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Abstract—We address the problem how high-fidelity verifica-
tion results about the hybrid systems dynamics of cyber-physical
flow systems can be provided at the scale of large (traffic)
networks without prohibitive analytic cost. We propose the use
of contracts for traffic flow components concisely capturing the
conditions for a safe operation in the context of a traffic network.
This reduces the analysis of flows in the full traffic network to
simple arithmetic checks of the local compatibility of the traffic
component contracts, while retaining higher-fidelity correctness
guarantees of the global hybrid systems models that inherits from
correct contracts of the hybrid system components. We evaluate
our approach in a case study of a modular traffic network and a
prototypical implementation in a model-based analysis and design
tool for traffic flow networks.

I. INTRODUCTION

Cyber-physical systems (CPS) are today pervasively em-
bedded into our lives and increasingly act in close proximity
as well as with direct impact to humans. A typical example is
traffic control: traffic operators monitor large road networks,
in which continuous physical characteristics (e. g., traffic flow,
travel times) are influenced by discrete control measures (e. g.,
speed limits). The discrete and continuous parts of road traffic
are inseparably intertwined and mutually influence each other
(e. g., a speed limit influences traffic flow, which in turn
determines the chosen speed limit). Thus, they need to be
modeled and analyzed in conjunction using so-called hybrid
system models. Moreover, we need to analyze traffic flow at
the scale of entire networks to account for effect propagation.

Traffic operators rely on software when selecting appro-
priate control measures to resolve potentially critical traffic
situations. However, when traffic control software decides
autonomously or suggests critical actions to an operator, the
safety of these actions is crucial (e. g., expected traffic volume
should not overload a detour). Formal verification techniques
for hybrid systems allow us to analyze road traffic control and
physics in conjunction to mathematically prove correctness for
all of the infinitely many possible states—not just by analyzing
some examples, as in testing or simulation. Formal verification
methods based on model checking and reachability analysis
focus on full automation and are therefore restricted to less
expressive classes of CPS. In contrast, we consider deductive
verification techniques which rely on human guidance, but
allow for more realistic models (e. g., safety proofs for adaptive
cruise control in cars [1] and for vehicle-to-infrastructure
communication [2]). However, hybrid system models of entire

traffic networks are huge and hard to verify.

In this paper, we attempt to solve the problem how high-
fidelity verification results (i. e., mathematical proof) about
the hybrid systems dynamics of cyber-physical traffic flow
systems can be provided at the scale of large traffic networks
without prohibitive analytic cost. Handling a CPS model of a
full traffic network is currently hopeless without exploiting
its structure during a proof. The basic observation making
mathematical proof possible is that traffic networks, while
large, are composed of many instances of only a small num-
ber of similar patterns (e. g., 4-way intersections, onramps,
traffic lights). Component-based modeling approaches exploit
this characteristic to decompose a traffic network model into
smaller parts. We present a way to ensure that proofs about
traffic components transfer to the network level, which is
nontrivial since the components influence each other and can
thus not be analyzed solely in isolation.

Our key conceptual insight is that flow-based CPS can be
modeled with components having contracts1 on flow inputs
and flow outputs, with flow being directed by a controller. We
define contracts for components and composition operations
related to their load and capacity, which are important charac-
teristics of traffic systems. When we check contracts statically
during modeling, we can conclude safety of load and capacity
of networks from the verification results of their components.
Checking the preconditions of verified contracts on real-time
traffic data makes it possible to predict whether safe or unsafe
behavior is to be expected in downstream flow components.
Our technical contribution is to show that safety properties
of the components (e. g., their capacity is such that a certain
amount of traffic can be handled) transfer to safety of the
whole network. The hybrid systems verification results that we
present for a library of important traffic patterns require human
guidance, but the proofs only need to be done once. The checks
for correct composition of the contracts that are required at
the network level reduce to simple arithmetic checks, which
can be performed at scale with marginal computational cost.
That way components modeled and verified by hybrid system
experts at design-time, can be composed and parametrized by
traffic operators at run-time.

We evaluate our approach by introducing a library of traffic

1Contracts are a classical concept from programming languages used to
understand preconditions and postconditions of programs, which we generalize
to input and output flow conditions of traffic components here.



components to build modular traffic network models and by
implementing it in a component-based model analysis and
design tool for traffic networks. The tool checks for correct
composition of the higher-level composite model to ensure that
the presented proofs about its components reunite to a large
safety proof about the network.

II. RELATED WORK

We discuss related work in component-based modeling,
traffic modeling and traffic management. We briefly describe
each approach before we summarize comparisons to our work.

A. Component-based CPS Modeling and Verification

The most closely related approach is proposed by Damm
et al. [3], who present a component-based design framework
for controllers of hybrid systems focused on propagation of
alarms when stability or safety constraints are violated. How-
ever, they are restricted to alarm propagation and use Lyapunov
functions to ensure system stability. Simko et al. [4] propose a
modeling formalism for the physical fragment of CPS compo-
nents and their electrical or mechanical entanglement. Ringert
et al. [5] model the discrete behavior of CPS as Component
and Connector (C&C) architectures using automata. Although
models of single components can be verified, they provide no
guarantees about verified compositions. Peter and Givargis [6]
describe components through behavior, interfaces, and meta
information. Their method does not focus on inferring system
correctness from verified component safety.

A field closely related to component-based verification
is assume-guarantee reasoning (AGR), which was originally
intended as a device to counteract the state explosion prob-
lem in model checking by decomposing a verification task
into subtasks. In AGR, individual components are analyzed
together with assumptions about their context and guarantees
about their behavior (i. e., a component’s “contract”). Various
approaches (e. g., [7], [8]) have been proposed, but are often
limited to linear dynamics, abstract away continuity or rely on
reachability analysis, over-approximation and model checking.

In summary, only few component-based approaches handle
generic CPS with both discrete and continuous aspects. The
few existing ones do not focus on the impact on formal verifi-
cation and theorem proving to reason about local correctness
properties of components that together contribute to global
system correctness properties. Furthermore, few approaches
consider the additional properties that are necessary to ensure
a verified composition of verified components and the conse-
quences of component-based modeling for proofs.

B. Traffic Models

Theoretical considerations about traffic and traffic models
(e. g., [9]) have been used for various tasks like transportation
planning [10] or simulation [11]. Models from various fields,
like swarm dymanics (e. g., [12]), or queuing theory (e. g., [13])
can be found in the literature. Traffic models are often distin-
guished into microscopic- and macroscopic models (e. g., [10],
[12]). Microscopic models deal with the behavior of single
cars and usually comprise position and velocity of individual
entities. In contrast, in macroscopic models the behavior of
individual vehicles is ignored in favor of sizable aggregates of

many vehicles. In other words, macroscopic models consider
traffic as an effectively one-dimensional compressible fluid,
which inspired the flow components in this paper.

First beginnings of macroscopic traffic flow analysis on
highways are derived from photographic observations as de-
scribed by Greenshields who analyzed flow, density and veloc-
ity of highway traffic [9]. Lighthill and Whitham [14] proposed
a flow model based on kinematic waves in long rivers, stating
that there exists a relation between the flow and density within
a fluid. Together with the work of Richards [15] who proposed
a similar traffic flow theory, this led to the LWR traffic model.
Lebacque et al. [16] introduced a natural extension of the LWR
model with behavioral attributes of individual cars and drivers,
encompassing many other macroscopic models.

Daganzo [17] and Yperman et al. [18] split a traffic network
into components. Unlike our symbolic and hybrid approach,
they use numerical calculations to compute flows and loads
throughout the network for discrete time steps.

Loos et al. [1] verified that cars equipped with automatic
cruise control will never crash, using a hybrid microscopic
model of a set of individual cars. We however, focus on macro-
scopic models, which allow predictions beyond individual cars
to a flow of multiple cars.

Traffic modeling is quite related and a plethora of different
models can be found in literature. Although traffic models
have become more and more sophisticated (e. g., using partial
differential equations) most are solely continuous and do
not consider verification. However, especially their hybrid
properties play an important role in traffic control (e. g., flow
influenced by traffic lights), which is why we propose a veri-
fication method for hybrid traffic models with a macroscopic
flow-based continuous part and a discrete controller.

C. Intelligent Traffic Management Systems

Systems assisting operators in managing road traffic
come from different research areas like situation-awareness
or knowledge management. Situation-awareness approaches
(e. g., [19]) try to predict the evolution of the traffic situation
by projection of the evolution of single traffic objects (e. g.,
traffic jams) and their interactions. Knowledge management
systems (e. g., [20]) support operators in their decision pro-
cess by providing (situation-dependent) expert knowledge. Our
approach of using component-based hybrid system models of
traffic networks to reason about their safety properties acts as
a complementary tool to provide evidence on the correctness
of such systems, as verification had not been addressed so far.

III. TRAFFIC CONTROL

Traffic networks are safety-critical CPS, in which motion
of cars along roads is continuous, while the traffic control
is discrete (e. g., traffic lights change their state discretely).
Hybrid system models of traffic networks can be used for
various purposes, such as calculating approximate travel times,
network planning or prediction of traffic breakdowns2. We
focus on macroscopic traffic models for large networks, as used

2A traffic breakdown occurs when traffic load (i. e., queue in a link) exceeds
capacity (i. e., maximum queue size) [21]. Variations of exact definitions of
traffic breakdown exist in the literature (e. g., [22, 23]).
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Figure 1: Cyber-Physical Traffic Flow Components

by traffic operators in control centers to monitor and influence
road traffic. Poor decisions in traffic centers can imply serious
consequences for road traffic: e. g., congestion caused by a
misplaced road-block can propagate to a highway, where large
speed differences increase the risk of accidents.

Traffic management systems intend to support operators by
suggesting actions, which presumably entail desirable results
(e. g., congestion dissolves) and avoid undesirable side effects
(e. g., traffic breakdowns). The goal in this paper is to check for
a potential traffic breakdown. We consider a traffic breakdown
as any kind of congestion that is not restricted to a single part
of the road network, but propagates through it, which happens
as soon as the load of cars in front of any intersection (i. e., the
queue in a link) exceeds the road’s capacity (i. e., maximum
queue size). Consequently, the safety property that we want to
verify is that no road will exceed its capacity.

Unfortunately, due to the complex structure of larger traffic
networks, the respective hybrid system models become large,
consisting of innumerable roads and intersections, which all
have to be checked for potential breakdowns. However, typical
traffic networks are formed from only a small number of traffic
control patterns, such as traffic lights or intersections. Fig. 1a
shows how to extract sample patterns from a traffic network
(we focus on traffic lights, split and merge, similar to [17]
and [18]). Their structural similarity makes them amenable to
component-based modeling. Thus, we represent each pattern
as a traffic component with a separate hybrid system model (cf.
Fig. 1b) consisting of: (i) one or more roads where vehicles
can enter the component (i. e., In), (ii) one or more roads where
vehicles can exit the component (i. e., Out), (iii) the maximum
number of vehicles that can pass through the road in a given
time (i. e., imax, number of vehicles per time unit), which is
usually restricted by physical characteristics (e. g., number of
lanes or speed limits), (iv) the maximum number of vehicles
that pass through the output in a given time (i. e., omax, number
of vehicles per time unit), (v) the actual number of vehicles
present on the corresponding input at some point in time (i. e.,
current queue in link l) and (vi) the number of vehicles allowed
on an inflow without exceeding the infrastructural limits (i. e.,
maximum queue size c, number of vehicles), which usually
depends on environmental characteristics (e. g., a long stretch
of road with several lanes vs. a short single lane). In order
to build the entire network from these components, we need
a composition operation (cf. Fig. 1c). Sequential composition
of two traffic components represents consecutive parts of the
traffic network: cars leaving the first traffic component move
on as inputs to the second traffic component.

As we want to avoid traffic breakdowns, we still have to
show that load never exceeds the capacity throughout the traffic
network. Although this is impractical for large networks, it can
be done for single components. However, we have to make sure
that the properties of single traffic components transfer to their
composition. If this is guaranteed, it suffices to decompose
a traffic network into components, verify that no breakdown
occurs in each component, rebuild the network using the safe
components and obtain an overall breakdown-free model. In
Section IV we formally define the foundations for such a
component-based modeling and verification approach.

IV. COMPONENT-BASED FLOW VERIFICATION

This paper considers traffic network properties abstractly
as capacity, load and flow. As a main safety property, we
are interested in proving that, given certain initial conditions
and bounds, the network does not exceed its capacity for a
designated time. In this section, we define flow components
and their properties. Then we define composition operations to
connect flow components to form composite flow components
which retain the properties of their individual parts.

A. Flow Components

We model (traffic) networks as directed graphs G of
vertices V and edges E. The concrete behavior of a flow com-
ponent is described by its hybrid systems model (Section V).
Its abstract role in the traffic network is merely a vertex (cf.
Fig. 1b), which takes flow from a set of input edges and directs
it to a set of output edges, each having a maximum flow.
The inputs furthermore have a capacity and a load which is
influenced by the in- and outflows. A controller in the flow
component decides how flow from the inputs is directed to
outputs. Def. 1 gives a definition of flow components according
to the pattern described in Section III.

Definition 1 (Flow Component): Let E be the set of all
edges. A flow component F is defined as a tuple

F = (In,Out, imax, omax, l, c) where

• In ⊆ E is a finite ordered set {In1, . . . , Inn} of n input
names.

• Out ⊆ E is a finite ordered set {Out1, . . . ,Outm} of m
output names.

• imax : In → R+ is a function assigning a non-negative
maximum inflow to each input in In. We lift to ordered
sets as follows imax(In) = {imax (In1) , . . . , imax (Inn)}.



• omax : Out → R+ is a function assigning a non-
negative maximum outflow to each output in Out.
We lift to ordered sets as follows omax(Out) =
{omax (Out1) , . . . , omax (Outm)}.

• c : In→ R+ is a function assigning a maximum capacity
(i. e., maximum manageable load) to each input in In. We
lift to ordered sets c(In) = {c (In1) , . . . , c (Inn)}.

• l :
(
In,R+,R+, (R+)

m)
→ R+ is a function calculating

the load (i. e., capacity used) of an input depending on
the current time, the inflow imax and all outflows omax.

B. Safe Flow Components

Here, we define contracts that must hold to ensure that a
flow component does not exceed the capacity of its inputs.
These contracts are conditions on the maximum inflows,
outflows, capacities and loads of a component, as well as on
the time that has passed. Outputs of a component do not need
a capacity, because they are included in the input capacities
of subsequent components. The actual flow to and from a
component can vary between 0 and the provided maximum
flow values. Safe uses of a traffic flow component need to
ensure that, within a given time horizon, the load on any input
never exceeds the capacity of the input (cf. Def. 2).

Definition 2 (Load Safety): A flow component is
load-safe for time t, if and only if its load l does not
exceed the capacity c of any of its inputs until time t:

∀Ini ∈ In . l
(
Ini, t, imax (Ini) , omax(Out)

)
≤ c (Ini) .

C. Safe Sequential Composition of Flow Components

After defining safe components, we want to compose them
in a way that remains safe. A sequential composition of two
flow components links one or more outputs of the predecessor
component to the same number of inputs of the successor
component (cf. Fig. 1c and Def. 3). We focus on loop-free
composition, since cyclic flows are undesirable in road traffic.
When there are loops present in a traffic network, we focus
on paths between a source and a destination point (e. g., the
beginning and end of an area of road work) and analyze the
resulting sequential paths (cf. Fig. 1a).

Definition 3 (Sequential Composition): Let

F s = (Ins,Outs, ismax, o
s
max, l

s, cs) , for s ∈ {1, 2}

be flow-components, with disjoint inputs and outputs (i. e.,
In1 ∩ In2 = Out1 ∩ Out2 = ∅) and C : Out1 ⇀ In2 be a
partial (i. e., not every output must be mapped when connecting
two components), injective (i. e., every input is only mapped to
one output upon connection of components) function, mapping
connected outputs and inputs between the two components. We
define O as the domain of C (i. e., all values x ∈ Out1 such
that C(x) is defined) and I as the the image of C (i. e., all
values y ∈ In2 such that y = C(x) holds for some x ∈ Out1).

We define the sequential composition F 3 = F 1
�
C F 2

of flow components F 1 and F 2 by connecting outputs of F 1

to inputs of F 2 according to a function C, with |O| > 0, where

F 3 =
(
In3,Out3, i3max, o

3
max, l

3, c3
)

with

• In3 = (In2 \ I) ∪ In1

• Out3 = Out2 ∪ (Out1 \ O)

• n3 =
∣∣In3

∣∣ = ∣∣In1
∣∣+ ∣∣In2

∣∣− |C| and
m3 =

∣∣Out3
∣∣ = ∣∣Out1

∣∣+ ∣∣Out2
∣∣− |C|

• i3max : In→ R+, with
∀Ink ∈ In1 . i3max(Ink) = i1max(Ink) and
∀Inl ∈ In2 ∩ In3 . i3max(Inl) = i2max(Inl)

• o3max : Out→ R+, with
∀Outk ∈ Out1 ∩ Out3 . o3max(Outk) = o1max(Outk) and
∀Outl ∈ Out2 . o3max(Outl) = o2max(Outl),

• l3 :
(
In,R+,R+, (R+)

m3
)
→ R+, with

∀Ink ∈ In1 . l3
(
Ink, t, i

3
max (Ink) , o

3
max(Out1)

)
= l1

(
Ink, t, i

3
max (Ink) , o

3
max(Out1)

)
and

∀Inl ∈ In2 ∩ In3 . l3
(
Inl, t, i

2
max (Inl) , o

3
max

(
Out2

))
= l2

(
Inl, t, i

2
max (Inl) , o

3
max

(
Out2

))
• c3 : In→ R+, with ∀Ink ∈ In1 . c3(Ink) = c1(Ink) and
∀Inl ∈ In2 ∩ In3 . c3(Inl) = c2(Inl) .

The composition of two flow components is not necessarily
again a flow component: A composite flow component further
needs a guarantee that the connected—and thus hidden—inputs
of the second flow component do not overflow.

Definition 4 (Composite Flow Component): The sequen-
tial composition F 1

�
C F 2 (Def. 3) of two flow components

F 1 and F 2 is called a flow component, if and only if

∀x ∈ O . y = C(x)→ l2
(
y, t, o1max (x) , o

2
max

(
Out2

))
≤ c2 (y) .

Load-safety for composite flow components is defined as
in Def. 2. An easier sufficient (even if not necessary) criterion
for a composite to be load-safe is presented in Theorem 1.

Theorem 1 (Load-safe composition): Let F 1 and F 2 be
flow components, F 3 = F 1

�
C F 2 their sequential com-

position and t any point in time. Then F 3 is a load-safe flow
component for time t, if

1) F 1 and F 2 are load-safe at time t and

2) ∀x ∈ O . y = C(x)→ o1max (x) ≤ i2max (y).

Theorem 1 (proof available online3) implies that it is suf-
ficient to check o1max (O) ≤ i2max (I) for all connected pairs
of ports to ensure that a composition of load-safe components
is load-safe. This is crucial, as it provides a purely arithmetic
condition that can easily be checked by a modeling tool at
run-time, even for a large number of components.

V. VERIFIED TRAFFIC FLOW COMPONENT LIBRARY

To show the applicability of our work, we develop a
library of traffic components consisting of (i) a traffic light,
(ii) a traffic flow merge component, which merges two roads
into one road and (iii) a traffic flow split component, which
splits a road into two roads, and model and verify that their

3http://www.tk.jku.at/people/mueller/publications/itsc15/



high-fidelity hybrid systems dynamics satisfies their safe flow
contracts. These components can already be used to model a
good deal of actual road networks, as they can be combined
to form larger components (e. g., n-way merges and splits).
Fig. 1a shows a snippet of a road map, modeled using only
these three traffic components.

To allow modeling of traffic with a flow model, we assume
that all vehicles are of uniform size and similar behavior.
We do not yet account for changes in driver behavior due
to changes in flow (e. g., during congestion), but we consider
changes in route preferences through nondeterministic flow
ratios in components with multiple outflows. Note that, while
we consider an arbitrary positive inflow bound by imax, we
assume that outflow from a component is maximal (i. e., omax
as long as l > 0 and equal to the current inflow otherwise),
since we expect drivers want to pass through the network as
fast as possible. We map the members of a flow-component F
to a part of the road network as proposed in Section III.

As modeling formalism for the internal dynamics of traffic
flow components we use differential dynamic logic (dL), which
is a first-order dynamic logic for hybrid programs, a program
notation for hybrid systems [24]. Such dL models can be
verified using the tool KeYmaera [25], which is open source
and has been applied for verification of several case studies4.
We provide the models and proofs for the traffic components
online3, and integrated as projects into KeYmaera.

A. Traffic Light Component

We define a traffic light as a stretch of road, having two
states, namely red and green (the orange state is ignored here,
since it is just a heads-up for red). If the traffic light is red, no
flow along the road is possible and vehicles start to queue up
at the traffic light. Upon switching to green, the vehicles start
to flow away from the traffic light as fast as possible. This
represents a simplification of the actual behavior of vehicles
in front of a traffic light, which usually brake and accelerate
slowly, resulting in so called shock-waves [15]. We consider a
basic traffic light with equally long red and green cycles and
with parametric cycle length Tc ∈ R+. Extension with different
phases and timings is possible, but not discussed here.

A traffic light component has a single inflow (n = 1) and a
single outflow (m = 1), which are separated through a traffic
light. The hybrid program of the traffic flow at a traffic light
tl with a constant cycle length Tc can be found in Model 1.

Model 1 Traffic flow in a traffic light

tl ≡ (ctrltl; planttl)
∗ (1)

ctrltl ≡ if (tc = Tc) then tc := 0; go := (go− 1)2 fi (2)
iact := ∗; ?(0 ≤ iact ≤ imax); (3)
if (l > 0) then oact := omax (4)
else oact := min(iact, omax) fi; (5)

planttl ≡ l′ = iact − oact · go, t′ = 1, t′c = 1 (6)
& tc ≤ Tc ∧ l ≥ 0 (7)

4c.f. http://symbolaris.com/info/KeYmaera.html

In Model 1, go is the status of the traffic light (i. e., red is
0, green is 1), Tc is the length of a red- and a green-cycle and
tc is the timer measuring the cycle length. The variables l, imax
and omax represent the load, maximum inflow, and maximum
outflow as per Def. 1, while iact and oact are the actual flows.
The model consists of a discrete controller and a continuous
plant, which are repeated a non-deterministic number of times
(1). In (2) we check whether or not the timer measuring the
cycle length has been running for exactly Tc units of time,
(i. e., the traffic light status has not changed within the last
Tc units of time). If so, we reset the timer tc and toggle the
traffic light status in (2). In (3) we set the actual inflow non-
deterministically to be between 0 and imax. In (4) and (5) we
set the actual outflow depending on the current load. Outflow
is set to maximum if the load is positive; otherwise the outflow
is determined by the inflow, but still restricted by omax. The
continuous evolution in (6) and (7) linearly increases time t
and the traffic light timer tc, and runs at most for Tc units
of time and while the load l is non-negative. Furthermore, it
updates the load l by actual flows iact and oact depending on
the traffic light status go.

Proposition 1 (Traffic Light Load Safety): We want the
traffic light to be load-safe in order to avoid an overflow which
would result in a traffic breakdown. A flow component with
one input and one output is load-safe per Def. 2 if

l (In1, t, imax (In1) , {omax (Out1)}) ≤ c (In1) .

Thus, a traffic light is safe (ψtl) if it is load-safe for up to a
maximum time T .

ψtl ≡ (t ≤ T → l ≤ c)

When started in a safe initial state φtl, the traffic light compo-
nent tl ensures load safety ψtl

φtl → [tl]ψtl (8)

where

φtl ≡ t = 0 ∧ 0 ≤ tc ≤ Tc ∧ Tc > 0 ∧ T > 0 ∧ l = 0

∧ c ≥ max(Tc · imax, T · imax −max

(
0, omax ·

T − Tc

2

)
)

∧ 0 ≤ imax ∧ 0 ≤ omax ∧ go · (go− 1) = 0 .

The dL formula in (8) expresses that all runs of the traffic
light model tl, when started in states where φtl is true, reach
states where ψtl is true. We proved Proposition 1—i. e., dL
formula (8)—using KeYmaera. The theorem prover enforces
to find correct conditions φtl and ψtl, which are non-trivial, but
necessary to successfully verify the models.

Infinite time: If we want the traffic light to be load-safe
forever, we need to increase T towards infinity. As a result,
we can obtain a traffic light component that is safe for infinite
time when omax ≥ 2 · imax.

B. Traffic Flow Merge Component

A traffic flow merge component is defined as two roads
with certain maximum inflows and capacities, which merge
into one road. Accordingly a traffic flow merge component
has two inflows (n = 2) and only one outflow (m = 1). In a
microscopic modeling view, vehicles can only pass from one



input road through the component. With a macroscopic view,
flow can merge from two inputs onto one output at the same
time. Here, hybrid programs allow us to talk about both views
at the same time: a discrete jump in the controller chooses the
flow ratio between the two roads nondeterministically. If the
controller chooses only the boundary values (0 or 1), then the
model describes a microscopic per vehicle view; otherwise it
describes a macroscopic flow view.

Model 2 Traffic flow in a traffic flow merge component

tfm ≡ (ctrltfm; planttfm)
∗ (9)

ctrltfm ≡ road := ∗; ?(0 ≤ road ≤ 1); (10)
i1act := ∗; ?(0 ≤ i1act ≤ i1max); (11)
i2act := ∗; ?(0 ≤ i2act ≤ i2max); (12)
if (l1 > 0 ∨ l2 > 0) then oact := omax (13)
else oact := min(i1act + i2act, omax) fi; (14)

planttfm ≡ l1′ = i1act − oact · (1− road), t′ = 1, (15)
l2′ = i2act − oact · road & l1 ≥ 0 ∧ l2 ≥ 0 (16)

In Model 2 road selects the ratio of flow directed from
inflows to the outflow. The variables l1, l2, i1max, i2max and
omax represent the loads, maximum inflows, and maximum
outflow as per Def. 1. In (10) the flow ratio is changed. If
road = 0, all flow from the first input is directed to the output
while the second input is blocked, if road = 1, all flow comes
from the second input. In (11) to (14) we again set the actual
flows. The continuous evolution in (15) and (16) increases time
t linearly and updates the loads l1 and l2 by actual flows i1act,
i2act and oact depending on the current road distribution.

Proposition 2 (Merge Load Safety): We want the traffic
flow merge component to be load-safe in order to avoid an
overflow which would result in a traffic breakdown. A flow
component with two inputs and one output is load safe if

l (Ini, t, imax (Ini) , {omax (Out1)}) ≤ c (Ini) for i ∈ {1, 2} .

Thus, a traffic flow merge is safe (ψtfm) if it is load-safe for
up to a maximum time T :

ψtfm ≡
(
t ≤ T → (l1 ≤ c1 ∧ l2 ≤ c2)

)
.

A traffic flow merge component tfm ensures load safety ψtfm,
cf. (17), when started in a safe initial state φtfm (18).

φtfm → [tfm]ψtfm (17)

φtfm ≡ t = 0 ∧ 0 ≤ i1max ∧ 0 ≤ i2max ∧ 0 ≤ omax

∧ c1 ≥ T · i1max ∧ c2 ≥ T · i2max

∧ l1 = l2 = 0 ∧ 0 ≤ road ≤ 1

(18)

We used KeYmaera to verify that Proposition 2—i. e., dL
formula (17)—holds for the merge component of Model 2.

Infinite time: Infinite load safety for a traffic flow merge
component cannot be guaranteed for Model 2, because only
one single road could be active all the time. Thus, the other
road would require infinite capacity to be load-safe. Infinite-
time load safety requires a fairness condition in Model 2.

Fairness: Currently, each input of the traffic flow merge
component has to assume that the other input is active all
the time, which in turn means that none of them actually
ever assumes any outflow. To overcome this issues, one can
introduce a fairness criterion by means of a fairness factor
X that indicates the minimum rate of the outflow that is
guaranteed for each of the inputs. That way, each input
can assume at least some outflow. Additional information
about introducing fairness criteria into the traffic flow merge
component is available online3.

C. Traffic Flow Split Component

A traffic flow split component is defined as a road having
a certain maximum inflow and a capacity, which splits into
two roads. Accordingly a traffic flow split component has one
inflow (n = 1) and two outflows (m = 2). Akin to the merge
component, a discrete jump in the controller chooses the flow
ratio between the two roads nondeterministically.

Model 3 Traffic flow in a traffic flow split component

tfs ≡ (ctrl; plant)∗ (19)
ctrltfs ≡ iact := ∗; ?(0 ≤ iact ≤ imax); (20)

road := ∗; ?(0 ≤ road ≤ 1); (21)
if (l > 0) then o1act := o1max; o2act := o2max (22)
else o1act := min(iact, o1max); (23)

o2act := min(iact, o2max) fi; (24)
planttfs ≡ l′ = iact − o1act · (1− road)− o2act · road, (25)

t′ = 1 & l ≥ 0 (26)

In Model 3, l, imax, o1max and o2max represent the load,
maximum inflow, and maximum outflows as per Def. 1. The
actual inflow is set in (20). The variable road selects the flow
distribution to the outflows and is changed in (21). In a sense,
it models expected driver preferences: If road = 0 then all flow
is directed to the first output, if road = 1 to the second output.
Then, in (22)–(24) the outflows are adjusted depending on
the load. For example, consider a highway exit where drivers
prefer to exit instead of following the mainline, so that a queue
builds up on the mainline upstream from the exit (l > 0). The
model captures the exit preference with a choice of road close
to one. Even though in this case the mainline downstream of
the exit could have o1max outflow in theory, it will only produce
o1max · (1 − road) flow, cf. (25). When there is no queue on
the mainline (l ≤ 0), in (23) to (24) we simply distribute the
inflow (again obeying the maximum possible outflows). The
continuous evolution in (25) and (26) linearly increases time
t and updates the load l by actual flows iact, o1act and o2act
depending on the flow ratio.

Proposition 3 (Split Load Safety): We want traffic flow
split components to be load-safe in order to avoid an overflow
which would result in a traffic breakdown. A flow component
with one input and two outputs is load-safe per Def. 2 if

l (In1, t, imax (In1) , {omax (Out1) , omax (Out2)}) ≤ c (In1) .

Thus, a traffic flow split component is safe ψtfs if it is load-safe



for up to a maximum time T .

ψtfs ≡ (t ≤ T → l ≤ c)

When started in a safe initial state φtfs, the traffic flow split
component tfs ensures load safety ψtfs

φtfs → [tfs]ψtfs (27)

where

φtfs ≡ t = 0 ∧ T > 0 ∧ 0 ≤ imax ∧ 0 ≤ o1max ∧ 0 ≤ o2max

∧ c ≥ max
(
0, T ·

(
imax −min (o1max, o2max)

))
∧ l = 0 ∧ 0 ≤ road ≤ 1 .

We used KeYmaera to verify that Proposition 3—i. e., dL
formula (27)—holds for the component in Model 3.

Infinite time: If we want the intersection to be load-
safe forever, we need to increase T towards infinity. This way
we can obtain that a traffic flow split component is safe for
infinite time, if o1max ≥ imax ∧ o2max ≥ imax.

VI. SAFE-T MODELING TOOL

To evaluate our traffic flow component library, we imple-
mented a prototypical modeling tool (SAFE-T, i. e., Safety
Analysis Flow-component Editor for Traffic networks3) for
traffic network configuration. SAFE-T lets traffic operators
instantiate and compose traffic components, and automatically
check load-safety of the resulting network using the criteria of
Propositions 1–3. The respective properties (e. g., capacities,
flows) can be set according to environmental features (e. g.,
number of lanes) and traffic situations (e. g., flows differ from
rush hour to off-peak times).

In order to form a traffic network from our traffic compo-
nent library, the modeling tool uses the sequential composition
operation as defined in Section IV-C. It checks the arithmetic
conditions (cf. Theorem 1) and highlights connections where
the maximum outflow would have been too large with a
“(!)”. Additionally, since sequential composition of two traffic
components means that the components represent consecutive
parts of the traffic network, the tool sets the flows of connected
In and Out to the minimum of the respective imax and omax.
Because SAFE-T checks this and all traffic components pre-
sented above are proven load-safe in KeYmaera, we know that
their composition in the whole network is again load-safe.

The toolbar at the top of the tool provides access to the
component library (cf. V) to form a network graph (i. e., traffic
light, merge and split). A dedicated start component without
inputs supplies constant flow on a single output, whereas an
end component without outputs consumes flow. The time slider
at the bottom of the screen sets the current time t used in
calculations. When a component is selected, the left part of the
work area visualizes input load over time in a load graph per
input, and allows adaption of the component properties (e. g.,
name, flows). For each input, the tool prints the loads wrt. the
selected time and capacities above the respective components.

Furthermore, the tool allows analysis of spillback (i. e.,
overflow propagation) within the network, where we assume
that as soon as an overflow in a component occurs (i. e., as
soon as the load reaches the capacity, or to put it another way,

Component
Properties

Load Graph

Time Slider

Network Graph

Analysis
Panel

Name C1
i_max 1.0
o_max 1.0

…

t=7: 
OVERFLOW@‘C1‘

load=10.0
…

Figure 2: Screenshot with illustrations, showing a
SAFE-T traffic model of an actual highway exit in Austria

as soon as the queue is no longer limited to the component
at hand, but spills back to the preceding component) all
inflow and outflow of this component is reduced to zero,
thus changing the behavior of connected components and
propagating the overflow through the network. The analysis
panel contains a list of overflow events, ordered ascendingly
by time. When selecting a list entry, the respective component
is highlighted red and all components affected by the overflow
(i. e., all connected components, as their flows to respectively
from the overflown component are reduced to zero) become
yellow. This way, the user can not only see at which point in
time an overflow occurs, but also how this overflow propagates
through the network and reaches a point of interest (e. g., when
does a traffic jam caused by a road block reach the highway).

The example in Fig. 2 (tool and examples available on-
line3) shows the model of a highway exit in Austria, created
using only components presented in this paper (and additional
start/end components). By moving the time slider, one can
see how the load within the different components changes or
which component produces an overflow. On the right hand
side, the analysis panel is displayed and the selected traffic
light component, producing an overflow after 7 units of time
for the configuration at hand, is highlighted in red. This
leads to a reduction of flow to zero in the two connected
components, which are highlighted in yellow. The advantage
of our approach is that the safety of the overall system can
be derived from properties of the single components, because
the behavior of the components, as well as their compositions
are verified. Also the flow values can be adapted depending on
current events (e. g., rush hour) by changing certain parameters,
without remodeling the entire network.

VII. CONCLUSION AND FUTURE WORK

We presented a component-based modeling and verification
approach for (traffic) flow in (road) networks that can be used
to reduce verification complexity of CPS models. The approach
uses two modeling levels: (i) high-fidelity flow models,
which define the hybrid system behavior of flow components,
and (ii) higher-level specifications to build a large network
from provably correct components. We further presented the



modeling tool SAFE-T for composition of verified traffic
flow components. SAFE-T supports automatic checking of the
derived arithmetic conditions to ensure safety of the overall
traffic network and to analyze the propagation of overflows.
The tool can be (i) enhanced with further flow components,
(ii) adapted for different flow-based CPS application areas and
(iii) extended to check further constraints (e. g., actual flow).

Our current approach is a first step towards a proof-aware
model composition approach, focused on flow-based CPS
considering maximum flow values and simplified continuous
dynamics. This paves the way for multiple further research
directions: (i) extend component definitions with actual
flow, (ii) extend models to consider traffic phenomena (e. g.,
shock-waves), (iii) consider models with loops, (iv) include
further composition operators (e. g., delayed flow propaga-
tion), (v) introduce further traffic components (e. g., multi-lane
merge/split), (vi) explore methods to automatically transform
road network graphs into components and compositions, and
(vii) generalize to non-flow types of components.
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