
Model-Driven Co-Evolution for Agile Development
J. Schönböck

Upper Austrian University of Applied
Sciences, Hagenberg, Austria

Email: johannes.schoenboeck@fh-hagenberg.at

J. Etzlstorfer, E. Kapsammer, A. Kusel,
W. Retschitzegger, and W. Schwinger

Johannes Kepler University Linz, Austria
Email: {firstname.lastname}@cis.jku.at

Abstract—In agile Model-Driven Engineering, the evolution of
diverse software artifacts is omnipresent. Especially the evolution
of metamodels, defining the grammar of, e.g., Domain Specific
Languages, is quite challenging, since many dependent artifacts,
including models and transformations, have to be co-evolved to
re-establish consistency. Although much research effort has been
spent to automate co-evolution, crucial issues remain open and a
systematic survey of the state of research across different domains
is still missing. This paper provides an extensive survey evaluating
various co-evolution approaches also from areas in software
engineering like data, ontology, and grammar engineering on
basis of a detailed set of criteria serving as a research roadmap for
further developments in the area of co-evolution for agile MDE.
Based on these results, a conceptual co-evolution framework
is presented and illustrated by a running example especially
targeting a decrease in co-evolution effort, an increase in co-
evolution consistency, and an advance in extensibility.

I. INTRODUCTION

To cope with the ever increasing complexity of software
systems, Model-Driven Engineering (MDE) proposes an ex-
tensive use of models to conduct software development on a
higher level of abstraction [5], followed by a systematic trans-
formation of these models into code, in order to improve the
efficiency and effectiveness of the overall system development
[1]. Consequently, MDE considers models no longer as mere
blueprints as often done in traditional software engineering,
but employs models as a more abstract view on the source
code. Analogous to the trend of agile software development,
agile MDE1 has emerged recently. Thereby, the main idea is
to model not the whole software system at once but to rather
continuously evolve the models depending on the users’ needs,
making agile MDE a technique that perfectly fits into agile
process frameworks as e.g., Scrum. Thus models are used
from the very beginning of development, e.g., evolutionary
prototyping, and continued to be used throughout the whole
software development process. Consequently, a proper support
for evolution is indispensable in agile MDE.

Whereas changes in the models may be handled, e.g.,
by re-running a code generator, changes in the underlying
metamodels, which represent the grammar of a modeling
language [48], exhibit special challenges due to its crucial
role in MDE. However, metamodels are subject to constant
evolution [20], [24], [39], due to needs for (i) adaptation
caused by changing software environments, (ii) perfection

This work has been funded by BMVIT under grants FFG BRIDGE 832160
and FFG FIT-IT 825070 and 829598, FFG Basisprogramm 838181, and by
ÖAD under grant AR18/2013 and UA07/2013.

1http://www.agilemodeling.com

induced by user requirements, or (iii) correction because of
errors [31], especially if used for defining Domain Specific
Languages (DSLs) as, e.g., AUTOSAR2, which is employed
in the automotive industry. This is especially the case if
the DSL is still under development (using agile software
process models). The crucial issue arising from metamodel
evolution is that a tremendous number of dependent artifacts,
e.g., models or transformations, may become inconsistent. The
challenge is to keep the metamodels and all dependent artifacts
consistent, i.e., it has to be ensured, that despite evolution
of the metamodel, different kinds of relationships remain
valid. Thus, an evolution of the metamodel inevitably requires
automatic co-evolution of dependent artifacts to successfully
employ agile MDE (cf. Fig. 1).

Although much research effort has been spent to automate
co-evolution, crucial issues remain open and a systematic sur-
vey of the state of research is still missing. Consequently, this
paper provides first, an extensive survey evaluating a variety of
co-evolution approaches also from areas in traditional software
engineering like data, ontology, and grammar engineering on
basis of a detailed set of criteria. This survey is intended to
serve also as a research roadmap for further developments in
the area of co-evolution for agile MDE by identifying strengths
and shortcomings of existing approaches. Second, based on
these results, a conceptual co-evolution framework is presented
and illustrated by means of a running example especially
targeting a decrease in co-evolution effort, an increase in co-
evolution consistency, and an advance in extensibility.

The structure of this paper is as follows. Section II presents
challenges in metamodel co-evolution building the basis for a
detailed evaluation of the current state of research in Section
III. Based on the results, Section IV proposes our vision of
a co-evolution framework. Finally, Section V concludes the
paper by reporting on the expected contributions.

II. CHALLENGES IN METAMODEL CO-EVOLUTION

For illustrating evolution from a MetamodelV 0 to a
MetamodelV 1 and co-evolution of dependent artifacts, Fig. 1
shows an imaginary, but still realistic DSL, used throughout
the paper, since despite its simplicity, a number of challenges
must be overcome in co-evolving dependent artifacts. Dur-
ing evolution, class Type has been extracted from attribute
Car.type resulting in the classes Car and Type with
the new reference Car.type in between. Thus, dependent

2http://www.autosar.org/

Dependent
ArtifactsV0

Dependent
ArtifactsV1

Co‐Evolution

type
1..1

Type
type: String

Car
name: String

MetamodelV0 MetamodelV1

Evolution

Car
name : String
type : String

Artifact Independent
Co‐Evolution

3

Explication of
Propagation
Semantics

1

Profound Impact Analysis
2

Model

Transformation

Concrete
Syntax… …

consistent with

consistent with

Fig. 1. Challenges in Co-Evolution

artifacts referring to attribute Car.type are inconsistent with
MetamodelV 1. The challenges to re-establish consistency are
numerous and have been derived on the one hand from litera-
ture (cf. Section III) and on the other hand from shortcomings
identified by testing dedicated co-evolution approaches.

Challenge 1: Explication of Propagation Semantics.
A first challenge is to explicitly represent the co-evolution
semantics on a high level of abstraction, i.e., model-based
(cf. 1 in Fig. 1). This is essential since changes on the
metamodel do not necessarily determine a specific propagation
semantics. For example, for the extraction of class Type from
attribute Car.type, dependent models may either be co-
evolved by creating a Type instance for each Car instance
or by creating a Type instance for distinct values of the
attribute Car.type, only. The envisioned explication should
be modular, to foster reusability and extensibility and should
provide means to adapt the propagation semantics by the user,
independent of a concrete kind of artifact, as also confirmed
by an empirical study on the histories of two industrial meta-
models in [20]. The explication of the propagation semantics
is also key to allow for the co-evolution of diverse dependent
artifacts (cf. Challenge 3) and has also been identified in [46].

Challenge 2: Profound Impact Analysis. A second chal-
lenge is the prediction of unintended effects, e.g., information
loss, and propagation costs like manual effort before the
propagation has taken place, i.e., impact analysis, which has
been identified as a key feature in co-evolution already in, e.g.,
[4], [37] (cf. 2 in Fig. 1). This is essential in agile processes
to check, if the change is worth the expense. An interesting
question in the example might be, if the extraction of the
class Type may be automatically propagated to dependent
artifacts or if user-intervention is required. To allow for impact
analysis traceability between concepts of the metamodel and
concepts of the dependent artifacts is required. This traceabil-
ity, together with the explication of the propagation semantics,
should pave the way to estimate potentially occurring prob-
lems, e.g., changes that cannot be resolved automatically or
unintended effects such as information loss, and to estimate the
cost for propagation in terms of run-time and manual effort.

Challenge 3: Artifact-Independent Co-Evolution. Finally,
the third crucial challenge is to provide an artifact-independent
representation of the propagation semantics to ensure consis-
tency between artifacts, e.g., when extracting the class Type

in the example, models, transformations, and concrete syntax
have to be co-evolved following the same semantics (cf. 3 in
Fig. 1), as also stated in [39]. Furthermore, the representation
of the propagation semantics should be open for different
evolution tools (that deliver the actual changes that need to
be co-evolved) and also propagation languages (which are
capable to actually co-evolve a certain artifact).

III. STATE OF RESEARCH

Evolution in software development has been studied since
decades, ranging from Lehman’s laws for software evolution
[32], to refactoring operations [38], program comprehension
[50], or change impact analysis [35] to mention just a few.
However, the focussed topic of evolving metamodels and
co-evolving dependent artifacts, falling into the category of
coupled software transformations [28], still raises challenges,
that have not been adequately tackled up to now, hindering the
successful application of MDE in agile development processes.
In the following an extensive survey on the state of research
evaluating a variety of co-evolution approaches is presented.

A. Rationale behind Selection of Approaches

Subsequently, not only related work from the most closely
related area of MDE is discussed, but also complementary
approaches from data, ontology, and grammar engineering are
considered to obtain a comprehensive picture of the state of
research and to open up the opportunity to potentially adapt
promising related approaches for co-evolution in MDE. To
achieve comparability, the role of database schemas, XML
schemas, ontologies, and grammars is seen analogous to
that of metamodels and the role of relational tuples, XML
documents, ontology instances, and program code is seen
analogous to that of models. Similar analogies may be drawn
for other dependent artifacts such as transformations. Relevant
approaches have been chosen, in a first step by searching
digital libraries for dedicated surveys using the keywords
evolution and co-evolution. Additionally, the proceedings of
closely related conferences such as MoDELs3, or ICMT4 as
well as journals such as SoSym5 of the last 10 years have
been searched. Finally, relevant references stated in the found
papers have been followed in order to complete the overview
on the co-evolution research. Besides numerous approaches,
two dedicated surveys ([19], [44]) have been included in the
comparison. However, none of those investigated approaches
across different areas. Subsequently, approaches of the diverse
engineering domains are investigated in detail with respect to
the challenges described above (cf. Table I).

B. State-of-the-Art in Explication of Propagation Semantics

In a first step, related co-evolution approaches are examined
concerning which mechanisms are provided to explicate the
propagation semantics and to which respect modularity and
adaptability of propagation semantics is considered.

3ACM/IEEE International Conference on MDE Languages and Systems
4International Conference on Model Transforamtions
5Journal of Software and Systems Modeling

TABLE I
OVERVIEW ON EXISTING CO-EVOLUTION APPROACHES

Framework Name or Reference

M
e
ch
an

is
m

M
o
d
u
la
ri
ty

A
d
ap

ta
b
lit
y
o
f

P
ro
p
ag
at
io
n

Se
m
an

ti
cs

Tr
ac
e
ab

ili
ty

P
ro
b
le
m
 &
 C
o
st

Es
ti
m
at
io
n

M
o
d
e
ls

Tr
an

sf
o
rm

at
io
n
s

O
th
e
r
A
rt
if
ac
ts

(C
o
n
cr
e
te

Sy
n
ta
x,
 D
o
cu
, ,
…
)

[47] DSL N.A. (User‐defined) [Sprinkle2004]

MCL [40] DSL N.A. (User‐defined) [Narayanan2009]

MCL [34] DSL N.A. (User‐defined) [Levendovszky2010]

Epsilon Flock [45] DSL N.A. (User‐defined) [Rose2010]

[56] ATL Refinement Mode N.A. (User‐defined) [Wimmer2010]

[25] Graph Transformations N.A. (User‐defined) [Krause2013]

[36] Graph Transformations ~ Adaptable by User on Graph Transformation

Level [Mantz2013]

[15] ETL ~ Adaptable by User on Code Level [Gruschko2007]

[7] ATL [Cicchetti2009]

AML [11] ATL ~ Adaptable by User on Code Level [Garces2009]

[6] Java [Brand2011]

[12] ATL [Garces2013]

EMF Migrate [46] DSL
~ Change‐dependent

Libraries
~ Adaptable by User on DSL Level ~ Adaptation Cost Functions ~ GMF models

[Ruscio2013]

[13] ATL [Garcia2013]

[54] (QVT Relations [Wachsmuth2007]

COPE [21] Groovy, Java ~ Adaptable by User on Code Level [Herrmannsdoerfer2008a]

[39] Graph Transformations ~ Adaptable by User on Code Level [Meyers2011]

[26] Java [Kruse2011]

PRISM [8] SQL [Curino2008]

HECATAEUS [42] N.A. (Propagation Not Supported) ~ Visual Impact Graph [Papastefanatos2010]

MeDEA [10] SQL [Dominguez2008]

X‐Evolution [17] DSL ~ Adaptable by User on DSL Level ~
~ Invalid Documents are

Highlighted [Guerrrini2008]

XML Evolution Manager (XEM) [51] unknown [Su2001]

[29] XSLT [Laemmel2001a]

KAON [49] unknown
[Stojanovic2002]

Protégé [41] N.A. (Propagation Not Supported) [Noy2006]

TransformGen [14] DSL ~ Adaptable by User on Code Level [Garlan1994]

Lever [43] DSL ~ Adaptable by User on Code Level [Pizka2007]

Impact AnalysisExplication of Propagation Semantics Supported Artefacts
O
n
to
lo
gy

En
gi
n
e
e
ri
n
g

G
ra
m
m
ar

En
gi
n
e
e
ri
n
g

D
B

M
o
d
e
l E
n
gi
n
e
e
ri
n
g

D
at
a
En

gi
n
e
e
ri
n
g

X
M
L

Mechanism. In MDE, the vast majority of approaches
supports the actual propagation of changes [6], [7], [11]–[13],
[15], [21], [25], [26], [34], [36], [39], [40], [45], [47], [54],
[56], while a single approach [13] aims at helping the evolution
designer in the co-evolution process by annotating the possibly
affected elements that need to be co-evolved. However, only
five approaches [34], [40], [45]–[47] provide mechanisms to
explicate the propagation semantics by allowing the evolution
designer to access the propagation semantics on basis of
a DSL. However, although these explicate the propagation
semantics, the underlying semantics is typically hidden in a
low-level co-evolution script and can not be adapted by the
user, i.e., the DSL provides no means for extensibility and
adaptability (cf. below). The remaining approaches base on
the use of ordinary transformation languages.

Regarding relational databases, support for the explication
of the propagation semantics is not provided. Instead, the
propagation semantics are tightly coupled to the evolution
steps, which are typically described in SQL. In HECATAEUS
co-evolution is merely hypothetical, i.e., support for the actual
propagation is not provided. In the area of XML schema
evolution, no comprehensive co-evolution approach has been
developed so far. Thus, current approaches concentrate on
the provision of change operators for the evolution of DTDs
(cf., e.g., XEM [29], [51]) or XML schemas (cf., e.g., X-

Evolution [17]) and the co-evolution of XML documents as
dependent artifacts. Thereby only X-Evolution provides means
to explicate the propagation semantics in terms of a DSL.

In the field of ontology evolution, the KAON frame-
work [49] proposes an approach consisting of four phases,
being (i) change representation, (ii) determination of the
semantics of a change, (iii) implementation, and (iv) prop-
agation. The first two phases focus on the representation of
the actual evolution of the ontology, only. However, only the
changes but not the actual co-evolution semantics is made
explicit to the user. In contrast to KAON, other approaches
such as Protégé [41] typically concentrate on the evolution of
the ontology, only but do not provide means for co-evolution
of dependent artifacts.

Concerning grammar engineering, the Lever approach [43]
and the TransformGen approach [14] support the explication
of the propagation semantics on basis of dedicated DSLs.

Modularity of Propagation Semantics. To allow for
reusability and composition of propagation semantics, which
is crucial when dealing with various artifacts, modularity is of
great interest. Although many of the approaches in the area
of MDE distinguish between atomic and composite changes
on the metamodel and thus, allow for modularity on the level
of changes, the propagation semantics is typically specified in
a monolithic manner. Only some approaches [34], [40], [45],

[47] provide basic modularity mechanisms such as functions
or facilities to create libraries of adaptation rules for each
kind of dependent artifact, such as EMFMigrate [46]. These
adaptation rules may build on each other by two dedicated
keywords, being refine, which allows to describe the se-
quential execution of rules, and replace, which allows to
overwrite the propagation semantics of an existing adaptation
rule. Each adaptation rule, however, is bound to a specific
change. Consequently, reuse of propagation semantics across
the boundaries of changes is not supported.

Regarding relational databases, none of the investigated
approaches support modularity of propagation semantics. In
the area of XML schema evolution, in [18] a set of atomic
evolution operations for XML schemas is presented, which
allows for composition as employed in X-Evolution [17]. For
the XEM system [29], [51], a set of DTD change primitives is
proposed. In either case, modularity of propagation semantics
is not an issue.

In ontology engineering, the KAON framework [49] pro-
vides modularity by allowing to combine simple evolution
strategies to so-called advanced evolution strategies, enabling
to control the evolution by specifying general goals such as
minimizing the number of ontology changes. Due to missing
support of the change propagation phase, Protégé [41] does
not support modularity.

Regarding grammar engineering, the TransformGen ap-
proach [14] follows the same principles as operation-based ap-
proaches in MDE, i.e., approaches, which tightly couple each
evolution step on the metamodel to corresponding operations
on the dependent artifact. The generated transformation builds
on modular and composable parts. In Lever [43], the evolution
language builds on modular parts and is extensible, allowing
to add own semantics.

Adaptation of Propagation Semantics. A major issue in
agile MDE is the adaptation of the propagation semantics
for dependent artifacts, since changes on the metamodel
do not necessarily determine a single specific propagation
semantics for dependent artifacts. Consequently, approaches
to metamodel evolution should at least allow to overrule a
given default semantics by some user-specified propagation
semantics or even better provide a choice of predefined prop-
agation semantics to the evolution designer. In this respect,
approaches which employ a manual specification of the prop-
agation semantics [25], [34], [40], [45], [47], [56], may not
be classified according to this criterion, since the propagation
semantics is user-defined anyway. Concerning the remaining
approaches, only six of them [11], [15], [21], [36], [39],
[46] allow to overrule a given default propagation semantics.
However, adaptation of the propagation semantics can be done
at the code level, only, i.e., dedicated adaptation mechanisms
on a higher level of abstraction are missing.

Regarding relational database schemas, PRISM [8]
and MeDEA [10] do not allow for adaptation. In
HECATAEUS [42], the only adaptation possibility refers to
the decision whether or not to propagate a certain change to
a particular artifact. Concerning XML schema evolution, only

X-Evolution [17] allows to adapt the propagation semantics
on the code level, whereas the remaining approaches do not
allow for such facilities.

In ontology engineering, by the provision of resolution
points and resolution strategies, the evolution designer is able
to adapt the effects of changes within the ontology in the
KAON framework [49], but not the propagation semantics.
This means that the user is allowed to choose different co-
evolution strategies, so-called resolution points, for which
different default evolution strategies are provided. The list of
the resolution points is then presented to the evolution designer
allowing to approve the changes before the actual propagation.
Due to missing support of change propagation, Protégé [41]
does not allow for adaptability.

In grammar engineering, TransformGen [14] allows to
customize the co-evolution on basis of user-written functions,
i.e., on the code level. In Lever [43], the DSL may not be
adapted, but only the generated code.

C. State-of-the-Art in Impact Analysis

Second, related work with respect to impact analysis is
discussed, focussing on the establishment of traceability and
the estimation of arising problems and costs in co-evolution.

Traceability. When surveying existing approaches in the
field of MDE concerning traceability between the metamodel
and dependent artifacts, solely a single approach provides
support [46]. In particular, they propose a dedicated mech-
anism that allows to establish traceability links between the
metamodel and different kinds of artifacts [22]. In [9], this
work is extended by allowing to visualize the traceability
between the metamodel and the dependent artifacts on basis
of TraceVis [2], a tool proposed for the visualization of
traceability links between a chain of model transformations.
Although the establishment of traceability is supported, the
exploitation thereof is left open to a large extent, demanding
for further investigation. In particular, changes that cannot
be propagated automatically should be especially highlighted,
since these changes cause high manual effort in an agile
development process.

In the area of relational databases, only HECATAEUS [42]
enables the evolution designer to visually examine the impact
of schema evolution on queries and views as dependent
artifacts by means of a visual impact graph. MeDEA [10]
supports traceability between a conceptual model such as
UML, on which changes are defined, and a logical model such
as a relational schema to which changes are propagated, but
not between the schema and dependent artifacts. PRISM [8]
does not support impact analysis at all. Regarding the domain
of XML schema evolution, X-Evolution [17] does not allow
for explicit traceability, but rather for computing potentially
occurring invalidities [18]. In contrast, XEM [51] and [29] do
not support traceability at all.

In ontology engineering KAON [49] and Protégé [41] do
not provide impact analysis and thus, also no traceability.

In grammar engineering, both approaches do neither sup-
port impact analysis nor traceability.

Problem and Cost Estimation. As may be concluded from
the discussion above, impact analysis for supporting agile
MDE is still in its infancy. Since being at the very beginning,
the estimation of potentially arising problems in dependent
artifacts as, e.g., information loss or non-resolvable changes,
is not fully targeted by any approach yet. However, this will
be the next logical step after having successfully established
traceability between the metamodel and dependent artifacts
as mentioned in [22]. Similar to the estimation of potentially
occurring problems in dependent artifacts, the estimation of
the cost for propagating changes to dependent artifacts in
terms of runtime and manual effort needed is still poorly
understood. First work in this direction has been published
recently providing an estimation of costs in the context of
propagating changes to dependent model transformations [46].
In this work, the costs for adapting ATL transformations are
estimated on basis of dedicated adaptation cost functions.
However, providing a single number to accumulate potentially
occurring problems and costs is a first step, only.

In the domain of relational databases, PRISM [8] does
not provide any support for problem and cost estimation. In
contrast, HECATAEUS [42] highlights all affected elements
of dependent artifacts visually, but is not able to provide
a detailed problem and cost report. MeDEA [10] does not
support any problem and effort estimation. In the area of XML
schema evolution, only X-Evolution [17] visually points out
all documents, which will not remain valid due to a given
change together with all the invalid elements, thereby guiding
the evolution designer in the resolution process.

In ontology engineering, KAON [49] and Protégé [41] do
neither consider the phase of impact analysis which is also
true for both approaches considered in grammar engineering.

D. State-of-the-Art in Supported Artifacts

Finally, related work is examined to which extend different
kinds of dependent artifacts may be co-evolved.

Regarding the area of MDE, the majority of existing co-
evolution frameworks focuses on a specific kind of dependent
artifact to be co-evolved, being mostly models [6], [7], [11],
[15], [21], [25], [36], [40], [45], [47], [54], [56]. First ap-
proaches for the co-evolution of transformations are presented
in [12], [13], [26], [34]. Currently, solely EMFMigrate [46]
and Meyers et. al [39] target the propagation of changes to
several kinds of dependent artifacts. However, they still require
the specification of an artifact-specific co-evolution semantics.

Regarding relational databases, relational tuples are the
primary artifact to be co-evolved and supported by PRISM [8]
and MeDEA [10]. Additionally, PRISM allows to co-evolve
SQL queries. HECATAEUS [42] focuses on queries and views
as dependent artifacts, but for impact analysis, only. Again
specific solutions are built for specific kinds of dependent
artifacts, i.e., no approach may be considered generic. In the
field of XML schemas, XML documents are considered as the
only artifacts to be co-evolved (cf., e.g., XEM [29], [51], and
X-Evolution [17]), i.e., artifact-independence is not an issue.

In ontology engineering, the KAON framework [49] con-
siders instances as dependent artifacts. Dependent ontologies
and applications are mentioned, but not further dealt with. In
Protégé [41] propagation to dependent artifacts is not an issue.

Concerning grammar engineering, both approaches, Trans-
formGen [14] and Lever [43], provide support for the co-
evolution of program code, only.

E. Reflection of Related Work

In summary, although numerous co-evolution frameworks
have been proposed in different domains, a generic framework,
i.e., independent of a certain kind of dependent artifact,
comprising an explication of the propagation semantics, means
for impact analysis and change propagation as urgently needed
for agile MDE is still missing. Despite the fact that first
approaches offer dedicated DSLs for the explication of the
propagation semantics, none of them abstracts from the kinds
of dependent artifacts, but typically focus on a specific one,
only. Additionally, modularity and adaptable propagation se-
mantics is supported by few approaches, only and most often
restricted to the code level. Thus, research efforts to provide
modularity and adaptability on a higher level of abstraction
are needed for agile MDE. As argued above, impact analysis
in MDE and in related engineering domains has not gained
much momentum so far. Although some groundwork in the
establishment of traceability between a metamodel and depen-
dent artifacts has been performed, the interpretation thereof
in terms of estimating potentially arising problems or costs
incurring for propagation is still in its infancy, emphasizing
the need for further research. This is in contrast to the area of
software engineering, where much research on impact analysis
of code changes has been investigated as a recent survey
reveals [33]. Although not being directly applicable to the
domain of agile MDE, many fruitful ideas may be gained from
techniques in software engineering. Thus, in the following a
framework called CoEvolver will be presented that tackles
these limitations. The core idea is to present a DSL that allows
to model the propagation semantics of either fine-grained
atomic changes (add, remove, delete, move) or more complex
composite changes. However, the propagation semantics of
these composites changes may be derived by the combination
of the propagation semantics of the fine grained changes,
overcoming the current shortcomings in the explication of the
propagation semantics.

IV. CONCEPTUAL CO-EVOLUTION FRAMEWORK

After having discussed the state-of-the-art in co-evolution in
detail, the following section outlines a conceptual framework
called CoEvolver, which tackles the afore mentioned limita-
tions and provides the basis for an actual implementation in
an agile MDE environment (cf. Fig. 2).

CoEvolver supports three core phases in the co-evolution
process, being (i) the explication of the propagation semantics
on basis of a visual DSL, (ii) the impact analysis, and (iii)
the propagation of the changes to dependent artifacts. The
support of the metamodel evolution itself is out of scope of

type
1..1

Type
type: String

Car
name: String

Change PropagationImpact AnalysisExplication of Propagation Semantics

MetamodelV0 MetamodelV1

Evolution

ExtractClass

Co‐Evolution
Model

adapt

Dependent
ArtifactsV0

Dependent
ArtifactsV1

Problem and
Cost Evaluator

OR

Car
name : String
type : String

O
pe

ra
tio

n‐
ba

se
d

St
at
e‐
ba

se
d

…

External Tool

CoEvolver Framework

Recorded
Changes

AddClass +
MoveAttribute +
AddReference
ExtractClass

Reconstructed
Changes

Change Log

EMFCompare

…

consistent with

Library of
Co‐Evolution
Operators

Co‐Evolution
Scripts

Existing
Execution
Engine

EMF
Refactor

GeneratorsGeneratorsCo‐Evolution
Code

Generators

Traceability
Generator

Refactoring Tool

Co‐Evolution

Tracelinks

Problem
and Cost

Estimation

Artefact‐
independent

Artefact‐
specific

Co‐Evolution
Model

Generator
Artefact‐

independent

Propagation
Problems

Propagation
Costs

Semantics
Propagation
Semantics

Meta
Tracelinks

worth the expense?

Library of
Analysis
Functions

refer to

re
fe
rt
o

Artefact‐
independent

Artefact‐
specific

Artefact‐
independent

Aggregated
Problem
and Cost

Estimation

1
2

3

4

5
6

Edapt

Artefact‐
independent

Fig. 2. Overview on the CoEvolver Framework by Phases

the CoEvolver framework, since this might be conveniently
performed by existing metamodel editors or refactoring tools
such as EMF Refactor [3] or EMF Compare6, which are in-
tended to use CoEvolver as a target platform for co-evolution.
At design-time, CoEvolver is configured with a library of
co-evolution operators, meta tracelinks (i.e., tracelinks be-
tween the involved metamodels), propagation semantics, costs,
problems per dependent artifact, and a library of analysis
functions. At run-time, first, the co-evolution model generator
(cf. 2 in Fig. 2) takes the metamodel changes as input (cf.
ExtractClass in the running example), which are either
recorded, i.e., operation-based, or reconstructed, i.e., state-
based, depending on the tool used for refactoring (cf. 1 in
Fig. 2). As an output, it automatically generates an explicit
representation of the propagation semantics on basis of the co-
evolution DSL, i.e., a co-evolution model (cf. Section IV-A)
based on the library of pre-defined co-evolution operators.
After having derived the co-evolution model, the evolution

6http://www.eclipse.org/emf/compare/

designer may adapt the propagation semantics to her needs by
dedicated components of the DSL on a model level.

Besides the propagation semantics, each component of the
DSL exhibits potentially arising propagation problems and
propagation costs, which are the basis for impact analysis
(cf. Section IV-B). For this, first traceability between the
metamodel in its original version and the dependent artifacts
must be established by a traceability generator (cf. 4 in
Fig. 2) with the help of meta tracelinks. This builds the
basis for the problem and cost evaluator (cf. 5 in Fig. 2)
for deriving a report with the help of a library of analysis
functions. If the calculated costs fulfill the evolution designer’s
expectation, i.e., are worth the expense, the actual changes may
be propagated to dependent artifacts in the third phase, being
the change propagation itself.

To achieve the co-evolution (cf. 6 in Fig. 2) accord-
ing artifact-specific co-evolution code generators (cf. 3 in
Fig. 2) are needed, which translate the specified propaga-
tion semantics into artifact-specific co-evolution scripts in a

dedicated propagation language such as Epsilon Flock [45]
or a general purpose transformation language such as ATL
[23]. The actual execution of the change propagation re-
establishes consistency between the dependent artifacts and the
evolved metamodel, e.g., re-establishment of the “conforms
to” relationship between the models and the metamodel. Since
CoEvolver describes the propagation semantics on basis of
a single co-evolution model, a consistent co-evolution across
diverse kinds of artifacts may be achieved.

A. Explication of the Propagation Semantics

One main idea of the CoEvolver framework is to provide a
DSL for the explication of the propagation semantics to enable
a model-driven approach for the co-evolution of dependent
artifacts in agile MDE (cf. Fig. 3). Regarding the example
in Fig. 3, the refactoring operation ExtractClass has
been applied. Consequently, both versions of the metamodel
manifest the same semantics, while exhibiting the structural
difference that attribute Attribute.type has been made
explicit by means of class Type in the evolved version of
the metamodel (cf. 1 in Fig. 3). Such differences are called
structural heterogeneities [30], i.e., the expression of semanti-
cally similar concepts by means of different metamodeling
concepts. Since structural heterogeneities play a distinctive
role in metamodel evolution, a co-evolution DSL must be
able to cope with them accordingly. For providing reusable
components for the resolution of structural heterogeneities in
the area of model transformations we developed a so-called
Mapping Operator (MOp) language [27], [57] on basis of a
systematic classification of heterogeneities [55], covering the
structural differences which potentially occur between Ecore-
based metamodels. Consequently, in a first step we envision to
extend and adapt the MOps to the domain of metamodel evo-
lution, e.g., dealing with additions and deletions of metamodel
elements which are not required in a transformation scenario,
resulting in a library of Co-Evolution Operators (CoEvOps)
(cf. 2 in Fig. 3). The rationale behind is to raise the level of
abstraction to foster an agile process by following an MDE-
based approach to co-evolution, since CoEvOps may be seen
as independent wrt. both, dependent artifacts and employed
propagation language. This abstract representation may then
be automatically translated to different propagation languages
by means of higher-order transformations (HOT) [52].

Modularity. CoEvOps may be divided into a fixed set of
fine-grained kernel CoEvOps such as an A2C (Attribute-to-
Class) and an extensible set of more coarse-grained composite
CoEvOps such as a CoCreateClass. Kernel CoEvOps are
intended to provide the necessary expressivity on the level of
classes, attributes, and references, since they are intended to
be systematically derived from potentially occurring hetero-
geneities between two Ecore-based metamodels, i.e., from the
Ecore meta-metamodel7. In contrast, composite CoEvOps ag-
gregate a certain set of kernel CoEvOps to more coarse-grained
components and thus, operate on a higher level of abstraction,

7http://www.eclipse.org/modeling/emf

as being closer to the thinking of the co-evolution designer.
By this modular composition, essential advantages may be
achieved. Above all, it is sufficient to specify the propagation
semantics (cf. below) and the impacts (cf. Section IV-B) on the
level of kernel CoEvOps, only. Consequently, extensibility on
the level of composite CoEvOps is achieved without having
to define new propagation semantics or additional problems
and cost functions for newly introduced composite CoEvOps.
To assemble the presented kernel CoEvOps to composite
CoEvOps and to bind them to specific metamodels, every
CoEvOps has input ports with required interfaces (left side
of the component) as well as output ports with provided
interfaces (right side of the component), typed to classes
(C), attributes (A), and relationships (R). Since there are
dependencies between CoEvOps, e.g., a reference demands a
source and a target class, every CoEvOp typed to a class offers
a trace port (T) at the bottom of the CoEvOp, providing context
information. Since CoEvOps are expressed as components, the
user can apply them in a plug & play manner.

Running Example. Having a look at the example in Fig. 3,
one may see that the intended co-evolution is described with
the CoExtractClass composite CoEvOp, which composes
two other composite CoEvOps, being a CoCopyClass and a
CoCreateClass. These finally build upon dedicated kernel
CoEvOps, which determine the propagation semantics on a
fine-grained level, e.g., the A2C kernel CoEvOp states that
for each distinct value of attribute Attribute.type a
corresponding instance of attribute Type.type should be
created, in case of co-evolving models (cf. 3 in Fig. 3).

Adaptablity. The composite CoEvOps are adaptable, i.e.,
they may compose different configurations of CoEvOps, de-
pending on the propagation semantics to be realized. A certain
composite CoEvOp contains fixed parts but also optional parts,
that allow for user adaptations of the propagation semantics
on the model level, instead of just on the code level.

Running Example. When considering the example in Fig. 3,
it may be seen that the evolution designer may adapt the
CoExtractClass operator to either apply a copy (in terms
of a CoCreateClass CoEvOp) or a distinct semantics (in
terms of a CoCreateDistinctClass CoEvOp). When
considering models as dependent artifacts, this would either
result in as many Type instances as Attribute instances
in case of the copy semantics or in as many Type instances
as distinct values of attribute Attribute.type in case of
the distinct semantics (cf. 3 in Fig. 3).

Compilation to Executable Formalism. To actually ex-
ecute the co-evolution, artifact-specific co-evolution scripts
in a specific propagation language need to be automatically
generated with the help of co-evolution code generators on
the basis of the kernel CoEvOps (cf. 4 and 5 in Fig. 3).
As stated in Section III, various propagation languages for the
actual co-evolution of dependent artifacts have been proposed,
e.g., Epsilon Flock [45]. Thus, we intend to base on existing
propagation languages for the compilation of the co-evolution
model to a co-evolution script, thereby achieving the advantage
of reusing existing execution engines (cf. 7 and 8 in Fig. 3).

Explicit Representation of Propagation Semantics

adapt

Car
name : String

Type
type : String

type
1..1

Car
name : String
type : String

A

T

A
A

A C CC

A

T

C

C

2A A

2A C
AA

C C
C C

CC
T

2C C

C

C
R20 R

C

A
A2A A AA

AA

RR

Composite
CoEvOp

Kernel
CoEvOp

Change Propagation
Impact
Analysis

Propagation
Semantics
for Models

A1 : Car
name = “xyz“
type = “Audi“

A2 : Car
name = “abc“
type = “Audi“

ModelV0
A1 : Car

name = “xyz“

A2 : Car
name = “abc“

ModelV1

T1 : Type
type = “Audi“

type

type

TransformationV0

migrate Car{
var t =

Migrated!Type.all.selectOne(
t|t.type==original.type);

if (t==null) {
t=new Migrated!Type;
t.type=original.type;

}
migrated.type = t;

}

Co‐Evolution
Script for Models
in Epsilon Flock

module ATLV02ATLV1
create OUT : ATLV1
from IN : ATLV0;

rule ...
Co‐Evolution Script
for Transformations

as ATL HOT

rule Car2PKW{
from c: C!Car
to p : P!PKW(

name <- c.name,
type <- c.type

)
}

TransformationV1
rule Car2PKW{

from c: C!Car
to p : P!PKW (

name <- c.name,
type <- c.type.type

)
}

MetamodelV0 MetamodelV1

copy

distinct

Existing
Execution
Engine

For all distinct values of
attribute A create
instance of Class C

For all accesses to attribute A
create assess to moved
attribute in Class C

Model
Co‐Evolution

Code Generator

Transformation
Co‐Evolution

Code Generator

ExtractClass

OR

Recorded
Changes

AddClass +
MoveAttribute +
AddReference
ExtractClass

Reconstructed
Changes

Change Log

Co‐Evolution
Model

Generator

Co‐Evolution Model

C
C

CC
T

2C C

C

A
A2A A A

A

Library of
Co‐Evolution Operators

External Tool

CoEvolver Framework

… …

Dependent
ArtifactsV0

Dependent
ArtifactsV1

Co‐Evolution
type
1..1

Type
type: String

Car
name: String

MetamodelV0 MetamodelV1

Evolution

Car
name : String
type : String

consistent with

consistent with

Existing
Execution
Engine

ArtefactArtefact‐
independent

ArtefactArtefact
‐specific

Artefact‐Artefact‐
specific

C

T

2A C
A

CC
T

2C C
C

C
R20 R …

C

T

2A C
A

C

T

2A C
A

Propagation
Semantics for

Transformations
Propagation Semantics

ArtefactArtefact
‐specific

uses

…

1

2

3

5

7

6

8

4CoExtractClass
CoCreateClass

CoDeleteClass

CoExtractClass
CoCopyClass

CoCreateClass

CoCreateDistinctClass

Fig. 3. Explicit Representation of Propagation Semantics and Change Propagation

However, since the focus of current approaches is on models
only, we will investigate on strategies for the remaining kinds
of dependent artifacts, especially on transformations where we
envision to follow a program transformation [53] approach,
i.e., applying a so-called higher-order transformation (HOT)
which rewrites an existing transformation.

Running Example. To illustrate a potential outcome of a
model co-evolution script, Fig. 3 shows the specified propaga-
tion semantics on basis of Epsilon Flock [45]. Furthermore, a
HOT is sketched as the potential outcome of a transformation
co-evolution script. The goal of this HOT is to rewrite line

5 of the ATL transformation from type <- a.type to
type <- a.type.type, to correctly follow the reference
Attribute.type and to access the attribute Type.type.

B. Impact Analysis

To determine if the performed changes on the metamodel
have a problematic impact on dependent artifacts, an accurate
estimation of potentially arising problems and effort needed to
propagate changes to dependent artifacts is essential to decide,
whether to actually propagate the changes, consider alternative
changes or to leave the metamodel as it is. Consequently,

potential problems such as the loss of information that may
arise during co-evolution need to be identified and accordingly
classified. For this, the kernel CoEvOps need to be classified
into categories concerning their effect on dependent artifacts,
e.g., breaking versus non-breaking changes for models as
proposed in [54] or according categories for transformations as
proposed in [34]. Additionally, adaptable cost functions should
be assigned to kernel CoEvOps to be able to calculate the
resulting effort in terms of runtime and manual effort. Thereby,
costs may vary depending on whether a certain CoEvOp
requires the intervention of the evolution designer or leads
to a loss of information capacity, e.g., due to deletion. We
envision to also provide means for the evolution designer to
specify overall goals, e.g., to avoid information loss, leading
to automatically adapted co-evolution operators that best meet
the specified overall goals, inspired by KAON [49].

Traceability. For impact analysis, tracelinks between the
metamodel and the dependent artifacts in their original ver-
sions need to be established. For being able to automate
the establishment of these tracelinks on basis of a dedicated
traceability generator (cf. 4 in Fig. 2), meta tracelinks relate
elements of the Ecore meta-metamodel to elements of the
metamodel of the dependent artifact.

Problem and Cost Estimation. To provide means for
problem and cost estimation, we envision a library of analysis
functions on basis of OCL8 that allows to conduct queries
on the established traceability model. Such OCL queries may
allow to ask questions like “How many elements are affected
by a certain CoEvOp?” or “Does the CoEvOp cause changes
in a dependent artifact that cannot be resolved automatically?”.
Furthermore, the traceability model may be queried to allow
for custom analysis. As a result of the OCL queries, a list of
the affected elements per kernel CoEvOp may be achieved,
which might get aggregated according to the composition
hierarchy. These affected elements act as input to calculate
potential problems and costs. As a final result, a profound
problem and cost estimation report is provided, allowing to
decide whether to propagate the changes or not.

V. PROTOTYPE AND EXPECTED CONTRIBUTIONS

The omnipresence of evolution in agile MDE and thus, the
necessity of proper tool support enabling the co-evolution of
arbitrary artifacts at a high level of abstraction was the major
motivation behind the conceptualization of CoEvolver. We are
currently working on the co-evolution DSL on the basis of
a graphical Eclipse-based editor as well as the compilation
to an executable formalism whereby we focus on the co-
evolution of model transformations. Thereby we base on our
Mantra framework built for applying our MOps as well as for
testing and debugging transformations [16]. From these very
first results the following contributions may be expected.

Decreased Effort in Co-Evolution. First, since the Co-
Evolver framework follows a model-driven approach to the

8http://www.omg.org/spec/OCL

co-evolution of dependent artifacts and since a default co-
evolution model is derived automatically from dedicated
changes, the effort for co-evolution may be drastically de-
creased, whereby the MDE based approach allows to adapt
the propagation semantics on a model level, relieving the
evolution designer from the code level. Concerning scalability,
CoEvMops are intended to tackle these problem. Furthermore,
we expect rather small evolution steps in agile processes than
an extensive redesign of the metamodel, which would trigger
complex co-evolution steps.

Consistent Co-Evolution of Diverse Kinds of Artifacts.
Second, since CoEvolver describes the propagation semantics
using a single co-evolution model, a consistent co-evolution
across diverse kinds of artifacts may be achieved. However,
the actual consistency depends on the correct implementation
of the co-evolution script code generators. Nevertheless, a
single starting point in terms of the co-evolution model offers a
solid basis to achieve a globally consistent co-evolution across
diverse kinds of artifacts as needed in agile MDE.

Improved Openness wrt. Artifacts, Refactoring Tools,
and Propagation Languages. Since CoEvolver builds on
an artifact-independent co-evolution model to describe the
propagation semantics, co-evolution of new kinds of artifacts,
exhibiting a dedicated metamodel, may be achieved by just
implementing dedicated co-evolution script code generators,
which realize an interpretation of the propagation semantics
for the newly introduced kind of artifact. Furthermore, existing
propagation languages may be incorporated by being the target
language of a co-evolution script code generator. Finally,
CoEvolver is open to existing refactoring tools, since the only
interface to them is the change log. Thus, CoEvolver leverages
extensibility concerning new kinds of artifacts, as well as reuse
of propagation languages and refactoring tools.

REFERENCES

[1] A. Aitken and V. Ilango, “A comparative analysis of traditional software
engineering and agile software development,” in In Proc. of46th Hawaii
International Conference on System Sciences, 2013, pp. 4751–4760.

[2] M. Amstel, M. Brand, and A. Serebrenik, “Traceability Visualization
in Model Transformations with TraceVis,” in Theory and Practice of
Model Transformations. Springer-Verlag, 2012.

[3] T. Arendt and G. Taentzer, “A tool environment for quality assurance
based on the Eclipse Modeling Framework,” Automated Software Engi-
neering, vol. 20, no. 2, pp. 141–184, 2013.

[4] R. S. Arnold, Software Change Impact Analysis. IEEE Computer
Society Press, 1996.

[5] J. Bézivin, “On the Unification Power of Models,” Software & Systems
Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[6] M. Brand, Z. Protic, and T. Verhoeff, “A Generic Solution for Syntax-
Driven Model Co-evolution,” in Objects, Models, Components, Patterns.
Springer-Verlag, 2011.

[7] A. Cicchetti, D. Ruscio, and A. Pierantonio, “Managing Dependent
Changes in Coupled Evolution,” in Theory and Practice of Model
Transformations. Springer-Verlag, 2009.

[8] C. A. Curino, H. J. Moon, and C. Zaniolo, “Graceful Database Schema
Evolution: the PRISM Workbench,” Proc. of the VLDB Endowment,
vol. 1, pp. 761–772, 2008.

[9] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Traceability
Visualization in Metamodel Change Impact Detection,” in Proc. of 2nd
Workshop on Graphical Modeling Language Development, 2013.

[10] E. Domı́nguez, J. Lloret, A. L. Rubio, and M. A. Zapata, “MeDEA: A
database evolution architecture with traceability,” Data & Knowledge
Engineering, vol. 65, no. 3, pp. 419–441, 2008.

[11] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin, “Managing Model
Adaptation by Precise Detection of Metamodel Changes,” in Model
Driven Architecture - Foundations and Applications. Springer-Verlag,
2009.

[12] K. Garcés, J. M. Vara, F. Jouault, and E. Marcos, “Adapting transforma-
tions to metamodel changes via external transformation composition,”
Software & Systems Modeling, vol. 12, no. 1, pp. 1–18, 2013.

[13] J. Garcı́a, O. Diaz, and M. Azanza, “Model Transformation Co-
evolution: A Semi-automatic Approach,” in Software Language Engi-
neering. Springer-Verlag, 2013.

[14] D. Garlan, C. W. Krueger, and B. S. Lerner, “TransformGen: Automating
the Maintenance of Structure-Oriented Environments,” ACM Transac-
tions on Programming Languages and Systems., vol. 16, no. 3, pp. 727–
774, 1994.

[15] B. Gruschko, D. Kolovos, and R. Paige, “Towards Synchronizing Models
with Evolving Metamodels,” in Proc. 1st Int. Workshop on Model-Driven
Software Evolution, 2007.

[16] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Rets-
chitzegger, J. Schönböck, and W. Schwinger, “Automated Verification of
Model Transformations Based on Visual Contracts,” Automated Software
Engineering, vol. 20, no. 1, pp. 1–42, 2013.

[17] G. Guerrini and M. Mesiti, “X-Evolution: A Comprehensive Approach
for XML Schema Evolution,” in Proc. of 19th Int. Conf. on Database
and Expert Systems Application, 2008.

[18] G. Guerrini, M. Mesiti, and D. Rossi, “Impact of XML Schema
Evolution on Valid Documents,” in Proc. of 7th Int. Workshop on Web
Information and Data Management. ACM, 2005, pp. 39–44.

[19] M. Hartung, J. Terwilliger, and E. Rahm, “Recent Advances in Schema
and Ontology Evolution,” in Schema Matching and Mapping. Springer-
Verlag, 2011.

[20] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Automatability of
Coupled Evolution of Metamodels and Models in Practice,” in Proc. of
11th Int Conf. on Model Driven Engineering Languages and Systems,
2008.

[21] ——, “COPE - Automating Coupled Evolution of Metamodels and Mod-
els,” in Proc. of 23rd European Conf. on Object-Oriented Programming,
2009.

[22] L. Iovino, A. Pierantonio, and I. Malavolta, “On the Impact Significance
of Metamodel Evolution in MDE,” Journal of Object Technology,
vol. 11, no. 3, pp. 1–33, 2012.

[23] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A Model
Transformation Tool,” Science of Computer Programming, vol. 72, no.
1-2, pp. 31–39, 2008.

[24] F. Keienburg and A. Rausch, “Using xml/xmi for tool supported evo-
lution of uml models,” in In Proc. of 34th nd Hawaii International
Conference on System Sciences, 2001, pp. 9064–.

[25] C. Krause, J. Dyck, and H. Giese, “Metamodel-Specific Coupled Evo-
lution Based on Dynamically Typed Graph Transformations,” in Theory
and Practice of Model Transformations. Springer-Verlag, 2013.

[26] S. Kruse, “On the Use of Operators for the Co-Evolution of Metamodels
and Transformations,” in Proc. of 5th Int. Workshop on Models and
Evolution, 2011.

[27] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and
W. Schwinger, “Reuse in Model-to-Model Transformation Languages:
Are we there yet?” Software and Systems Modeling, pp. 1–31, 2013.

[28] R. Lämmel, “Coupled software transformations,” in Proc. of 1st Int.
workshop on Software Evolution through Transformations, 2004.

[29] R. Lämmel and W. Lohmann, “Format Evolution,” in Proc. of Re-
Technologies for Information Systems, 2001.

[30] F. Legler and F. Naumann, “A Classification of Schema Mappings and
Analysis of Mapping Tools,” in Proc. of 12. Fachtagung in Daten-
banksysteme in Business, Technologie und Web, 2007.

[31] M. M. Lehman, “Laws of Software Evolution Revisited,” in Proc. of 5th
Europ. Workshop on Software Process Technology, 1996.

[32] ——, “Programs, life cycles, and laws of software evolution,” Proceed-
ings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[33] S. Lehnert, “A review of software change impact analysis,” Technische
Universtität Ilmenau, Tech. Rep., 2011.

[34] T. Levendovszky, B. Rumpe, B. Schätz, and J. Sprinkle, “Model evolu-
tion and management,” in Model-Based Engineering of Embedded Real-
Time Systems. Springer-Verlag, 2010.

[35] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, 2012, online Version.

[36] F. Mantz, G. Taentzer, and Y. Lamo, “Well-formed Model Co-evolution
with Customizable Model Migration,” Electronic Communications of the
EASST, vol. 58, p. 14, 2013, online Version.

[37] A. Maule, W. Emmerich, and D. Rosenblum, “Impact Analysis of
Database Schema Changes,” in Proc. of 30th Int. Conf. on Software
Engineering, W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds. ACM,
2008, pp. 451–460.

[38] T. Mens and T. Tourwé, “A Survey of Software Refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139, 2004.

[39] B. Meyers and H. Vangheluwe, “A framework for evolution of modelling
languages,” Science of Computer Programming, vol. 76, no. 12, pp. 1223
–1246, 2011.

[40] A. Narayanan, T. Levendovszky, D. Balasubramanian, and G. Karsai,
“Automatic Domain Model Migration to Manage Metamodel Evolution,”
in Model Driven Engineering Languages and Systems. Springer-Verlag,
2009.

[41] N. F. Noy, A. Chugh, W. Liu, and M. A. Musen, “A Framework for
Ontology Evolution in Collaborative Environments,” in Proc. of 5th Int.
Conf. on The Semantic Web, 2006.

[42] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou,
“Hecataeus: Regulating schema evolution,” in Proc. of 26th IEEE Int.
Conf. on Data Engineering, 2010.

[43] M. Pizka and E. Jurgens, “Automating Language Evolution,” in Proc.
of 1st Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering, 2007.

[44] L. M. Rose, M. Herrmannsdoerfer, J. R. Williams, D. S. Kolovos,
K. Garcés, R. F. Paige, and F. A. Polack, “A Comparison of Model
Migration Tools,” in Model Driven Engineering Languages and Systems.
Springer-Verlag, 2010.

[45] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “Model
Migration with Epsilon Flock,” in Proc. of 3rd Int. Conf. on Theory and
Practice of Model Transformations, 2010.

[46] D. Ruscio, L. Iovino, and A. Pierantonio, “A Methodological Approach
for the Coupled Evolution of Metamodels and ATL Transformations,”
in Theory and Practice of Model Transformations. Springer-Verlag,
2013.

[47] J. Sprinkle and G. Karsai, “A Domain-Specific Visual Language For
Domain Model Evolution,” Journal of Visual Languages & Computing,
vol. 15, no. 3, pp. 291–307, 2004.

[48] J. Sprinkle, B. Rumpe, H. Vangheluwe, and G. Karsai, “Metamodelling:
State of the Art and Research Challenges,” in Proc. of the 2007 Int.
Dagstuhl Conf. on Model-based engineering of embedded real-time
systems, 2010.

[49] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic, “User-Driven
Ontology Evolution Management,” in Proc. of 13th Int. Conf. on
Knowledge Engineering and Knowledge Management. Ontologies and
the Semantic Web, 2002.

[50] M.-A. Storey, “Theories, tools and research methods in program com-
prehension: past, present and future,” Software Quality Journal, vol. 14,
no. 3, pp. 187–208, 2006.

[51] H. Su, D. Kramer, L. Chen, K. Claypool, and E. A. Rundensteiner,
“XEM: Managing the evolution of XML documents,” in Proc. of 11th
Int. Workshop on Research Issues in Data Engineering, 2001.

[52] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin, “On the Use
of Higher-Order Model Transformations,” in Model Driven Architecture
- Foundations and Applications. Springer-Verlag, 2009.

[53] E. Visser, “A Survey of Strategies in Rule-Based Program Transforma-
tion Systems,” Journal of Symbolic Computation, vol. 40, no. 1, pp.
831–873, 2005.

[54] G. Wachsmuth, “Metamodel Adaptation and Model Co-adaptation,”
in Proc. of the 21st Europ. Conf. on Object-Oriented Programming.
Springer-Verlag, 2007.

[55] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck,
and W. Schwinger, “Towards an expressivity benchmark for mappings
based on a systematic classification of heterogeneities,” in Proc. of 1st
Int. Workshop on Model-Driven Interoperability, 2010.

[56] M. Wimmer, A. Kusel, J. Schönböck, W. Retschitzegger, W. Schwinger,
and G. Kappel, “On using Inplace Transformations for Model Co-
Evolution,” in Proc. of 2nd Int. Workshop on Model Transformation
with ATL, vol. 10, 2010, pp. 65–78.

[57] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck,
and W. Schwinger, “Surviving the Heterogeneity Jungle with Composite
Mapping Operators,” in Proc. of 3rd Int. Conf. on Theory and Practice
of Model Transformation, 2010.

