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Abstract. Situation awareness (SAW) systems aim at supporting as-
sessment of critical situations as, e.g., needed in traffic control centers,
in order to reduce the massive information overload. When assessing sit-
uations in such control centers, SAW systems have to cope with a large
number of heterogeneous but interrelated real-world objects stemming
from various sources, which evolve over time and space. These specific
requirements harden the selection of adequate data mining techniques,
such as clustering, complementing situation assessment through a data-
driven approach by facilitating configuration of the critical situations to
be monitored. Thus, this paper aims at presenting a survey on clustering
approaches suitable for SAW systems. As a prerequisite for a systematic
comparison, criteria are derived reflecting the specific requirements of
SAW systems and clustering techniques. These criteria are employed in
order to evaluate a carefully selected set of clustering approaches, sum-
marizing the approaches’ strengths and shortcomings.

1 Introduction

Situation Awareness (SAW). SAW systems are increasingly used in large
control centers for air or road traffic management in order to reduce the infor-
mation overload of operators induced by various data sources. This is done by
automatically assessing critical situations occurring in the environment under
control (e. g., an accident causing a traffic jam) [3].

Data Mining (DM) for SAW. The definition of relevant critical situations
is provided in current SAW systems (e.g., [3,26]) explicitly by domain experts
during a configuration phase, representing a time-consuming task. This effort of
providing explicit knowledge could be complemented and eased by a data-driven
approach in terms of DM techniques making direct use of the observed data,
through detecting “interesting” or uncommon relationships, which the domain
experts might not be explicitly aware of (i.e., intrinsic knowledge). Furthermore,
during runtime of the SAW system ongoing changes and additional uncommon
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relationships can be spotted that have not even been explicitly defined so far.
Especially clustering techniques are considered to be beneficial, since they require
neither a-priori user-created test data sets nor other background knowledge and
also allow anomaly detection, such as uncommon relations. If we consider a
road traffic SAW system, clustering might for example be used to detect (ST)
hotspots on a highway, i. e., road segments and time windows where atypically
many accidents occur, or to reveal current major traffic flows in an urban area.

Specific Requirements of SAW. The nature of SAW systems, however, poses
specific requirements on the applicability of existing clustering techniques. SAW
systems have to cope with a large number of heterogeneous but interrelated
real-world objects stemming from various sources, which evolve over time and
space, being quantitative or qualitative in nature (as, e.g., demonstrated in [3]).
The focus of this paper is therefore on evaluating existing spatio-temporal (ST)
clustering techniques with respect to their ability to complement the specification
of critical situations in SAW systems.

Contributions. In this paper, we first systematically examine the requirements
on clustering techniques to be applicable in the SAW domain. Then, we survey
several carefully selected approaches according to our criteria stemming from
the fields of SAW and ST clustering, and compare them in our lessons learned,
highlighting their advantages and shortcomings.

Structure of the Paper. In the following section, we compare our survey
with related work (cf. Section 2). Then, we introduce our evaluation criteria
(cf. Section 3), before we present lessons learned (cf. Section 4). Due to space
limitations, the in-depth criteria-driven evaluation of each approach surveyed
can be found online1 only.

2 Related Work

Despite a plethora of work exists in the field of data mining, to the best of our
knowledge no other survey has dealt with the topic of clustering ST data for
SAW applications so far. However, there exist surveys about ST clustering (e. g.,
[21]) and ST data mining in general (e. g., [19], [29]), surveys about spatial (e. g.,
[11]) and temporal (e. g., [34]) clustering and various surveys on clustering in
other domains (e. g., [15], [36]). Furthermore the field of stream data mining has
received a lot of attention over the last few years and as a result several surveys
on stream data clustering (e. g., [20]) and on stream data mining (e. g., [8], [13])
in general have been conducted.

In the following paragraphs these mentioned surveys are briefly discussed with
respect to the contributions of our survey.

ST Clustering. Kisilevich et al. [21] propose a classification of ST data and fo-
cus their survey of clustering techniques on trajectories, being the most complex
setting in their classification. The main part of the survey is a discussion of sev-
eral groups of clustering approaches including different example algorithms for

1 http://csi.situation-awareness.net/stc-survey

http://csi.situation-awareness.net/stc-survey
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each group. Finally, they present examples from different application domains
where clustering of trajectory data is an issue, like studying movement behavior,
cellular networks or environmental studies. In contrast to our survey, Kisilevich
et al. focus on presenting various groups of ST data mining approaches, rather
than systematically analyzing different techniques backed by a catalog of evalu-
ation criteria. Furthermore, we considered the applicability of the techniques to
our domain on basis of SAW-specific criteria, while they conducted their analysis
in a more general way. Nevertheless, their work represented a valuable starting
point for our survey, from which we especially adopted their classification of
ST data, like trajectories or ST events.

Spatial, Temporal and General Clustering. Several surveys on spatial clus-
tering (e. g., [11]) and temporal clustering (e. g., [34]) have been conducted for
different application domains. Nevertheless, none of the surveyed approaches
specifically deals with the unique characteristics that arise from the domain of
SAW respectively from ST data in general (cf. Section 3.1), but take only either
spatial- or temporal characteristics into account.

Finally, there exist numerous and comprehensive surveys on non-ST clustering
(e. g., [15], [36]). These approaches cannot simply be used to work with ST data,
but have to be adopted manually to deal with its particular nature.

ST Data Mining. Kalyani et al. [19] describe the peculiarities of ST data
models and the resulting increase of complexity for the data mining algorithms.
In their survey they outline different data mining tasks compared to their spatial
counterparts and motivate the need for dedicated ST data mining techniques.
Geetha et al. [29] present a short overview of challenges in spatial, temporal and
ST data mining. However, none of the above focuses on concrete data mining
techniques, but rather gives an overview of the field of ST data mining.

Stream Data Mining. In their survey on clustering of time series data streams,
Kavitha et al. [20] review the concepts of time series and provide an overview
of available clustering algorithms for streaming data. More general surveys of
stream data mining were conducted by Gaber et al. [8] and Ikonomovska et al.
[13]. Both review the theoretical foundations of stream data analysis and give
a rough overview of algorithms for the various stream data mining tasks and
applications. Furthermore, they mention that stream data clustering is a major
task in stream data mining and lots of algorithms have been adapted to work
on streaming data (e. g., CluStream [1], DenStream [7], ClusTree [22]).

However, in contrast to our SAW systems which store a history of the data
received, thus allowing an arbitrary number of read accesses, such stream data
mining approaches do not store the huge amount of data they process. Even
though the elements of a data stream are temporally ordered, they might ar-
rive in a time-varying and unpredictable fashion and do not necessarily contain
a timestamp, which does not allow for the identification of temporal patterns
(especially cyclic ones). Furthermore, most stream data mining approaches sur-
veyed by these authors do not deal with spatial data at all and hence are not
applicable here.
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Consequentially, we conduct this survey on ST clustering to investigate the
applicability of various clustering techniques for the field of SAW.

3 Evaluation Criteria

In this section, we derive a systematic criteria catalog, (methodologically ad-
hering to some of our previous surveys, e.g., [35]), which we use for evaluating
selected ST clustering techniques. The criteria catalog consists of two sets of cri-
teria, as depicted in Fig. 1, comprising SAW-specific criteria (cf. Section 3.1) and
clustering-specific criteria (cf. Section 3.2), which are detailed in the following.
Each criterion is assigned an abbreviation for reference during evaluation.

Fig. 1. The evaluation criteria at a glance

3.1 SAW-Specific Criteria

The rationale behind the following SAW-specific criteria, which are illustrated
by examples from the domain of road traffic control, is based on considering the
kind of input data a clustering technique has to cope with (”What do we have”)
and further on reflecting on the intent of the analysis (”What do we want”).

Spatial, Temporal and Other Input Data Properties. As already men-
tioned, SAW systems employed in control centers need to monitor a large number
of interrelated objects anchored in space and time, both either with an extent
or without. In particular the temporal properties (TP) range from instants to
intervals, whereas the spatial properties (SP) comprise points, one-dimensional
intervals (e. g., lines) or two-dimensional intervals (e. g., regions). Non-ST prop-
erties can be of qualitative (e.g., freezing temperature) or quantitative (e.g.,
0 ◦C) nature. Regarding SP and TP, however, we assume quantitative data, as
typically required by SAW applications to monitor the ST environment.

Heterogeneity of Input Data. Another SAW-specific requirement is that
objects constituting a certain critical situation often exhibit a mixture of different
ST properties. This can be exemplified by a situation involving three objects,
(i) a bus, sending location points at time instants via GPS to the control center
(i. e., a trajectory), (ii) a traffic jam, comprising a spatial and temporal interval,
both evolving over time (i. e., growing, shrinking, moving) and (iii) a fog area
being spatially extended over a certain region and characterized by a temporal
interval (e. g., predicted for two hours). The more different ST properties data
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a clustering technique supports, i.e., allows for heterogeneous input data (HID),
the better it is applicable to the SAW domain.

Evolution of Input Data. As indicated in the examples above, the temporal
dimension furthermore captures the potential evolution of the observed objects
(E) with respect to their spatial (e.g., location or length) or non-spatial (e.g.,
temperature) properties. An evolution along the spatial dimension corresponds
to a mobile, i. e., moving, object, whereas an object solely evolving with respect
to the non-spatial properties represents an immobile, i.e., static, object.

Context of Input Data. The input data used in SAW systems often com-
prises objects which are bound to a certain context (CID), enforcing constraints
on the interpretation of the input data (e. g., in road traffic, the majority of
objects cannot move around in space freely, but is bound to the underlying road
network), or further requirements on the input data (e. g., necessity of velocity
information). We evaluate if and what kind of context information is required.

Fuzzy Input Data. SAW systems often have to cope with fuzzy input data
(FID), for example incidents reported by humans who only have a partial over-
view of the situation. Fuzzy input data might address the spatial properties (SP)
(e.g., uncertainty about the exact location of an object), the temporal proper-
ties (TP) (e.g., an accident has occurred within the last half an hour), or the
non-ST properties (e.g., it cannot be defined exactly what has happened).

Besides the criteria mentioned above, which detail the nature of the input
data, the following further deal with the goal of the analysis.

Intention. This criterion (I) reflects the objective of the analysis, i.e., the kind of
implicit knowledge that should be extracted by the clustering technique. Possible
intentions are clustering of events or regions with similar ST characteristics,
clustering of trajectories, or the detection of moving clusters.

Online or Offline Analysis. The requirements imposed on the clustering tech-
niques differ with respect to the phase they should be employed. During the con-
figuration phase of a SAW system, we have to perform an analysis on a complete,
historical data set, i. e., offline analysis. However, since an SAW system typically
operates on a real-time environment, we also want to perform an analysis at run-
time, i. e., online analysis. Since clustering techniques devoted to online analysis
often rely on optimizations and approximations in order to deliver fast results
(e.g., compute only locally optimal clusters), these approaches are less suited
for configuration tasks where computation time is not a major issue, whereas
an exact result is preferred. Thus, this criterion (OOA) reflects whether the clus-
tering technique is only suited for the offline configuration phase, or if it is also
applicable to or favored for runtime analysis.

3.2 Criteria Imposed by Clustering Techniques

Whereas in the previous section, the criteria have been derived from the na-
ture of data and the intention of the analysis stemming from the SAW domain,
the present section focuses on assessing how these goals can be achieved with
dedicated ST clustering techniques.



820 S. Mitsch et al.

We first give a short description of the main contribution (MC) and distinguish
the clustering techniques according to their algorithm class (AC), describing the
method how the clusters are obtained. Following [12] this can be, due to par-
titioning (i.e., the data space is partitioned as a whole into several clusters),
hierarchical clustering (i. e., clusters are created by merging close data points
bottom-up or splitting clusters top-down), density-based clustering (i. e., clus-
ters are defined as exceeding a certain density of data points over a defined
region), and grid-based clustering (i. e., the data space is overlaid by a grid, grid
cells containing similar structures are merged).

The remaining criteria are structured into functional and non-functional ones.

Functional Criteria. The distinct algorithmic methods yield different cluster
shapes (CS), distinguishing spherical, rectangular or arbitrarily shaped clusters.
Besides, it is investigated if a technique can handle clusters which overlap (CO).
For analysis properties, we consider spatial analysis properties (SA), i. e., what
kind of spatial data is internally processed by the algorithm, temporal analysis
properties (TA), i. e., time instants or intervals, temporal patterns (TAP), i. e.,
linear or cyclic time patterns, and the focus of the analysis (F), i. e., if spatial
and temporal aspects are handled equally or if one is favored without ignoring
the other. We evaluate if the techniques support dedicated handling of noise (N)
within the data set and furthermore investigate the employed similarity measures
(SM) and the determinism of the produced results (D).

Non-functional Criteria. These criteria comprise the configurability (C) of the
approaches, reflecting towhichdegree the clustering technique canbe tweaked, and
the computational complexity (CC). Furthermore, we examine whether and which
optimization strategies (O) are provided,whichwould be beneficial in reducing run-
time, however might also affect the quality of the obtained clustering result.

4 Survey of ST Clustering Techniques

In the following we present our selection of techniques, and group and analyze
them according to our criteria.

4.1 Rationale behind the Selection of Techniques

We carefully selected ST clustering approaches ranging from very recent ones
on the one hand, to several more mature ones on the other hand to provide a
broad overview of the field of ST clustering. We did not include visually aided
approaches (e. g., Andrienko et. al [2]) in our survey as they contradict our
approach to complement the configuration of SAW systems in a more data-
driven way because a purely user-guided clustering approach again has to be
steered by a domain expert.

In the following, we structure our discussion into three groups according to the
kind of evolution the techniques consider. The rationale behind these categories
is that algorithms from the different groups share several properties, which is
reflected in the evaluation criteria tables.
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Fig. 2. Situation Awareness Criteria Table

The first group comprises techniques that do not entail any evolution (NE),
like clustering ST events (i. e., grouping events in close or similar regions) or
ST groups (i. e., finding regions sharing similar physical properties over time).
Techniques for trajectory clustering (i. e., grouping similar trajectories) deal with
the evolution of objects that move along these trajectories (OE). And finally, the
area of moving-object clustering (i. e., discovery of groups of objects moving to-
gether during the same time period, so called moving clusters) and the detection
of spatio-temporal trends (e.g., disease outbreaks) deal with the evolution of
clusters over time (CE).

4.2 Lessons Learned

Our evaluation of ST clustering approaches for the field of SAW has revealed
interesting peculiarities of current clustering techniques. In the following, we
explain our findings grouped according to our evaluation criteria (cf. also Figure
2, 3 and 4). Note that a tick in parentheses means that the criteria is only partly
fulfilled by the approach.

Evolution Mostly Supported (E). Algorithms from the NE group work with
objects in fixed locations and thus do not support spatial evolution at all. All
other techniques allow for moving objects.

Spatial and Temporal Extent Not Handled (SP, TP). None of the sur-
veyed techniques can handle anything but spatial points or temporal instances —
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lines, rectangles or temporal intervals are not dealt with. Hence, currently none
of the approaches is able to directly deal with the heterogeneity (HID) criterion.

Fuzziness of Data Is Not an Issue (FID). All of the approaches treat objects
as facts and do not consider any uncertainties, except Jensen et al. [16] who
consider that objects might disappear without notifying the server and reduce
the confidence in the assumed object movement as time passes.

Almost NO Context Knowledge Supported (CID). Most of the algo-
rithms work without any knowledge of context and do not allow any further
information than a data set and parameter values. Exceptions are techniques
that cluster the objects backed by a network graph (e. g., [5]), or techniques that
make use of velocity information for moving objects (e. g., [16], [23]).

Techniques Mainly Focus on Offline Clustering (OOA). While the sur-
veyed techniques mainly aim at offline clustering of closed data-sets, only few
exceptions (from each group) allow online clustering of ever-changing data-sets
(e. g., [32], [10], [16]).

Majority of Algorithms Is Density-Based (AC). Our survey comprises
clustering techniques from all classes of algorithms, whereby OE techniques are
usually density based, while CE techniques cover all algorithm classes.

Predominance of Arbitrarily Shaped Clusters (CS). OE and NE techniques
mostly result in arbitrary clusters, whereas clusters produced by CE techniques
are often restricted to spherical or rectangular shape (e. g., [14], [30]).

Cluster Overlap in CE Techniques (CO). Overlapping clusters are only
considered by few of the techniques mostly from the CE group (e. g., Kalnis et
al. [18]). These approaches are able to detect different clusters moving through
each other and can keep them separated until they split again.

Spatial Analysis Properties Highly Dependent on Intent of Analysis
(SA). While NE and CE techniques are focused on clustering data points, OE
techniques mostly deal with clustering of lines, since a trajectory can be inter-
polated to a line. Li et al. [23] first group the objects into micro-clusters (i. e.,
small regions) and then combine these regions to complete clusters. However, as
they cluster the micro-clusters center points, they also deal with points only.

Only Temporal Instants (TA) and Linear Patterns (TAP). Linear pat-
terns for time instants are predominant in the surveyed approaches, while other
temporal properties like cyclic time patterns or intervals are unhandled in the
majority of cases, especially by CE techniques. Only Birant et al. [4] include
cyclic time patterns, and Nanni et al. [27] consider time intervals.

Focus on ST data (F). Most of the techniques are focused on handling the
specific nature of ST data. However, there are several spatial-data dominant
techniques originally stemming from the field of spatial clustering, enriched with
the ability of dealing with temporal data aspects (e. g., [4], [32]). Only Nanni et
al. [27] presented a temporal-data dominant variation of their algorithm.

Sparse Explicit Noise Handling (N). As most of the proposed techniques
extend well-known clustering algorithms to work with ST data, the handling
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of noise highly depends on the abilities of the underlying base algorithm. An
example for an often used algorithm is DBSCAN [6], which is generally tolerant
to noise, although it is prone to errors if clusters of different densities exist. Only
Birant et al. [4] and Rosswog et al. [30] explicitly address the topic of noise and
inconsistencies by proposing an additional density parameter or a stability filter.
As detection of noise might be used to find ST outliers, approaches that deal
with anomalies might be applicable in different ways within an SAW system.

Euclidean Distance as Similarity Measure (SM). Regarding similarity
measures, most authors make use of an adjusted version of the Euclidean distance
(ED) (e. g., weighted ED, squared ED). Obvious exceptions are Chen et al. [5]
who operate on a network graph and thus use a network distance and some
special approaches that do not require a similarity measure at all (e. g., [33]).
A border case is the similarity measure used by Tai et al. [32], who define their
own cost function looking similar to the ED, considering only (what they call)
optimization attributes, thus excluding spatial components.

Mostly Deterministic Techniques (D). Only few of the techniques use
heuristic approaches to deliver fast, but more inexact results (e. g., Iyengar et al.
[14] who propose a heuristic cluster search because of the huge search space).

Various Levels ofConfigurability (C).The number of parameters ranges from
none or automatically approximated to up to seven parameters. For instance,
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DBSCAN-based algorithms usually require a minimum number of points per
cluster and a desired cluster radius, while grid based clustering techniques re-
quire a grid-cell border length. We highlight the approach by Wang et al. [33],
where parameters can be chosen arbitrarily, but might be approximated by an
optional technique, thus offering a hybrid approach of parameter settings.

Computational Complexity Rarely Included (CC). Most authors did not
provide the computational complexity of their approaches. Noticeable is the grid
based algorithm proposed by Wang et al. [33] that has the advantage of a linear
runtime complexity, as a single iteration of the grid is sufficient to discover
ST clusters.

Few Optimization Strategies (O). Only some of the authors suggest usage
of special optimization strategies, like indexes or pruning. Some authors sug-
gest different variants of their algorithms, offering a trade-off between execution
efficiency and quality of results. For example Tai et al. [32] suggest an exact
technique for cluster discovery, and a second variant that is more efficient in
execution, but might not yield the best results.

4.3 Conclusion

In this paper we focused on ST clustering approaches in the domain of SAW.
We proposed evaluation criteria stemming from the field of SAW on the one
hand and from the field of ST data mining on the other hand, to evaluate the
approaches with respect to their applicability to the field of SAW.

Summing up, we state that none of the surveyed approaches fulfills all the
criteria stemming from the special nature of data in SAW systems. Spatial and
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temporal extent (SP) as well as cyclic time patterns (TAP) are not the focus of
ST clustering techniques. Also fuzzy input data (FID) is not handled in the pre-
dominant number of cases and only few online approaches (OOA) exist. As long as
no appropriate techniques are available, we suggest transformation of the input
data to enable application of the clustering techniques reviewed in this survey
(e. g., only the starting points of traffic jams could be used for clustering, in order
to apply techniques operating on point input data only and thus discarding the
information about their extent).
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