

geneity

Struct.
Complex-

ity

Informa-
tion

Capacity

Instance Co-Evolution Transformation Co-Evolution

MM0 MM1 M0 M1 T0 T1

C
la
ss

C
on
st
ru
ct
iv
e

CreateNewClass - 0:1

+

+ - - - -

VClassSplitter 1:N

o

rule A2Target { from s : MM!A
to …. }

rule A2Target { from s : MM!A
to…. }

DistVClassSplitter 1:N
rule A2Target{ from s : MM!A
to…. }

rule A2Target{ from s : MM!A
to….}

HClassSplitter 1:N
rule A2Target{ from s : MM!A
to…. }

rule A2Target{
from s : MM!A
to….}

rule A2Target_1{
from s : MM!X
to…. }

CreateSubclass
Inheritance
Difference

rule A2Target{ from s : MM!A
to…. }

rule A2Target { from s : MM!A
to…. }

CreateSuperclass
Inheritance
Difference

rule A2Target{
from s : MM!A
to…. }

rule A2Target{
from s : MM!A
to…. }

rule A2Target {
from s : MM!X (filter)
to…. }

D
es
tr
uc
tiv
e

DeleteOldClass - 1:0

-

- rule A2Target{ from s : MM!A
to…. }

rule A2Target{ from s : MM!A
to….}

VClassMerger N:1

o

rule A2Target{
from s : MM!A
to…. }

rule B2Target{
from s : MM!B
to…. }

rule A2Target{
from s : MM!A
to t1 : TMM!A (…),
t2 : TMM!B (…) }

rule B2Target{
…

}

DistVClassMerger N:1
rule A2Target{
from s : MM!A
to…. }

rule B2Target{
from s : MM!B
to…. }

rule A2Target{
from s : MM!A
to…. }

rule B2Target{
from s: MM!B
to t : TMM!B }

unique lazy rule B2Target{
from s : [derived from feature] to t : TMM!B (…) }

HClassMerger N:1
rule A2Target{
from s : MM!A
to…. }

rule B2Target{
from s : MM!B
to…. }

rule A2Target{
from s : MM!A (filter)
to…. }

rule B2Target{
from s : MM!A (filter)
to…. }

DeleteSubclsas
Inheritance
Difference

rule A2Target{
from s : MM!A
to…. }

rule B2Target{
from s : MM!B
to…. }

rule A2Target{
from s : MM!A (filter)
to…. }

rule B2Target{
from s : MM!A (filter)
to…. }

DeleteSuperclass
Inheritance
Difference

rule A2Target{
from s : MM!A
to… }

rule B2Target{
from s : MM!B
to… }

rule A2Target{
from s : MM!B (filter)
to… }

rule B2Target{
from s : MM!B (filter)
to… }

A
ttr
ib
u
te

C
on
st
ru
ct
iv
e

CreateNewAttr 0:1

+

+ - - - -

VAttrSplitter 1:N

o

rule A2Target { from s : MM!A
to t : TMM!T (feature <- s.a)}

helper context MM!A def a : String =
return mergeFunction();

rule A2Target { from s : MM!A
to t : TMM!T (feature <- s.a)}

HAttrSplitter 1:N
rule A2Target{ from s : MM!A
to t: TMM!T(feature <-s.a)}

rule A2Target{
from s : MM!A
to t: TMM!T(
feature <- s.a)}

-- rule created by
"HClassSplitter"
rule B2Target_1{
from s: MM!B
to t : TMM!T(feature <- s.a)}

D
es
tr
uc
tiv
e

DeleteOldAttr 1:0

-

- rule A2Target { from s : MM!A
to t : TMM!T (feature <- s.a) }

rule A2Target { from s : MM!A
to t : TMM!T (feature <- s.a) }

VAttrMerger N:1

o

rule A2Target{ from s : MM!A
to t : TMM!T (
feature1 <- s.a,
feature2 <- s.b) }

helper context MM!A def a(i) : String =
return inverseFunction(i);

rule A2Target{ from s : MM!A
to t : TMM!T (feature1 <- s.a(1),

feature2 <- s.a(2)) }

HAttrMerger N:1

rule A2Target {
from s : MM!A
to t : TMM!T (
feature <- s.a)}

rule B2Target{
from s : MM!B
to t : TMM!T (
feature <-s.a)}

rule A2Target {
from s : MM!A
to t : TMM!T (
feature <- s.a)}

rule B2Target{
from s : MM!B
to t : TMM!T (
feature <-s.a)}

R
e
fe
re
n
ce

C
on
st
ru
ct
iv
e CreateNewRef 0:1

+

+ - - - -

HRefSplitter 1:N o rule A2Target{ from s : MM!A
to t : TMM!T (feature <- s.r) }

rule A2Target{ from s : MM!A
to t : TMM!T (feature <- s.r->union(s.r2)) }

D
es
tr
uc
tiv
e DeleteOldRef 1:0

-

- rule A2Target{ from s : MM!A
to t : TMM!T (feature <- s.r) }

rule A2Target{ from s : MM!A
to t : TMM!T (feature <- s.r) }

HRefMerger N:1 o
rule A2Target{ from s : MM!A
to t : TMM!T (feature <- s.r1,
feature <- s.r2) }

helper context MM!A def r(i) : String =
return splitFunction(i);

rule A2Target{ from s : MM!A
to t : TMM!T (feature <- s.r(1),

feature <- s.r(2)) }

X

A

A

A X

A

A B
11

A B
1*

A

A

A

X A

A

A B A

B

A X

A B

A
a
x

A
a

B
a

A
a
b

A A
x

A
a

A
a

A B
r

A B

A Br

A B
r

A B
r1

r2

A B

*A X1

1
A X1 a:A

b:A
c:A

a:A
b:A

c:A

d:X
e:X

f:X

a:A
b:A

c:A
a:A

b:A
c:A

d:X

f:X

a:A
b:A

c:A
a:A b:X

c:A

a:A
b:A

c:A
a:A

b:X
c:X

a:A
b:A

c:A
a:X

b:A
c:A

copy &
retype

Filter criterion

Filter criterion

Filter criterion

a:A

b:A

c:A

d:B

e:B

f:B

r

r

r

a:A

b:A

c:A

d:B

e:B

f:B

r1

r2

r2

A
a

B

A a:A
b:A

c:A

a:A
b:A

c:A

a:A
b:A

c:A

d:B
e:B

f:B

a:A
b:A

c:A

a:A
b:A

c:A

a:A
b:A

c:A

d:X

f:X

A B A a:A
b:A

c:A

a:A b:X

c:A

a:A
b:A

c:A

d:B
e:B

f:B
a:A

b:A
c:A

d:A
e:A

f:A

Cast criterion

a:A
b:A

c:A

d:B
e:B

f:B
a:B

b:B
c:B

d:B
e:B

f:B

Cast criterion

a:A
a: ‘X Y’

a:A
a: ‘X’
x: ‘Y’

Split
func-
tion

a:A
a: ‘X’

b:A
a: ‘Y’

a:A
a: ‘X’

b:B
a: ‘Y’

AA
a

a:A
a: ‘X’

a:A

a:A
a: ‘X’
b: ‘Y’

a:A
a: ‘X Y’
b: ‘Y’

Merge
func-

tion

a:A

b:A

c:B

d:B

r

r

a:A

b:A

c:B

d:B

A B
r1

r2

A B
r1 a:A

b:A

c:B

d:B

r1

r2

a:A

b:A

c:B

d:B

r1

r1

A
a

B
a

A
a

B
a:A

a: ‘X’
b:B

a: ‘Y’

a:A
a: ‘X’

b:A
a: ‘Y’

elements of the merged class A needs to produce the target
elements of the rule that matches for the class X. Similar to
the case of vertical partitioning during model co-evolution,
the relationship that existed in MM0 has to be considered. If
a 1..1 relationship existed, the output pattern of the rule that
matched for the class X may be added to the migrated rule
(cf. VClassMerger). However, if a *..1 relationship existed,

it has to be ensured that only for distinct values a target
element is produced to be semantically correct. Thus, in ATL
we may use a unique lazy rule that matches for distinct values
only1 (cf. DistVClassMerger). The remaining resolution actions
follow the resolution actions presented for 1:N changes on

1Other rule based transformation languages would require to query the trace
model to achieve this semantic.

121

models in order to get access to the before split elements,
i.e., retyping of rules and adding of filters to match for the
correct set of instances (cf. HClassMerger, DeleteSubclass and
DeleteSuperclass in Table I).

C. Composition and Execution of Resolution Actions

After having introduced resolution actions on a conceptual
level, this subsection presents the execution thereof as well as
the co-evolution of the running example. Since interdependen-
cies between resolution actions may exist, they must be applied
in a certain order as detailed below and shown in Fig. 6.

Constructive Actions. First, constructive changes on
EClasses are executed, since during co-evolution according
objects or transformations rules are created, which might
further on act as containers for features or bindings, respec-
tively. In the running example, the composite change Ex-
tractSuperclass contains the atomic change CreateSuperclass,
which is applied first (cf. 1 in Fig. 6). However, since the
extracted class Element is abstract, no resolution is required.
Additionally, constructive parts of destructive changes of trans-
formation resolution actions need to be applied, since they
might act again as container for subsequent bindings. In the
running example, a DistVClassMerger has been applied to
ensure unique Type instances, as it is the case for the output
model of T0. Thus, the unique lazy rule gets created, being the
creative part of the DistVClassMerger (cf. 11 in Fig. 6).

Updative Actions. Although updative changes have not
been discussed in this paper due to space limitations, they need
to be considered for a comprehensive co-evolution. Thus, we
refer to [9] and our work in [15] for a discussion of resolution
actions for updatives changes on models and transformations.
After having created the according containers, i.e., objects
or rules, in a first step, updative changes commonly acting
on features may be executed. During model co-evolution, the
object c1 is migrated by changing the name of the reference

and all Attribute instances get migrated by containing the
values of the moved attribute Type.type. For transformation
co-evolution, a virtual view on the old MM is provided by
means of so-called adapter functions to resolve the changes
ReferenceRenamed and MoveAttribute (cf. 2 and 3 in Fig. 6).

However, whereas in the model co-evolution literature no
specific order is enforced, a certain execution order for
transformation co-evolution is required to ensure that the
combination of adapters result in a valid OCL expression.
Thereby, four combinations are possible. A rename and a move
may be combined with either (i) no additional type change,
(ii) a change of a collection type, (iii) a type switch from
a collection type to a single value typed element, or (iv) a
switch from a single value typed element to a collection type.
Listing 1 shows an EBNF, which describes the composition of
adapters updative resolution actions in ATL transformations.

Listing 1. Composition of Adapters
1 EmulatedView = HelperSignature "="
2 NoTypeSwitch | CollectionTypeSwitch |
3 CollectionToSingleValueSwitch |
4 SingleValueToCollectionSwitch;
5 HelperSignature =
6 "helper context �featureV0.eContainingClass�

7 def : �featureV0.name�() : �featureV0.type�";
8 Renaming = ".�featureV0.name�" |
9 ".�featureV1.name�";
10 Moving = "" | ".�reference�";
11 NoTypeSwitch = "self" [Moving] Renaming;
12 CollectionTypeSwitch = NoTypeSwitch (".asSet()" |
13 ".asBag()" | ".asSequence()" | ".asOrderedSet()");
14 CollectionToSingleValueSwitch =
15 NoTypeSwitch "->any()";
16 SingleValueToCollectionSwitch =
17 "�featureV0.type�{" NoTypeSwitch "}";

Destructive Actions. Finally resolution actions for destruc-
tive changes need to be applied, whereby features are deleted
before classes. As can be seen in Figure 6 7 - 9 , according
features or bindings are deleted before objects and according
transformations rules get deleted (cf. Figure 6 10 - 11).

Class
name:String

Attribute
name:String

Type
type:String

t Class Attribute
type:String

Element
name:String

attr

Class MM0

Class MM1

a
4. Inline Class

6. RenameReference6. RenameReference

3. DeleteOldClass3. DeleteOldClass

Package
name:String

Type.allInstances()
->isUnique(t|t.type)

1
1

1. DeleteOldRef1. DeleteOldRef
c

5. Extract Superclass

‐ ‐ 2. DeleteOldAttr2. DeleteOldAttr‐
Δ

Δ

4.2. DeleteOldRef4.2. DeleteOldRef
4.3. DistVClassMerger4.3. DistVClassMerger

4.1. MoveAttribute4.1. MoveAttribute

MM Evolution

‐ ‐
ΔΔ

5.1. CreateSuperClass5.1. CreateSuperClass

5.4. PullUpAttribute5.4. PullUpAttribute

5.2. AddeSuperType5.2. AddeSuperType
5.3. AddeSuperType5.3. AddeSuperType

Δ Δ

Δ

Δ

+
ΔΔ

Δ

Destructive Changes
on EClasses

Destructive Changes
on EStructuralFeatures

Updative Changes on
EClasses/

EStructuralFeatures
Creative – Renaming –
Moving – Relaxing –
Restricting ‐ Destructive

Constructive Changes
on EStructuralFeatures

Constructive Changes
on EClasses

Execution Order of Changes
for Co‐Evolution

a1:Attribute
name="Name"

c1:Class
name="Person"

t1:Type
type="String"

ta

a2:Attribute
name="Address"

a t

a3:Attribute
name="Salary"

t2:Type
type="Integer"

ta

p1:Package
name="Company"

Exemplary Class M0

c

a1:Attribute
name="Name"
type="String"

c1:Class
name="Person"

attr

a2:Attribute
name="Address"
type="String"attr

Exemplary Class M1

a3:Attribute
name="Salary"
type="Integer"

attr

M
M
 E
vo
lu
tio

n
M
od

el
 C
o‐
Ev
ol
ut
io
n

6. RenameReference6. RenameReference

4.2 DeleteOldRef4.2 DeleteOldRef

1. DeleteOldRef1. DeleteOldRef
2. DeleteOldAttr2. DeleteOldAttr

3. DeleteOldClass3. DeleteOldClass
4.3. DistVClassMerger4.3. DistVClassMerger

4.1. MoveAttribute4.1. MoveAttribute

5.1. CreateSuperClass

5.4. PullUpAttribute5.4. PullUpAttribute

5.2. AddSuperType5.2. AddSuperType
5.3. AddSuperType5.3. AddSuperType

11
22
33
44
55
66
77
88
99
10
11

Model Co‐Evolution

11 No resolution needed

22

33

44 No resolution needed
55 No resolution needed
66 No resolution needed

Reordered Changes
for Running Example

77 88 99

10 11

rule Package2Schema {
from s : Class!Package
to t : Relational!Schema (

name <- s.name,
tables <- s.c)

}
rule Class2Table {

from s : Class!Class
to t : Relational!Table (

name <- s.name,
col <- s.a)

}
rule Attribute2Column {

from s : Class!Attribute
to t : Relational!Column (

name <- s.name,
type <- s.t)

}
rule Type2Type {

from s : Class!Type
to t : Relational!Type (

type <- s.type)
}

Class2Relational Transformation Definition0

Transformation Co‐Evolution

Tr
an

sf
or
m
at
io
n
Co

‐E
vo
lu
tio

n

helper context Class!Class def:
a : String = self.attr;

rule Class2Table {
from s : Class!Class
to t : Relational!Table (

name <- s.name,
col <- s.a)

}
rule Attribute2Column {

from s : Class!Attribute
to t : Relational!Column (

name <- s.name,
type <- thisModule.

Type(s.type))

}
unique lazy rule Type {

from s : String
to t : Relational!Type (

type <- s)
}

Class2Relational Transformation Definition1

11

22

33

77
88

99

10

11

No resolution needed

44 No resolution needed
55 No resolution needed
66 No resolution needed

Figure 6. Application of Resolution Actions

122

V. A TOOLCHAIN FOR CONSISTENT CO-EVOLUTION

After having introduced a systematic set of MM changes
and according resolution actions in the previous sections, this
section presents our proof-of-concept prototype (cf. Fig. 7).

A. Change Detection

Our approach requires an Ecore-based MM, a conforming
model as well as an ATL transformation, which uses the MM
as source MM of the transformation (cf. 1 in Fig. 7). In
order to specify the evolution of the source MM, we follow
an operation-based approach (cf., e.g., [8]). Thus, all atomic
changes are recorded by the editor (cf. 2 in Fig. 7) and
represented as a change model conforming to our change MM
in a first step. These changes are also visualized in the Change
History view (cf. 3 in Fig. 7), which allows the user to resolve
ambiguities by selecting an according change in a second
step. If we consider our running example, the change Delete
Class Type in position 5 in Figure 7 needs to be switched
to an instance of VClassMerger instead of DeleteOldClass,
resulting in an altered change model that reflects the desired
semantics for co-evolution (cf. 4 in Fig. 7). Please note
that manual disambiguation is only needed in case of atomic
changes, since for composite changes the intended semantics
is predefined in terms of a specific change combination. Since
it is unlikely to model every desired composite change upfront,
the presented mechanism is still necessary and therefore we
consider the addition of new composite changes which are
not yet predefined as future work. The resulting change model
builds the basis for automatic model and transformation co-
evolution.

B. Consistent Co-Evolution of Models and Transformations

Model Co-Evolution. Since numerous approaches for
model co-evolution have been already developed, we try to
reuse them in our prototype. We selected the model co-
evolution language Epsilon Flock [19], since it provides (i) the
necessary expressivity to define our changes and (ii) a concrete
textual DSL which eases the implementation of the required
transformation. In this respect, a model-to-text transformation
implemented in XTend is applied, which uses the change
model as input and produces an according Epsilon Flock script
(cf. Listing 2 and 5 in Fig. 7). After executing this script, the
co-evolved model M1 is obtained (cf. 6 in Fig. 7).

Listing 2. Model Migration Script
1 migrate Class{ migrated.attr = original.a.equivalent();}
2 migrate Attribute{ migrated.type = original.t.type;}

Transformation Co-Evolution. In order to achieve trans-
formation co-evolution, a Higher Order Transformation
(HOT) [22] is provided (cf. 7 in Fig. 7), which takes the
altered change model (cf. 4 in Fig. 7) and the transformation
T0 as input. After executing the HOT, the co-evolved transfor-
mation T1 is obtained (cf. 8 in Fig. 7).

C. Validating Semantic Correctness

As discussed previously, resolution actions must ensure
syntactic & semantic correctness. While the former may be

verified by EMF for models or by the ATL compiler for
transformations, the verification of the latter is more challeng-
ing, especially for transformations. For verifying the semantic
correctness of transformations, regression testing is a common
mechanism [4]. Thus, we verify semantic correctness by
properties expressed in our PaMoMo language [7], which must
be fulfilled by a transformation, thereby relaxing the strong
condition of generating the exactly same output model (due to
destructive changes) and by this, enabling for the verification
of semantic correctness for the presented changes. Another
means to verify correctness could be dedicated verification
conditions derived from OCL pre- and postconditions of the
change set. However, this is currently left to future work.

PaMoMo in a Nutshell. PaMoMo provides a visual,
declarative, formal specification language to describe correct-
ness requirements for transformations (cf. [7] for details). A
PaMoMo specification consists of declarative visual patterns,
which may be positive, i.e., describing necessary conditions to
occur (denoted by a “P”), or negative, which state forbidden
situations (denoted by an “N”). Patterns are composed of two
compartments containing object graphs typed on the source
MM (left compartment) or target MM (right compartment).
Objects in the source and target compartments may have
attributes that may be assigned either a concrete value or
a variable. A variable may be assigned to several attributes
to ensure equality of their values. The specified patterns
provide a well-defined operational semantics on basis of QVT-
Relations [17], which allows to check whether pairs of input
models and resulting output models fulfill the specified cor-
rectness requirements, which in consequence allows to evalu-
ate the semantic correctness of a transformation definition.

PaMoMo for the Running Example To be able to verify
the semantic correctness of the co-evolved model transforma-
tion, the PaMoMo patterns defined for the transformation T0

must be co-evolved as well first. Since PaMoMo patterns are
specified by means of object graphs, the resolution strategy
employed for existing models may be re-used to evolve the
patterns (cf. Fig. 8). The first positive pattern states that for
every Class instance in the source model an equally named
Table instance must exist in the target model. The second
pattern states, that for every Attribute instance contained in
a Class, the equally named Table must contain a column that
is equally named as the Attribute. Additionally, the Column
instance must refer to a Type instance, whose attribute type
is set to the value of Attribute.type. The co-evolved patterns
may then be used to check if the co-evolved transformation
maintains semantic correctness by checking if pairs of the co-
evolved input models and produced output models fulfill the
requirements stated by the PaMoMo patterns. After having
executed the patterns, a report is provided, stating if a seman-
tically correct co-evolution has been achieved, as is the case
for our running example (cf. 9 in Fig. 7).

VI. RELATED WORK

Few approaches for the (semi-)automatic co-evolution of
model transformations in response to MM evolution have been

123

Resolution of
Ambiguities

input

migrate Class {
migrated.attr = original.a.equivalent();
}
migrate Attribute {
migrated.type = original.t.type;
}

Instance
of

Change
MM

output output

input

input

MM‐Evolution

Model Co‐Evolution

Transformation Co‐Evolution

MM Evolution

MM Evolution Editor with Change Recording

M2T

MM

Change History

Transformation Co‐Evolution

Verification of Semantic Correctness by
Regression Testing (PaMoMo)

Transformation
Definition1

Transformation Definition0

HOT in
ATL

input

input

output

output

Model0

Model1

Contract Co‐Evolution
Contract0

Contract1

Transformation
Definition0

Transformation
Definition1

must fulfill

must fulfill

55

11

22

33

44

77

66

88

99

Model Co‐Evolution

Figure 7. Exemplary Toolchain

c:Class
name=X

P(Class2Table)
Class Relational

t:Table
name=X

c:Class
name=X

P(Attribute2Column)
Class Relational

t:Table
name=X

a:Attribute
name=A

co:Column
name=A

t:Type
type=T

p:Package
name=X

Class Relational
s:Schema
name=X

P(Package2Schema)

t:Type
type=T

c:Class
name=X

P(Class2Table)
Class Relational

t:Table
name=X

c:Class
name=X

P(Attribute2Column)
Class Relational

t:Table
name=X

a:Attribute
name=A
type=T

co:Column
name=A

t:Type
type=T

Contracts0

Contracts1

Contract
Co‐Evolution

Figure 8. Co-Evolved PaMoMo Patterns

proposed in the last years. In [13], a fixed set of changes and
corresponding resolution actions for the evolution of MM and
the co-evolution of transformations is presented, comprising
14 atomic and 2 composite changes. Due to this limited
set, only a limited number of MM evolutions is possible.
Furthermore, resolution actions for composite changes are
monolithic, i.e., atomic changes are not reused for building
more complex changes, in contrast to our approach which is
both extensible with respect to the set of composite changes
and resolution actions for atomic changes can be reused. More-
over, the dependency to model co-evolution is not explicated,
therefore, inter-artifact inconsistencies may arise. Garces et
al. [5] use transformation chains to emulate the functionality
of the evolved transformations in response to metamodel
evolution, i.e., the original transformation is not rewritten, but
specific adaptation transformations that emulate a particular
change are chained into a transformation. In contrast to our
approach, adaptation transformations have to be redefined
for new MM evolution scenarios, whereas in our approach
resolution actions for a complete set of atomic changes are
predefined and can be reused. Furthermore, inter-artifact con-
sistency is not considered since the approach focuses solely

on transformation co-evolution. Garcia et al. [6] present an
approach for co-evolution of transformations by proposing
resolution actions realized by means of a HOT for a fixed
set of atomic and composite changes, thereby rewriting the
original transformation. The approach is able to automatically
co-evolve transformations except for constructive changes, for
which a code skeleton is generated, only. However, resolution
actions for atomic changes can not be reused and the set of
changes is not extensible. Additionally, model co-evolution is
not considered, which may lead to inter-artifact inconsistencies
during co-evolution. In [3] the authors propose a DSL for
defining resolution actions for different kinds of artifacts,
which allows to build libraries of these resolution actions.
However, those actions have to be defined by the user, whereas
our approach comes with predefined resolution actions for all
atomic changes that can be assembled to composite changes.

In summary, our approach is unique with respect to the
possibility to extend the change set by composing atomic
changes and by this reusing accompanying resolution actions,
thereby ensuring intra-artifact consistency. Furthermore, an-
other unique aspect is its exploitation of model co-evolution
semantics in order to ensure inter-artifact consistency.

VII. LESSONS LEARNED AND CRITICAL DISCUSSION

In this section, we report on lessons learned, which reflect
the approach critically, and discuss points for future work.

Composable Resolution Actions of Changes Ensure
Intra-Artifact Consistency. One unique key characteristic of
our approach is that resolution actions for composite changes
are not defined as monolithic units, but as a composition of
resolution actions of the contained atomic changes. By this,
an intra-artifact-consistent co-evolution is achieved, since for
a specific atomic change only a single definition of a co-
evolution action exists, which is reused, accordingly. Conse-
quently, code duplication is avoided and by this, the threat of
potential inconsistencies between redundant resolution code.

124

Consistent Co-Evolution Semantics Assure Inter-
Artifact Consistency. Consistent co-evolution semantics for
both, models and transformations, assure inter-artifact consis-
tency, since both kinds of artifacts are co-evolved following the
same co-evolution semantics. However, the actual translation
of these semantics into resolution actions is defined in the code
generators, i.e., through our XTend code for generating model
resolution actions and the HOT for generating resolution
actions for ATL transformations. Therefore, supporting new
kinds of artifacts, besides models and transformations, requires
the implementation of new code generators that realize the
needed artifact-specific resolution actions.

Atomic Changes Foster Reusability. To achieve empirical
evidence on the reusability of atomic changes across composite
changes, we conducted a small empirical study on the well-
known catalogue of change operations of Herrmannsdoerfer et
al. [9]. Thereby, we took a sample of 12 composite changes
and decomposed them into atomic changes in such a way
that the achieved co-evolution semantics corresponds to the
one proposed in the catalogue. This resulted in a total set of
35 atomic changes, of which 23 are unique. Thus, 12 atomic
changes have been reused, yielding to a substantial reuse
factor of 34.3 %. Furthermore, of the 23 unique changes,
9 atomic changes have been reused among different composite
changes, yielding to a reuse factor among the atomic changes
of 39.1 %, thus, one may conclude that our proposed set of
atomic changes really fosters reusability.

Extending Composite Change Set to Gain Evolution/Co-
Evolution Library. While some exemplary composite changes
have been shown in Fig. 5, our approach is not limited to
them. Therefore, the definition of new composite changes
or implementing a set of proposed composite changes (cf.,
e.g., [9], [11]) may result in a comprehensive evolution/co-
evolution library, easing co-evolution by picking changes from
a comprehensive set of already defined composite changes
with distinct co-evolution semantics for dependent artifacts.
However, a dedicated composition language would be needed
which should be integrated into the proposed toolchain, which
is one direction for future work. To allow for such a language,
we are currently working on a more formal specification of
applicability conditions for the resolution actions in terms of
OCL in order to be able to validate composition. Additionally,
to provide a comprehensive library, additional transformation
languages should be incorporated. Thus, we are currently
investigating on specifying resolution actions for our changes
for graph-transformation languages (e.g., TGGs). An addi-
tional point of future work is to consider multi-metamodel
co-evolution, i.e., the evolution of source and target MM of
a transformation, since we currently focused on evolving the
source MM, only.

ACKNOWLEDGMENTS

This work has been funded by the Austrian Federal Ministry
for Transport, Innovation and Technology (BMVIT) grant
FFG FIT-IT 829598, FFG BRIDGE 838526 and 832160,

FFG COIN 845947, Austrian Science Fund (FWF) 28187-
N31, OeAD Marietta Blau grant ICM-2014-08519, OeAD
grant AR18/2013, UA07/2013, AR10/2015, and by ERC grant
PIOF-GA-2012-328378.

REFERENCES

[1] Bézivin, J.: On the Unification Power of Models. SoSym 4(2) (2005)
[2] Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Dependent

Changes in Coupled Evolution. In: Proc. of the ICMT. Springer (2009)
[3] Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary Togetherness:

How to Manage Coupled Evolution in Metamodeling Ecosystems. In:
Proc. of the ICGT. Springer (2012)

[4] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring:
Improving the Design of Existing Code. Addison-Wesley (1999)

[5] Garcés, K., Vara, J., Jouault, F., Marcos, E.: Adapting transformations
to MM changes via external transformation composition. SoSym (2013)

[6] Garcı́a, J., Diaz, O., Azanza, M.: Model Transformation Co-evolution:
A Semi-automatic Approach. In: SLE. Springer (2013)

[7] Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzeg-
ger, W., Schönböck, J., Schwinger, W.: Automated verification of model
transformations based on visual contracts. Journal of Automated Softw.
Eng. 20(1) (2012)

[8] Herrmannsdoerfer, M.: COPE A Workbench for the Coupled Evolution
of Metamodels and Models. In: SLE. LNCS, vol. 6563. Springer (2011)

[9] Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An Extensive
Catalog of Operators for the Coupled Evolution of Metamodels and
Models. In: SLE, LNCS, vol. 6563. Springer (2011)

[10] Herrmannsdoerfer, M., Wachsmuth, G.: Coupled Evolution of Software
Metamodels and Models. In: Evolv. Softw. Systems. Springer (2014)

[11] Iovino, L., Di Ruscio, D., Pierantonio, A.: Metamodel Refactorings Cat-
alog. http://www.metamodelrefactoring.org/ last accessed
07-05-2015 (2012)

[12] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transfor-
mation tool. Science of Computer Programming 72(1–2) (2008)

[13] Kruse, S.: On the Use of Operators for the Co-Evolution of Metamodels
and Transformations. In: ME Workshop @ MODELS (2011)

[14] Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W.,
Schönböck, J., Schwinger, W., Wimmer, M.: A Systematic Taxonomy of
Metamodel Evolution Impacts on OCL Expressions. In: Int. Workshop
on Models and Evolution @ MODELS (2014)

[15] Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W.,
Schönböck, J., Schwinger, W., Wimmer, M.: Systematic Co-Evolution
of OCL Expressions. In: Proc. of the 11th APCCM (2015)

[16] Mantz, F., Taentzer, G., Lamo, Y.: Well-formed Model Co-evolution
with Customizable Model Migration. Electronic Communications of the
EASST 58 (2013)

[17] Object Management Group: Meta Object Facility (MOF) Query/View/-
Transformation (QVT). http://www.omg.org/spec/QVT/1.1 (2011)

[18] Ozsu, M. Tamer, V.P.: Principles of Distributed Database Systems.
Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edn. (2007)

[19] Rose, L., Kolovos, D., Paige, R., Polack, F.: Model Migration with
Epsilon Flock. In: Proc. of the ICMT. Springer (2010)

[20] Rose, L., Paige, R., Kolovos, D., Polack, F.: An Analysis of Approaches
to Model Migration. In: Proc. Joint MoDSE-MCCM Workshop (2009)

[21] Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E., Schwinger,
W., Wimmer, M., Wischenbart, M.: CARE – A Constraint-Based Ap-
proach for Re-Establishing Conformance-Relationships. In: Proc. of the
APCCM (2014)

[22] Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the Use
of Higher-Order Model Transformations. In: Proc. of ECMDA-FA’09.
Springer (2009)

[23] Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J.,
Schwinger, W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wage-
laar, D.: Surveying Rule Inheritance in Model-to-Model Transformation
Languages. JOT 11(2) (2012)

[24] Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck,
J., Schwinger, W.: Towards an Expressivity Benchmark for Mappings
based on a Systematic Classification of Heterogeneities. In: Proc. of the
Int. Workshop on Model-Driven Interoperability (2010)

125

