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Abstract: Information overload is a severe problem for human operators of large-scale control systems, for instance,
in road traffic management. In order to determine a complete and coherent view of the overall situation
(i. e., gain situation awareness), an operator of such a system must consider various heterogeneous sources
providing streams of information about a large number of real-world objects. Since the usage of ontologies has
been regarded to be beneficial for achieving situation awareness, various ontology-driven situation awareness
systems have been proposed. Coping with evolving and volatile individuals in ontologies, however, has not
been their focus up to now. In this paper, we describe how concepts from data stream management systems and
stream reasoning, such as sliding windows, continuous queries, and incremental reasoning, can be adjusted
to support reasoning over highly dynamic ontologies for situation awareness. We conclude our paper with a
prototypical implementation and a discussion of lessons learned, pointing to directions of future work.

1 INTRODUCTION

Gaining situation awareness in data streams. In-
formation overload is a severe problem for operators
of large-scale control systems, such as encountered
in the domain of road traffic management (RTM). In
order to determine a complete and coherent view of
the overall (traffic) situation, an operator of such a
system must consider heterogeneous sources, such as
traffic jam detectors and traffic incident reports, pro-
viding information streams about a large number of
objects. In order to reduce information overload, sit-
uation awareness (SAW) systems, according to End-
sley (Endsley, 2000), support operators by pointing
them to relevant information during (i) perception of
objects (e. g., a traffic jam), (ii) comprehension of cur-
rent situations (e. g., a wrong-way driver approaches a
traffic jam), and (iii) projection of situation evolution
(e. g., a wrong-way driver may cause an accident).
Ontology-driven situation awareness systems.
Since the usage of ontologies is beneficial for SAW
(Llinas et al., 2004), various ontology-driven SAW
systems representing data streams in ontologies, for
instance (Baumgartner et al., 2010), (Kokar et al.,
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2009) have been proposed. In contrast to tradi-
tional ontology-driven information systems focusing
on query answering (cf. (Buccella et al., 2009) for
a recent survey), SAW systems often operate on data
streams resulting from constantly monitoring the en-
vironment under control. This entails, that reason-
ing components, such as a situation assessor deter-
mining the current situation, must process a highly
dynamic ontology comprising evolving (e. g., a grow-
ing traffic jam) and volatile individuals (e. g., an ac-
cident). Although ontology-driven approaches in the
area of situation awareness exist, coping with evolv-
ing and volatile individuals in ontologies has not been
the focus up to now1. In this paper, we describe how
concepts from data stream management systems and
stream reasoning, such as sliding windows, contin-
uous queries, and incremental reasoning, can be ad-
justed to support reasoning for SAW.
Challenges of highly dynamic ontologies. In or-
der to establish a basis for describing the challenges
of highly dynamic ontologies in situation awareness,
in the following a brief overview of major reason-
ing components of an SAW framework (Baumgartner
et al., 2010) is given. As part of applying this frame-

1Note, that the research field of ontology evolution (Har-
tung et al., 2011) focuses on a different problem, namely the
evolution of the schema level of ontologies.



work to a particular domain, adaptors and domain
mappers resolve structural and semantic heterogene-
ity by representing information from a data stream
first as individuals of a domain ontology, which is
then mapped into a core ontology. This core ontol-
ogy characterizes objects by attributes (e. g., loca-
tion). The history of an object is described in terms
of changes to their attributes, assigning to each at-
tribute value a temporal validity and a direct prede-
cessor. Due to frequent updates in the underlying data
streams, the core ontology comprises highly dynamic
individuals. Framework components must cope with
these dynamic individuals as detailed below.

First, on the perception level a chronologically
consistent ordering of attribute values in the face
of arbitrary update sequences across multiple data
streams must be established. For example, a traffic
jam detector may report a traffic jam without delay,
possibly resulting in a radio station report arriving
later in time, but actually describing the jam’s state
that was valid before. During this ordering, a change
collector avoids propagating undeterministic update
frequencies of underlying data streams to components
on higher levels by collecting updates into batches.
Second, on the comprehension level attribute values
determine relations between objects, which are fur-
ther aggregated to situations (task of a situation as-
sessor, cf. (Baumgartner et al., 2010) for details).
Hence, the challenge in data streams is to handle rea-
soning complexity by appropriately chosing the size
of sliding windows providing a view on data streams.
Structure of the paper. Section 2 discusses related
work from data stream management and stream rea-
soning, as a basis for Sect. 3 and Sect. 4 applying con-
cepts from these research communities to SAW. Sec-
tion 5 describes a prototypical implementation, and
Sect. 6 lessons learned and further research directions.

2 RELATED WORK

In this section, we discuss concepts from data stream
management systems forming the basis for closely re-
lated work from the area of stream reasoning. In data
stream management systems (DSMS), various con-
cepts for handling the dynamic nature of data streams
have been described (cf. (Golab and Ozsu, 2003) for
a comprehensive overview of these concepts): Fixed,
landmark, and sliding windows2 constrain the size of
an ever increasing data stream to those elements being
relevant for query execution. Common practice is to

2Fixed windows have two fixed ends, landmark win-
dows have one fixed and one sliding end, and sliding win-
dows have two sliding ends (Golab and Ozsu, 2003).

define the size either in terms of time or information
item count (Golab and Ozsu, 2003). DSMS either sup-
port continuous queries over such sliding windows in
a monotonic fashion (i. e., assume that newly arrived
information do not affect previous query results), or
in a non-monotonic manner (i. e., may need to re-
evaluate previous results). Such concepts are success-
fully applied, e. g., in context aware systems for con-
tinuous spatial queries (Farrell et al., 2011). Focusing,
however, on information processing without consider-
ing rich background knowledge, DSMS are utilized for
querying rather than reasoning. In constrast, existing
semantic technologies supporting reasoning assume
static knowledge (Stuckenschmidt et al., 2010). The
exploitation of concepts from both worlds is the focus
in stream reasoning (Stuckenschmidt et al., 2010).

In stream reasoning, as part of the LarKC project,
various concepts have been proposed on the basis of
DSMS (Barbieri et al., 2010), (Stuckenschmidt et al.,
2010), (Valle et al., 2009). Della Valle et al. (Valle
et al., 2009) describe two complementary stream rea-
soning frameworks: (i) combining data stream man-
agement systems with standard reasoners and (ii) ex-
tending existing query languages, such as SPARQL.
In our work, we follow the first approach by using
adaptors for resolving structural heterogeneity be-
tween data streams and applying standard reasoners
in SAW reasoning components. In the terminology
of Della Valle et al, these adaptors and SAW rea-
soning components are called transcoders and pre-
reasoners, respectively. Besides the basic task of at-
taching timestamps to RDF triples (Barbieri et al.,
2010), (Valle et al., 2009), these approaches, however,
do not focus on sorting those triples describing object
attributes into a chronologically consistent manner.
Concerning comprehension-level challenges, Barbi-
eri et al. (Barbieri et al., 2010) handle updates to ma-
terialized deductions whenever new information en-
ters the sliding window. Exceeding their fixed win-
dow sizes, we additionally present concepts for dy-
namically adjusting windows. For non-monotonic
continuous queries, which are necessary in the pres-
ence of deleted and changed facts, we utilize prove-
nance information in our ontology for tracking deduc-
tions back to the facts they base upon and re-evaluate
deductions only when necessary.

In summary, current stream reasoning approaches,
although taking a first step by utilizing general DSMS
concepts, have not yet focused on major challenges
in situation awareness, in particular, (i) handling of
arbitrary update sequences, and (ii) adjusting sliding
window sizes. In the following sections, we describe
stream approaches to SAW, focusing these challenges
on the perception and comprehension level.



3 STREAM PERCEPTION

Adjusting update frequency. Since the underlying
data streams in road traffic management are indepen-
dently maintained and highly dynamic, frequent data
updates at arbitrary times can occur. Each of these up-
dates may cause subsequent processing steps of fur-
ther components on the perception, comprehension,
and projection level. In order to avoid high perfor-
mance overhead caused by consecutive, temporally
close updates, a change collector aggregrates incom-
ing updates from the underlying data streams (in a
similar manner as, for instance, context aggregators
(Dey, 2000)). Thereby, the change collector moves
forward a sliding window at configurable time inter-
vals, allowing the execution of subsequent compo-
nents on batch updates. As an additional task, the
change collector marks updated objects, thus enabling
subsequent components to work incrementally.
Chronologically sorting attribute value changes.
As a result of arbitrary update sequences, the temporal
intervals describing validity of attribute values may be
in arbitrary order as well. To achieve a chronologi-
cally correct ordering of attribute values, the topolog-
ical relationship between such temporal intervals is of
major importance. We utilize Allen’s interval algebra
(Allen, 1983), being perhaps the most established top-
logical temporal calculus, in order to describe topo-
logical relations between attribute valid time inter-
vals. Following Allen’s interval algebra, the data
source update sequences of the valid time of a previ-
ous and a current attribute value result in 13 possible
update cases (e. g., attribute valid times may overlap,
or one may be contained in another). In case multiple
attribute values are in conflict, strategies developed
in the data integration community can be used to re-
solve such conflicts. A detailed discussion of possible
strategies can be found in (Bleiholder and Naumann,
2008), two sample strategies are depicted in Table 1.
In this example those cases making fusion necessary
are shown (i. e., the valid time of previous informa-
tion and that of an update start or finish at the same
time, one is during the other, or both are equal to each
other). By applying the strategy Take the Information
(Bleiholder and Naumann, 2008), information newly
added to the sliding window (top bar) is preferred over
previously added information (bottom bar), whereas
by applying the strategy Trust your Friends (Blei-
holder and Naumann, 2008), information of a partic-
ular data stream (bottom bar) is preferred over infor-
mation of another stream (top bar).

After consolidating incremental information from
data streams into an integrated ontology, comprehen-
sion of current situations can take place.

Table 1: Comparison of sample fusion strategies.

Relation Illustration Take the Information Trust your Friends

Starts |------| |------|
|------------| |------| |------------|

During |------| |------|
|------------| |---| |--| |------------|

Finishes |------| |------|
|------------| |------| |------------|

Equal |------| |------|
|------| |------|

4 STREAM COMPREHENSION

In order to support human operators in their com-
prehension of current situations, especially relevant
is the description of relations between objects (e. g.,
close to) (Barwise and Perry, 1983). In SAW sys-
tems, this task is the responsibility of situation as-
sessment algorithms, which derive relations between
objects from object attributes and aggregate these re-
lations to situations (cf. (Baumgartner et al., 2010)
for details). In order to restrict situation assessment
to the most relevant types of situations only, many
SAW systems (e. g., (Kokar et al., 2009)) use rules for
defining which types of relations must be derived be-
tween which types of objects. For example, the sit-
uation type AccidentNearTrafficJam could be de-
fined as a rule stating that such a situation should be
reported, if an object of type Accident is in a rela-
tion of type Near with an object of type TrafficJam,
but only when the accident occurred During the life-
time of the traffic jam. Such rules in an SAW system
represent reasoning goals for continuous processing
(Barbieri et al., 2010). Since satisfying these rules
involves pairwise comparison of objects for each pos-
sible relation (Baumgartner et al., 2010), sliding win-
dow size is of crucial importance to reduce compu-
tational effort. Sliding window size can be adjusted
either statically on the basis of situation and object
types or dynamically on the basis of current instances
thereof, as described in the following paragraphs.
Statically adjusting sliding windows on the basis of
situation rules. A central question in reasoning over
data streams is concerned with finding the appropriate
size of the sliding window. A large window size re-
sults in a large number of objects contained in the slid-
ing window, thereby lowering situation assessment
performance, whereas choosing a small window size
results in the risk of missing relevant situations. The
types of these situations, and in particular the rules
defining how such a situation can be detected, how-
ever, provide valuable clues for defining an appropri-
ate window size. As a first hint, types of relations
describing temporal distance between objects define
upper bounds for the size of sliding windows. Tempo-



Table 2: Relation types and relevant information about valid
time intervals.

1st Valid Time 2nd Valid Time Relation Illustration
?------| |-----? Before |------|

|------|
|------? ?-----| After |------|

|------|
?------| |-----? Meets |------|

|------|
?------| |-----? Meets |------|

Inverse |------|
|------| |-----| Starts |------|

|------------|
|------| |-----| During |------|

|------------|
|------| |-----| Finishes |------|

|------------|
|------| |-----| Equal |-------|

|-------|

ral relation types concerning the topology of intervals
(e. g., the relation type During used above), however,
do not define such clear-cut boundaries. Rather, they
depend on valid times of the involved objects. For
adjusting sliding windows to fit such relation types,
we can only provide experience-based boundaries ob-
served from real-world object evolution (e. g., acci-
dents are typically cleared within two hours). Such
experience-based boundaries, however, bear the risk
of missing relevant situations. In order to find all rel-
evant situations, we must dynamically adjust sliding
windows on the basis of both, situation rules and cur-
rent objects, as discussed below.
Dynamically adjusting sliding windows depending
on current objects. Temporal relation types with-
out clear boundaries, such as topological relations be-
tween time intervals, make it necessary to define slid-
ing windows not in terms of statically fixed bound-
aries, but in terms of the objects contained in them.
Table 2 lists the information about valid time inter-
vals being relevant for defining sliding window sizes
that are sufficiently large to satisfy Allen’s interval al-
gebra (Allen, 1983).

From this table showing Allen’s interval relations,
we see that the relation After should only be used in
combination with temporal distance relations. Other-
wise, objects can never be removed from the sliding
window, since at any time other objects occurring af-
ter them may be added to the sliding window.

5 Prototypical Implementation

In this section, we describe the software infrastructure
of our prototypical implementation and its application
in RTM on real-world information from the Austrian
highways agency3.

3http://www.asfinag.at
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Figure 1: Components in a pipes-and-filters architectural
style.

Software infrastructure. Our infrastructure is
largely based on Java and the Jena Semantic Web
Framework4. For OWL reasoning within Jena, we use
the Pellet OWL Reasoner5 offering reasonable perfor-
mance. For situation assessment, which accesses ob-
ject information extensively, we additionally use the
RDF triple store AllegroGraph6 for its in-server rea-
soning capabilities (Baumgartner et al., 2010). Alle-
groGraph is a client-server system that integrates with
Jena and Pellet on the client side. On the server side,
AllegroGraph provides a Prolog and Common Lisp
environment which both are employed for developing
the algorithms of our SAW framework.
Arrange reasoning components in a pipeline. Em-
ploying the described software infrastructure, in this
paragraph we discuss the application of the well-
known software architectural style pipes-and-filters
(Buschmann et al., 1998) with respect to data stream
processing. In this architectural style (cf. Fig. 1),
processing components—filters implementing parts
of the three levels of SAW, e. g., a situation asses-
sor supporting comprehension—are arranged in a
consecutive manner by connecting them with pipes
(e. g., implemented using plain method calls or Java
RMI communication), forming altogether a process-
ing pipeline. In such a pipeline, filters depend only
on the results of their direct predecessors, and hence,
processing of elements in a data stream can be paral-
lelized. Let us discuss the design of these filters mak-
ing them pluggable components in detail. Each filter
contains its own volatile, A-box and a pipe connect-
ing the filter to the A-box(es) of the succeeding fil-
ters(s) (cf. (Baumgartner et al., 2008)). A filter listens
for updates to this input A-box, computes inferences
upon these updates using a local OWL DL and rule
reasoner, and writes the results into its output A-box
and the referenced succeeding A-box(es). Thereby,

4http://jena.sourceforge.net
5http://pellet.owldl.com
6http://agraph.franz.com



just the A-box statements that are relevant for the fol-
lowing filter(s) are handed over via pipes, resulting in
mutually shared A-box(es). The individuals in these
shared A-boxes are consistent with the concepts in
a shared T-box: Each filter defines the expected in-
put vocabulary (i. e., individuals written to its input
A-box must be consistent with respect to the input
T-box), as well as the output vocabulary it complies
with (i. e., each filter guarantees to produce only indi-
viduals that are consistent with respect to the output
T-box). As a result, filters in a processing pipeline can
be arranged in an arbitrary manner, as long as neigh-
boring filters agree on a shared T-box. In case such an
agreement cannot be established, additional domain
mappers must be inserted between them, which medi-
ate between filters by mapping the concepts of a pre-
ceding filter to concepts understood by a succeeding
one.

Preliminary performance results. We obtained pre-
liminary performance test results describing the per-
formance of the situation assessor component, since
this component is the slowest filter in our process-
ing pipe due to pairwise object comparisons being
performed between all objects in its sliding window.
Note, that in our current prototypical implementa-
tion, sliding windows are only adjusted statically,
while the implementation and evaluation of dynam-
ically adjusting sliding windows is part of our fu-
ture work. The performance tests were run upon
real-world traffic data recorded centrally for Austrian
highways over a period of four weeks. These data
are reported by multiple heterogeneous sources, com-
prising (i) a roadworks management system that pro-
vides information about scheduled roadworks, traffic
restrictions, and expected traffic jams, (ii) a traffic jam
detection system that reports traffic jams which are
automatically detected, (iii) an incident management
system that provides manually entered traffic-related
incident data, and (iv) a nation-wide broadcasting sta-
tion that provides diverse traffic information, ranging
from incidents and traffic jams to poor driving condi-
tions. The recorded data set used for this evaluation
consists of 28,616 distinct traffic objects, comprising
25,269 traffic jams, 820 road works, 1,803 other ob-
structions, 614 accidents, 46 wrong-way drivers, and
64 severe environmental conditions, such as snow or
ice on the road. Currently, a rather small number of
approximately 250 traffic objects and their associated
information are active at the same time (i. e., should
be part of the statically adjusted sliding window).

The test case design is influenced mainly by (i)
the number of objects to be compared, i. e., the size
of the sliding window, ranging from 10 to 500 objects
(N10, N50, N100, N500), and (ii) the focus of situa-

tion types: a low focus means that a situation type is
rather general and therefore results in many matches,
whereas a high focus means that a situation type is
very specific (F1: low focus, F2: high focus). We
measured two performance indicators, being indepen-
dent of the execution environment: (i) the number of
direct object comparisons (CMP), and (ii) the number
of derived relations (REL). Fig. 2 summarizes the test
results. Unsurprisingly, the size of the sliding window
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Figure 2: Evaluation test results.

dramatically influences the performance of the situa-
tion assessor, since it compares objects within its slid-
ing window in a pairwise manner. However, the effect
on runtime performance can be counteracted with cor-
rectly focused situation types (i. e., by configuration
of the situation assessor): low-focused situation types
(cf. F1) lead to a more than tenfold increase of pair-
wise object comparisons compared to F2 (just to give
a runtime estimation, the 184 comparisons of N50 in
F1 take up 16.8 seconds on our test machine—AMD
Athlon 64 3500+ with 1.8 GB RAM).

6 CONCLUSION

In this section, we present lessons learned from im-
plementing and evaluating the framework in RTM and
indicate directions for future work.
Knowledge about window size boundaries makes
issuing warnings possible. In order to comply with
real-time constraints for situation assessment (e. g.,
report critical situations to human operators within
one minute), during intervals of extensive traffic, such
as beginnings of holidays or periods of heavy snow
fall, it may be necessary to reduce the sliding win-
dow size. With knowledge from relation types used
in particular situation rules, however, in such a case
we are at least able to issue warnings to human opera-
tors, bringing to their attentation that particular types
of situations will potentially be missed.
Pipes mediate between filters with different push-
pull processing characteristics. Reasoning compo-
nents in an SAW system may exhibit different data
stream processing characteristics, such as pro-actively
pulling information from a pipe (e. g., upon execution



of a user query) or re-actively waiting for the pipe to
push new information into the component (e. g., when
new information is reported by an automated system).
Different kinds of pipes, such as pipes buffering the
results of a preceding filter for being pulled from it
later, are therefore necessary to bridge between adja-
cent reasoning components with different processing
characteristics. Such buffering pipes may also flatten
data stream peaks, allowing a slower filter to catch up
with a faster one during intervals of reduced load.
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