
On the Evolution of Modeling Ecosystems:
An Evaluation of Co-Evolution Approaches

Juergen Etzlstorfer, Elisabeth Kapsammer and Wieland Schwinger
Johannes Kepler University, Linz, Austria

firstname.lastname@cis.jku.at

Keywords: Model-Driven Engineering, Evolution, Co-Evolution, Modeling Ecosystems.

Abstract: In Model-Driven Engineering, several artifacts together form a so-called modeling ecosystem, comprising
metamodels defining prevailing concepts of a domain and depending artifacts using these concepts. However,
evolutionary pressure causes the need for changes in the metamodel, necessitating all artifacts in the modeling
ecosystem to migrate to again conform to the evolved version of the metamodel, i.e., they have to co-evolve
accordingly. Several approaches for the co-evolution of artifacts have been proposed, however, they differ
substantially from each other and, thus, an in-depth investigation of these approaches is needed to allow for a
systematic comparison. Therefore, the contribution of this paper is a dedicated evaluation framework for co-
evolution approaches focusing on aspects relevant in the context of modeling ecosystems, and its application
to a representative set of recent approaches. Based on this evaluation lessons learned as well as future research
lines are presented.

1 INTRODUCTION

In Model-Driven Engineering (MDE) (Bézivin,
2005), the usage of models is promoted to perform
different phases of the software development life-
cycle on a higher-level of abstraction. Thereby, meta-
models are the central artifacts defining domain con-
cepts, their relationships as well as constraints among
each other, constituting the basis other modeling arti-
facts rely on. The most prominent artifacts depending
on the metamodel are models instantiating concepts
from the metamodel, and transformations using the
concepts described in the metamodel to generate or
manipulate models (Brambilla et al., 2012; Sendall
and Kozaczynski, 2003). Besides these prominent
representatives, other depending artifacts like tools
and concrete syntaxes might also be present. The
metamodel together with its depending artifacts forms
a so-called modeling ecosystem (Di Ruscio et al.,
2012), in which different artifacts have different kinds
of relationships and dependencies to the metamodel
and among each others. For example, a model is in-
stantiating concepts defined in the metamodel, while
transformations refer to the concepts in their trans-
formation definitions. In this context, it is of utmost
importance that all artifacts are in a valid state, i.e.,
they have to satisfy the given relationships, both with
respect to the metamodel, as well as to each other, in

order to preserve the operability of the whole model-
ing ecosystem.

As a matter of course, ecosystems are not static.
Due to evolution, e.g., caused by changing require-
ments, metamodels might change, necessitating all
depending artifacts in the ecosystem to be migrated
to be again valid with respect to the evolved version
of the metamodel, i.e., they have to co-evolve. Since
the distinct kinds of artifacts existing in an ecosystem
may hold different kinds of relationships, each kind
of artifact has to be treated specifically. Thus, migra-
tion is not limited to one kind of artifact, only, but in
fact has to be performed for all kinds of depending
artifacts, entailing the risk of introducing divergence
between the various migrations leading to inconsis-
tencies (Kusel et al., 2015). Discovering and elimi-
nating already introduced inconsistencies is a tedious
task, since they might spread across all artifacts in the
ecosystem.

Although several approaches for the co-evolution
of modeling artifacts exist, e.g., (Rose et al., 2010b;
Herrmannsdoerfer et al., 2009) for models, and (Lev-
endovszky et al., 2010; Méndez et al., 2010) for trans-
formations, they differ substantially from each other
regarding their capabilities with respect to modeling
ecosystems, since in a more ecosystem-wide perspec-
tive the artifacts in the ecosystem are multiple. Fur-
thermore, there are several aspects in co-evolution

90
Etzlstorfer, J., Kapsammer, E. and Schwinger, W.
On the Evolution of Modeling Ecosystems: An Evaluation of Co-Evolution Approaches.
DOI: 10.5220/0006167900900099
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 90-99
ISBN: 978-989-758-210-3
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

that are essential in the context of an ecosystem-wide
perspective, in contrast to an isolated view on one
kind of artifact, only. Thus, an in-depth investigation
of existing co-evolution approaches is needed to allow
for a systematic comparison.

Therefore, in this paper our contribution is three-
fold: We (i) elaborate the relationships between arti-
facts in modeling ecosystems, which further build the
basis for (ii) an evaluation framework for the compari-
son of co-evolution approaches with special respect to
modeling ecosystems. Furthermore, we (iii) apply the
evaluation framework to state-of-the-art co-evolution
approaches and draw lessons learned from the eval-
uation which outline current drawbacks and possible
future research lines. With respect to evolving and de-
pending artifacts, this paper focuses on metamodels
as evolving artifacts and models and transformations
as depending artifact, respectively. This is conform
with related research and existing approaches. Nev-
ertheless, the findings presented in this paper as well
as the general parts of the evaluation framework are
applicable to arbitrary other modeling artifacts, too.

The paper is organized as follows: The next sec-
tion explores modeling ecosystems and the relation-
ships between artifacts in these ecosystems, while in
Section 3 the evaluation framework is presented and
applied on current approaches. In Section 4 we dis-
cuss lessons learned, while Section 5 presents related
work. Finally, Section 6 concludes the paper.

2 EVOLVING MODELING
ECOSYSTEM

In practicing MDE, a model does not come alone, but
in fact it is interwoven in a diversity of different arti-
facts that may depend on each other, thereby building
a modeling ecosystem (Di Ruscio et al., 2012). More
precisely and with respect to evolution of modeling
ecosystems, we differentiate the artifacts in metamod-
els and their depending artifacts, being again spe-
cialized into different kinds of artifacts, like mod-
els, transformations, and tools, as shown in Figure 1.
Thus, the metamodel can be seen as a central artifact,
defining the prevailing concepts of a domain, which
are utilized in other artifacts, that therefore depend
on the metamodel. This general dependency may be
refined for each kind of artifact living in the model-
ing ecosystem. For example, in case of models that
conform to their respective metamodels this confor-
mance relationship is a refinement of the more gen-
eral depends on relationship. Regarding transforma-
tions, they conform to their transformation metamodel
defining the syntactic constraints of transformation

definitions, but additionally, have dependencies on
the source domain and target domain employed in
the transformation definition. Furthermore, other de-
pending artifacts like concrete syntax specifications
and tools assisting the modeler in diverse tasks, might
live in the ecosystem having their specific dependen-
cies on the metamodel.

However, artifacts in the modeling ecosystem are
not static entities but in fact are subject to evolu-
tion, e.g., due to changing requirements. Each artifact
might undergo changes (denoted as curved yellow
arrows in Figure 1) which might impact depending
artifacts (denoted as angled yellow arrows). Please
note that the color-intensity indicates the concrete-
ness of the impact, i.e., a more transparent arrow in-
dicates a more abstract impact. As one might see,
an evolution of the ModelMM impacts all conforming
models as well as all transformations that are either
source- or target-domain-conform to it. In addition,
all other artifacts depending on the ModelMM might
be impacted as well. Analogously, changes on the
TrafoMM impact the conformance of all transforma-
tions depending on this metamodel. In this context,
we do not explicitly differ between graph transfor-
mations, bi-directional transformations, or plain text-
based transformations, since the conceptual work pre-
sented in this paper is applicable to both of them. In
general, the kind of dependency determines the im-
pact of a metamodel change on the depending artifact,
thus, the impacts are specific for each kind of depen-
dent artifact.

In order to be operable, the modeling ecosystem
has to be in a consistent state, i.e., all artifacts have to
hold valid relationships to the metamodel and across
each other. However, due to their dependencies the
artifacts may influence each other, e.g., in case of evo-
lution when changes are applied on one artifact in the
ecosystem and might render the ecosystem inconsis-
tent, necessitating a corresponding migration of the
affected artifacts. The inter-dependencies between
the artifacts demand for an ecosystem-wide perspec-
tive and, thus, an ecosystem-wide migration across all
artifacts to re-establish the consistency and preserve
the operability of the modeling ecosystem is needed.

In the following, the relationships in a modeling
ecosystem are discussed in more detail, to highlight
the impacts of evolution.

2.1 Relationships in a Modeling
Ecosystem

In order to understand the inter-dependencies between
the different kinds of artifacts, in the following, the
relationships in a modeling ecosystem are identified

On the Evolution of Modeling Ecosystems: An Evaluation of Co-Evolution Approaches

91

Artifact

Metamodel
Depending
Artifact

ModelMM TrafoMM

Model Transformation

targetDomainConformsTo

sourceDomainConformsTo

conformsTo

conformsTo
operatesOnSource
operatesOnTarget

dependsOn

Evolution Impact of Evolution

Tool …

evolving artifact depending artifact

<<refines>>

dependsOn

<<refines>>

Legend must refer to
same MM

Figure 1: Relationships in a Modeling Ecosystem.

and discussed, based on studied literature (e.g., (Rose
et al., 2010a; Di Ruscio et al., 2011; Bézivin, 2005;
Méndez et al., 2010)) as well as our own experiences
and findings. Therefore, the most generic relationship
is presented first, while refinements for models and
transformations are subsequently discussed.

• dependsOn: All artifacts in the modeling ecosys-
tem depend on a metamodel in general, whereas
the kind of dependency has to be specialized for
each kind of artifact, since the dependsOn rela-
tionship does not impose any constraints on the
validity of this relationship between the meta-
model and other modeling artifacts. This kind
of relationship might not have a formalized rep-
resentation, but can relate arbitrary artifacts to
the metamodel in general, as for example GMF
models1 (Di Ruscio et al., 2011). Consequently,
the dependsOn relationship is the most generic
dependency relationship between artifacts in the
ecosystem and is refined by other dependency re-
lationships.

• conformsTo: The most prominent refinement of
the dependsOn relationship in a modeling ecosys-
tem holds between a model and its according
metamodel. More strictly, a model conforms
to a metamodel if only concepts that are de-
fined in the metamodel are used, according to
the rules and constraints specified in the meta-
model (Schönböck et al., 2014), e.g., multiplic-
ity constraints. Furthermore, metamodels them-

1https://eclipse.org/modeling/gmp/

selves have to conform to their meta-metamodels,
e.g., MOF (Object Management Group, 2011) or
its open-source implementation Ecore as basis of
the Eclipse Modeling Framework2. Moreover and
as already highlighted in (Bézivin, 2005), model
transformations themselves can be seen as mod-
els that conform to their respective transformation
metamodels, e.g., the ATL metamodel (Jouault
et al., 2008). Thus, an evolution of the metamodel
has impact on the conformsTo relationship of all
depending artifacts, which in response have to co-
evolve to re-establish a broken conformsTo rela-
tionship.

• sourceDomainConformsTo and targetDomain-
ConformsTo: Besides models, transformations
play a vital role in MDE, since they are com-
parable in role and importance to compilers in
high-level programming languages (Kappel et al.,
2012). Model transformations take input models
conforming to a source metamodel and generate
output models conforming to a target metamodel
(cf. Figure 2). The transformation itself has two
different kinds of relationships to the source and
target metamodels, respectively. First, the source-
DomainConformsTo relationship states that in the
source domain of the transformation definition
only concepts from the source metamodel are per-
mitted. In contrast, the targetDomainConformsTo
relationships only holds, if in the target domain
of the transformation definition concepts from the
target metamodel are used, only. In this context,

2https://eclipse.org/modeling/emf/

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

92

Input
Model

Transformation

Output
Model

Source
Metamodel

Target
Metamodel

conformsTo conformsTo

sourceDomain

ConformsTo

targetDomain

ConformsTo

operatesOn

Source

Transformation
Engine

executes

Transformation
Metamodel

conformsTo

operatesOn

Target

Figure 2: Conceptual View on Model Transformations
based on (Czarnecki and Helsen, 2006).

the domain conformances can be seen as specifi-
cations the input/output has to conform to.
Although in (Méndez et al., 2010) the term do-
mainConformsTo for the relation between the
source metamodel and the source domain of the
transformation has been introduced (and analo-
gously the term coDomainConformsTo for the tar-
get representatives), we prefer the terms proposed
in this paper – sourceDomainConformsTo and tar-
getDomainConformsTo – being more intuitive and
precise, since they clearly explicate the respective
source or target roles of the involved metamodels.
Regarding an evolution of a metamodel involved
in a transformation specification, i.e., the source
or target domain, its impact is determined by both
the role of the metamodel, i.e., the source or tar-
get metamodel, and the models it operates on,
since impacts might not only reveal at specifica-
tion time, but also at run-time.

• operatesOn: When having model transformation
as part of the modeling ecosystem, they might be
executed on models, thus, they operate on them.
An important aspect for this relation is that it only
holds if the metamodel of the source model is the
same metamodel as for the sourceDomainCon-
formsTo relationship of the transformation, i.e.,
the transformation operates on a model which is
conform to the source domain of the transforma-
tion. An evolution of a metamodel affects the op-
eratesOn relationship, since the models as well as
the transformations depending on the metamodel
are affected, having a transitive effect on the oper-
atesOn relationship. Thus, by co-evolving the de-
pending artifacts, the operatesOn relationship is
re-established as a result thereof. However, it is of
utmost importance that the co-evolution of mod-
els and transformations is performed consistently,
i.e., following the same strategy, to successfully
re-establish this relationship.

In summary, one might see that modeling ecosys-
tems not only comprise different kinds of artifacts, but
also different kinds of relationships between the arti-

facts and the metamodel as well as between the arti-
facts themselves, which are affected by an evolution
of the metamodel. Consequently, an ecosystem-wide
perspective on evolution and co-evolution is neces-
sary to maintain the operability of a modeling ecosys-
tem. Therefore, in the next section, different aspects
crucial to evolving ecosystems are discussed.

3 ASPECTS OF CO-EVOLUTION

After having discussed the prevailing relationships
in a modeling ecosystem and the impacts of evolu-
tion on them, in this section aspects of co-evolution
with respect to modeling ecosystems are discussed
and proposed as criteria for a corresponding evalua-
tion framework (cf. Section 3.1), which serves for
a subsequent evaluation of existing co-evolution ap-
proaches (cf. Section 3.2).

As shown in Figure 3, the process of co-evolution
in the context of modeling ecosystems spans over four
phases. Starting with a consistent modeling ecosys-
tem in its original version V0, the executed phases
are as follows: (i) change detection, i.e., the identifi-
cation of all applied changes on the metamodel, (ii)
impact analysis, i.e., the determination of impacts of
the applied changes on the diverse kinds of artifacts,
(iii) change propagation, i.e., the actual propagation
of changes to ultimately migrate the artifacts, and fi-
nally (iv) an optional validation of the migrated arti-
facts. The result of this co-evolution process is a con-
sistent ecosystem in its migrated version V1. While
the first phase operates on the changed metamodel,
only, the subsequent phases have to be performed on
each kind of artifact (cf. KA1 - KAn in Figure 3).
Please note that in order to allow for a comprehen-
sive co-evolution of the diverse artifacts, the change
propagation phase has to be in accordance across all
different kinds of artifacts, but is performed on each
artifact individually. The last but optional phase of
validation has to be performed across all depending
artifacts in the ecosystem to ensure both, the confor-
mance of the artifacts to the metamodel and the re-
establishment of inter-dependencies between the arti-
facts, i.e., inter-artifact consistency.

3.1 Evaluation Framework

In the following, aspects of co-evolution in modeling
ecosystems are discussed, which will further serve as
criteria of an evaluation framework for investigating
existing co-evolution approaches (cf. Section 3.2 for
the evaluation). The aspects have been assembled top-
down by deriving criteria from the modeling ecosys-

On the Evolution of Modeling Ecosystems: An Evaluation of Co-Evolution Approaches

93

Change
Detection

MM

Impact
Analysis

KA1

Impact
Analysis

KA2

Impact
Analysis

KA…

C
o

n
s

is
te

n
t M

o
d

e
lin

g

E
c

o
s

y
s

te
m

V
1

Validation

KA1-KAn

Change
Propagation

KA1

Change
Propagation

KA2

Change
Propagation

KA…

Impact
Analysis

KAn

Change
Propagation

KAn

C
o

n
s

is
te

n
t M

o
d

e
lin

g

E
c

o
s

y
s

te
m

V
0

Figure 3: Co-Evolution Process of a Modeling Ecosystem.

tem co-evolution process (cf. Figure 3) as well as
in bottom-up manner by considering related criteria
discussed in literature (e.g., (Paige et al., 2016; Her-
rmannsdoerfer and Wachsmuth, 2014)). The evalua-
tion framework can be easily extended for other mod-
eling artifacts by adding corresponding criteria, while
in the following it is elaborated in detail for models
and transformations.

3.1.1 General Criteria

The first set of criteria is used to determine general
characteristics of co-evolution approaches.

• Evolving Artifact: Changes affecting the ecosys-
tem can be applied on a metamodel (cf. Fig-
ure 1), which might act as the ModelMM, or the
TrafoMM. Regarding the ModelMM, it might fur-
ther act as source or target metamodel of a trans-
formation. Finally, also the evolution of other ar-
tifacts may be dealt with.

• Depending Artifact: As discussed in Section 2.1
the kind of dependency is specific for each kind
of artifact. Depending artifacts mainly comprise
models and transformations but can also include
other artifacts, which are affected by changes to
the evolving artifact.

• Monitoring of Artifacts in the Ecosystem: The
observation of artifacts in the ecosystem might be
advantageous to automatically detect changes in
the ecosystem. Thus, this criterion determines if
an approach monitors any artifact in the ecosys-
tem to alert the user in case of changes.

• Transactions: Transaction support ensures that
artifacts are either completely migrated to their
new version or set back to their initial state.
Transactions may span over different ranges and
phases. Regarding the range, a transaction may
span over one artifact, all instances of one kind of
artifact, or all instances of all kinds of artifacts.
Considering the phases, they may include change
application, change detection, impact analysis,
and change propagation.

• Version Management: Approaches may support
versioning of artifacts, e.g., to determine which
artifacts are conforming to which versions of the
metamodel(s).

3.1.2 Change Detection

The second set of criteria is related to the change de-
tection phase of the co-evolution process (cf. Fig-
ure 3) and is employed to determine how and which
changes can be detected.

• Kind of Detection: Changes may be detected
state-based, i.e., matching the original version
and the evolved one in order to derive the ap-
plied changes, operation-based, i.e., recording the
actually applied changes, manual, i.e., defining
changes by hand, or they may be detected by a
hybrid form of these kinds.

• Granularity of Change: Changes may be de-
tected as atomic units, i.e., single changes that are
not interconnected, or as composite units, i.e., se-
mantically connected sequences of changes.

• Target of Change: The target of the change may
either be the syntax, i.e., a syntactical change on
the evolving artifact, or semantics, i.e., a change
in the meaning of a metamodel element, e.g., in-
terpreting the unit of the values of an attribute
in centimeter instead of millimeter, which won’t
have an effect on the syntax, but in fact the values
in the instances have to be adapted, e.g., in this
case multiplied or divided by 10.

3.1.3 Impact Analysis

Since changes might have impacts on depending ar-
tifacts and their relationships to the evolved artifact,
this set of criteria is used to determine if and at which
detail impacts are identified.

• Explicated Analysis: Impacts of changes may
be explicitly analyzed on the depending artifacts,
revealing potential affects on the artifacts. In
this context, the impacts may be detected on the
conforms-to, source-domain-conforms-to, target-
domain-conforms-to or other relationships in the
ecosystem.

• Level: The impact analysis can be either per-
formed on type level, i.e., an analysis of poten-
tial impacts on models or transformations of meta-
model changes, or on instance level, i.e., reveal-
ing the impacts on the actual instances that are af-
fected in the ecosystem.

• Result Usable for Intervention: Results of the
impact analysis should ideally be usable for user

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

94

intervention, e.g., a score determining a high ex-
tent of impacts may indicate to undo the changes
and re-evaluate the applied changes or find a more
suitable set of changes.

• Granularity: Impacts on the artifacts may be de-
tected on different level of granularity. In case of
models, granularity spans from fine-grained, i.e.,
feature level, over class level to package level, i.e.,
the more coarse-grained level. In case of transfor-
mations, impacts can be detected analogously on
the level of bindings, rules, and modules. Fur-
thermore, impacts may be detected on OCL level
if the transformation language employs OCL for
querying model elements.

• Run-time Effects Detection: Effects on exe-
cutable artifacts, e.g., transformations, may only
be detectable at run-time. For example, when
changing a feature from mandatory to optional,
transformation definitions that assume the exis-
tence of this feature might break at run-time, if
a value for this feature is not set, similarly to null-
pointer exceptions in programming languages.

3.1.4 Change Propagation

The fourth set of criteria is used to determine how the
identified changes from the change detection phase
(cf. Figure 3) are actually propagated to the de-
pending artifacts, and if consistence of the modeling
ecosystem might be ensured.

• Strategies: For the actual propagation of
changes, approaches may offer built-in predefined
strategies, that may vary in number and might be
customizable in the sense that they might be, e.g.,
adapted, parametrized or overwritten to migrate
the artifact in a customized way. Additionally,
a user-definable propagation may be possible by
providing new migration strategies.

• Automation: Propagation can be either done
semi-automatic, i.e., with user intervention, or au-
tomatic, i.e., without user intervention.

• Consistence: Approaches may ensure intra-
artifact consistency, i.e., a specific change is
propagated consistently regardless of its usage as
atomic or part of an composite change, and inter-
artifact consistency, i.e., a change is propagated
with the same intention across all artifacts in the
ecosystem.

3.1.5 Validation

Related to the final and optional phase of validation,
this set of criteria is employed to determine to which

extent the performed change propagation is validated
to ensure a consistent ecosystem.

• Type of Validation: In the optional phase of val-
idation, the performed propagation may be vali-
dated syntactically, e.g., for models the confor-
mance may be validated with EMF, while for
transformations the syntactical correctness may
be validated with an according compiler. Addi-
tionally, the semantical correctness may be vali-
dated, e.g., with regression testing (Fowler et al.,
1999).

• Range of Validation: The validation may range
over one instance of an artifact, all instances of
one kind of artifact or all instances of all kinds of
artifact.

After having presented the criteria of the eval-
uation framework, in the next section current co-
evolution approaches will be evaluated.

3.2 Evaluation

In this section, approaches for the co-evolution of ar-
tifacts in a modeling ecosystem are evaluated, apply-
ing the evaluation framework discussed above. The
selection of approaches supporting co-evolution com-
prises approaches that support the co-evolution of any
artifact in the modeling ecosystem, or provide a lan-
guage or framework for defining and performing the
co-evolution of any artifact. Eleven approaches that
meet this criteria have been identified in the literature
by surveying the proceedings of conferences, work-
shops as well as journals dealing with model-driven
engineering topics, and, thus, participate in the evalu-
ation. Literature that presents the actual application of
an already proposed approach has not been included
in this selection, since it would lead to duplicate re-
sults. The results of the evaluation are presented in
the following and summarized in Table 1.

Six approaches of the selected eleven approaches
target model co-evolution (Herrmannsdoerfer et al.,
2009; Rose et al., 2010b; Gruschko et al., 2007; Cic-
chetti et al., 2008; Garcés et al., 2009; Wachsmuth,
2007), three perform transformation co-evolution
(Garcés et al., 2013; Garcı́a et al., 2013; Kruse, 2011),
and two approaches consider a more ecosystem-wide
perspective by supporting models and transforma-
tions (Di Ruscio et al., 2012; Kusel et al., 2015),
whereas one of these approach serves as a framework
for co-evolution of a more wide-range set of mod-
eling artifacts, e.g., GMF models (Di Ruscio et al.,
2012). Three of the five transformation co-evolution
approaches support the evolution for both the source
and target metamodels (Garcés et al., 2013; Garcı́a

On the Evolution of Modeling Ecosystems: An Evaluation of Co-Evolution Approaches

95

Table 1: Evaluation of Co-Evolution Approaches.

H
e
rr

m
a
n
n
s
d
o
e
rf

e
r

e
t

a
l.
,

2
0
0
9

R
o
s
e
 e

t
a
l.
,

2
0
1
0
a

G
ru

s
c
h
k
o
,
2
0
0
7

C
ic

c
h
e
tt

i
e
t
a
l.
,

2
0
0
8

G
a
rc

é
s
 e

t
a
l.
,

2
0
0
9

W
a
c
h
s
m

u
th

,
2
0
0
7

G
a
rc

é
s
 e

t.
,
2
0
1
3

G
a
rc

ía
 e

t
a
l.
,

2
0
1
3

K
ru

s
e
,
2
0
1
1

D
i
R

u
s
c
io

 e
t

a
l.
,
2
0
1
2

K
u
s
e
l
e
t
a
l.
,

2
0
1
5

SYMBOLS C
O

P
E

F
lo

c
k

n.a. n.a. n.a. n.a. n.a. n.a. ~

 ~ ~

 ~

One Artifact

One kind of Artifact

All kinds of Artifacts

Change Application

Change Detection

Impact Analysis

Change Propagation

- - - - - -

 - - - - - - -

- - - - - - - -

- - - - - - - - - - -

 n.a. n.a.

 n.a. n.a.

Feature-level n.a. n.a. n.a.

Class-level n.a. n.a. n.a.

Package-level n.a. n.a. n.a.

OCL-level n.a. n.a. n.a. n.a. n.a. n.a.

Bindings-level n.a. n.a. n.a. n.a. n.a. n.a.

Rule-level n.a. n.a. n.a. n.a. n.a. n.a.

Module-level n.a. n.a. n.a. n.a. n.a. n.a.

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Number 1 0 1 1 1 1 1 1 1 0 1

Customizable n.a. n.a.

 - - -

- - - - - - - -

Type of

Validation

Transformation Metamodel

Other

Models

Other

Type-level

Semantics

ConformsTo

SourceDomainConformsTo

Evolving Artifact

Depending

Artifact

Kind of detection

Transformations

Source Metamodel

Target Metamodel

G
e
n

e
ra

l
C

ri
te

ri
a

C
h

a
n

g
e
 D

e
te

c
ti

o
n

Other

Granularity of

change

Monitoring of Artifacts in the Ecosystem

State-based

Operation-based

Manual

Hybrid

Atomic

Composite

Version management

Transactions

Im
p

a
c
t

A
n

a
ly

s
is

P
ro

p
a
g

a
ti

o
n

V
a
li
d

a
ti

o
n

Range

Phases

Syntax

TargetDomainConformsTo

Range of

Validation

Models

Trans-

formations

Target of change

Explicated

analysis

Level

Granularity

Instance-level

One kind of Artifact

All kinds of Artifacts

Results Usable for Intervention

Semi-automatic

Syntactic

Semantic

One Artifact

Other

User-definable

Strategies Predefined

Consistence Intra-artifact

Inter-artifact

Run-time Effects Detection

AutomaticAutomation

Legend: yes no ~ partially n.a. not applicable

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

96

et al., 2013; Di Ruscio et al., 2012), while one ap-
proach supports them only in case of copy transfor-
mations, a specific form of a model transformation
(Kruse, 2011). Evolution of the transformation meta-
model or other modeling artifacts is not considered
in the surveyed approaches, with a sole exception of
(Di Ruscio et al., 2012) by providing a framework in-
stead of a concrete approach. The monitoring of arti-
facts is not supported by any of the approaches, just
as transactions and version management.

Regarding change detection, five approaches de-
tect changes in a state-based manner (Gruschko et al.,
2007; Cicchetti et al., 2008; Garcés et al., 2009;
Garcés et al., 2013; Garcı́a et al., 2013), four ap-
proaches employ operation-based change detection
(Herrmannsdoerfer et al., 2009; Wachsmuth, 2007;
Kruse, 2011; Kusel et al., 2015), and two rely on
manual change specifications (Rose et al., 2010b;
Di Ruscio et al., 2012). Almost all approaches sup-
port both atomic and composite changes, a single ap-
proach only does not support composite changes (Gr-
uschko et al., 2007), while another approach con-
siders composite changes as the pure composition of
atomic changes, instead of its own set, thus allowing
for new, self-defined composites (Kusel et al., 2015).
All of the examined approaches consider syntax as the
target of changes, while no approach is capable of tar-
geting semantic changes.

Considering impact analysis, two approaches
provide an explicated analysis of changes on the
conforms-to relationship between models and meta-
models (Gruschko et al., 2007; Kusel et al., 2015),
two approaches the source-domain-conforms-to rela-
tionship (Garcı́a et al., 2013; Kusel et al., 2015), and
a sole approach for the target-domain-conforms-to re-
lationship (Garcı́a et al., 2013). Impact analysis is
performed on type level by seven approaches (Her-
rmannsdoerfer et al., 2009; Gruschko et al., 2007; Ci-
cchetti et al., 2009; Garcés et al., 2013; Garcı́a et al.,
2013; Kruse, 2011; Kusel et al., 2015), while impact
analysis on instance level is supported by none of the
examined approaches. Furthermore, results can not
be used for intervention in any of the examined ap-
proaches. Approaches that support impact analysis on
models provide analysis on feature, class and pack-
age level (Herrmannsdoerfer et al., 2009; Gruschko
et al., 2007; Cicchetti et al., 2008; Kusel et al., 2015),
while in case of transactions, the level of bindings,
rules, and modules is supported by three approaches
(Garcı́a et al., 2013; Kruse, 2011; Kusel et al., 2015),
whereas two approach additionally detect impacts on
OCL level (Garcı́a et al., 2013; Kusel et al., 2015).
None of the examined approaches is capable of detect
run-time effects before the actual execution of arti-

facts, e.g., running a transformation.
Regarding the actual propagation of changes, all

but two approaches (Rose et al., 2010b; Di Ruscio
et al., 2012) support a predefined migration strategy,
which is customizable in all but one approach (Gr-
uschko et al., 2007). Eight approaches allow for
an automatic migration process (Herrmannsdoerfer
et al., 2009; Rose et al., 2010b; Gruschko et al.,
2007; Cicchetti et al., 2008; Garcés et al., 2009;
Wachsmuth, 2007; Di Ruscio et al., 2012; Kusel et al.,
2015), while three approaches targeting transforma-
tion co-evolution are semi-automatic (Garcés et al.,
2013; Garcı́a et al., 2013; Kruse, 2011), meaning
that the user is needed in the co-evolution process.
Intra-artifact consistence is ensured in two approaches
(Garcés et al., 2013; Kusel et al., 2015), while a
sole approach also provides inter-artifact consistency
(Kusel et al., 2015).

A single approach supports the validation of mi-
grated artifacts, both syntactically and semantically
(Kusel et al., 2015). In this context, the approach is
able to validate all instances of all supported kinds
of artifacts, i.e., models and transformations (Kusel
et al., 2015).

In the next section, lessons learned from the eval-
uation of approaches are presented.

4 LESSONS LEARNED

After having evaluated existing co-evolution ap-
proaches with the presented evaluation framework, in
the following paragraphs, lessons learned drawn from
the evaluation are discussed.
Need for Ecosystem-wide Perspective. As one
might see from the evaluation in Section 3.2, most
current co-evolution approaches tackle either mod-
els or transformation as dependent artifacts, but miss
an ecosystem-wide perspective spanning over several
modeling artifacts. Consequently, a systematic and
efficient co-evolution is hindered due to the fact that
diverse tools or approaches have to be employed to
co-evolve a complete modeling ecosystem. This may
lead to an inter-artifact inconsistency, i.e., different
kinds of artifacts are co-evolved differently, thus, the
operability of the modeling ecosystem is broken.
Incorporation of Semantical Changes Needed. As
discussed earlier, changes in a modeling ecosystem
might be of semantical nature, thus, not affecting
the syntax of a metamodel. As an example, a mod-
eler might intrinsically assign the unit centimeter to a
“height” attribute of a Person. Thus, a change of cen-
timeter to millimeter affects all depending artifacts,
since the actual values in the models or potential cal-

On the Evolution of Modeling Ecosystems: An Evaluation of Co-Evolution Approaches

97

culations in transformations have to be adapted. How-
ever, a change of a unit can not be explicitly expressed
in current co-evolution approaches, thus, hindering an
automated co-evolution of depending artifacts. Con-
sequently, means to express semantical changes are
needed.
Transactional Execution Beneficial for Consis-
tency. Since transactions are currently not supported
in any of the surveyed approaches, errors that oc-
cur during co-evolution have to be identified and
corrected manually. In order to mitigate this bur-
den, transactions spanning over all phases of the co-
evolution process including the actual propagation of
changes enable consistency of the ecosystem, since
either all artifacts are co-evolved or the whole ecosys-
tem is set back to its initial state.
Enabling Run-time Effects Detection by Employ-
ing Code Analysis Techniques. Changes on the
metamodels might impact the ecosystem not only at
design-time but also at run-time, e.g., when a trans-
formation queries the value of an element which is no
longer set. However, by employing static code analy-
sis techniques (Louridas, 2006) to detect errors, e.g.,
potential null-pointer references, before executing the
transformation, run-time effects can be detected and
corrected in an earlier stage, i.e., before execution.
Consequently, a more sophisticated impact analysis
that reveals potential run-time effects helps the evo-
lution designer in deciding if one or more changes
should be applied on the metamodel.

5 RELATED WORK

In this section, we will discuss related work focus-
ing on comparison and evaluation of co-evolution ap-
proaches in MDE.

In a recent survey, the authors compare several
approaches for the co-evolution of models and their
metamodels (Herrmannsdoerfer and Wachsmuth,
2014) on the basis of a comprehensive criteria cata-
log. In contrast to our contribution, the authors con-
sider models as depending artifacts, only. Another
recent work discusses state-of-the-art techniques and
approaches for co-evolution in MDE, and outlines fu-
ture research challenges (Paige et al., 2016). How-
ever, in contrast to the contribution of this paper,
there is no concrete focus on modeling ecosystems
or a comparison of concrete co-evolution approaches.
A comparison between co-evolution of models and
transformations in response to metamodel evolution
has been presented in (Rose et al., 2010b). The au-
thors discuss the differences between the migration of
models and transformation and highlight the need for

a more uniform, i.e., consistent, co-evolution of both
artifacts. However, concrete approaches are not com-
pared in contrast to our contribution. In (Meyers and
Vangheluwe, 2011) the authors propose a framework
for the evolution of metamodels and co-evolution of
various kinds of depending artifacts, such as models
and transformations. Thus, they propose a taxonomy
for metamodel evolution, which might be applied to
existing approaches. However, an evaluation of co-
evolution approaches has not been part of their work.

In summary, one might see that the work pre-
sented in this paper is unique with respect to a
modeling ecosystem-wide perspective regarding co-
evolution and the consideration of diverse depending
artifacts, in particular models and transformations.

6 CONCLUSION & FUTURE
WORK

In this paper, we presented a comparison of co-
evolution approaches in MDE, with a specific focus
on modeling ecosystems and metamodels as evolving
artifacts and models and transformations as depend-
ing artifacts. Therefore, criteria for evaluating co-
evolution approaches have been proposed, and eleven
approaches have been evaluated by applying the eval-
uation framework, which was built upon the identified
criteria. Finally, lessons learned drawn from the eval-
uation have been presented.

Summing up, although several co-evolution ap-
proaches in MDE exist, there is still space for im-
provements, including (i) the dedicated co-evolution
support of more than one depending artifact, (ii) the
detection and incorporation of semantic changes on
the metamodel, (iii) the implementation of transaction
mechanisms to cope with unforeseen errors in the co-
evolution process, and (iv) strengthening impact anal-
ysis by employing static code analysis techniques.

REFERENCES

Bézivin, J. (2005). On the Unification Power of Models.
SoSym, 4(2):171–188.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
Driven Software Engineering in Practice. Morgan &
Claypool Publishers.

Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio,
A. (2008). Automating Co-evolution in Model-Driven
Engineering. In EDOC ’08, pages 222 –231.

Cicchetti, A., Di Ruscio, D., and Pierantonio, A. (2009).
Managing Dependent Changes in Coupled Evolu-
tion. In ICMT, volume 5563 of LNCS, pages 35–51.
Springer.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

98

Czarnecki, K. and Helsen, S. (2006). Feature-Based Survey
of Model Transformation Approaches. IBM Systems
Journal, 45(3):621–645.

Di Ruscio, D., Iovino, L., and Pierantonio, A. (2011). What
is Needed for Managing Co-Evolution in MDE? In
Proc. of the Int. Workshop on Model Comparison in
Practice, pages 30–38. ACM.

Di Ruscio, D., Iovino, L., and Pierantonio, A. (2012).
Evolutionary Togetherness: How to Manage Coupled
Evolution in Metamodeling Ecosystems. In ICGT,
pages 20–37. Springer.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: improving the design of exist-
ing code. Addison-Wesley.

Garcés, K., Jouault, F., Cointe, P., and Bézivin, J. (2009).
Managing Model Adaptation by precise Detection of
Metamodel Changes. In Model Driven Architecture-
Foundations and Applications, pages 34–49. Springer.

Garcés, K., Vara, J. M., Jouault, F., and Marcos, E. (2013).
Adapting transformations to metamodel changes via
external transformation composition. SoSym, pages
1–18.

Garcı́a, J., Diaz, O., and Azanza, M. (2013). Model
Transformation Co-evolution: A Semi-automatic Ap-
proach. In SLE, pages 144–163. Springer.

Gruschko, B., Kolovos, D., and Paige, R. (2007). Towards
Synchronizing Models with Evolving Metamodels. In
Proc. of the Int. Workshop on Model-Driven Software
Evolution.

Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2009).
COPE - Automating Coupled Evolution of Metamod-
els and Models. In ECOOP, pages 52–76. Springer.

Herrmannsdoerfer, M. and Wachsmuth, G. (2014). Coupled
Evolution of Software Metamodels and Models. In
Evolving Software Systems, pages 33–63. Springer.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
ATL: A model transformation tool. Science of Com-
puter Programming, 72(12):31–39.

Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W.,
and Wimmer, M. (2012). Model Transformation By-
Example: A Survey of the First Wave. In Concep-
tual Modelling and Its Theoretical Foundations, vol-
ume 7260 of LNCS, pages 197–215. Springer.

Kruse, S. (2011). On the Use of Operators for the Co-
Evolution of Metamodels and Transformations. In Int.
Workshop on Models and Evolution @ MODELS.

Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger,
W., Schwinger, W., and Schönböck, J. (2015). Con-
sistent Co-Evolution of Models and Transformations.
In Proc. of MODELS, pages 116–125.

Levendovszky, T., Balasubramanian, D., Narayanan, A.,
and Karsai, G. (2010). A Novel Approach to Semi-
automated Evolution of DSML Model Transforma-
tion. In SLE, volume 5969 of LNCS, pages 23–41.
Springer.

Louridas, P. (2006). Static code analysis. IEEE Software,
23(4):58–61.

Méndez, D., Etien, A., Muller, A., and Casallas, R. (2010).
Towards Transformation Migration After Metamodel
Evolution. In Proc. of Int. Workshop on Models and
Evolution @ MODELS.

Meyers, B. and Vangheluwe, H. (2011). A framework for
evolution of modelling languages. Science of Com-
puter Programming, 76(12):1223–1246.

Object Management Group (2011). Meta Ob-
ject Facility (MOF) 2 Core Specification.
www.omg.org/spec/MOF/2.4.1.

Paige, R., Matragkas, N., and Rose, L. (2016). Evolving
models in Model-Driven Engineering: State-of-the-art
and future challenges. Journal of Systems and Soft-
ware, 111:272 – 280.

Rose, L., Etien, A., Méndez, D., Kolovos, D., Paige, R., and
Polack, F. (2010a). Comparing Model-Metamodel
and Transformation-Metamodel Co-evolution. In
Proc. of Models and Evolution Workshop.

Rose, L., Kolovos, D., Paige, R., and Polack, F. (2010b).
Model Migration with Epsilon Flock. Proc. of ICMT,
pages 184–198.

Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E.,
Schwinger, W., Wimmer, M., and Wischenbart, M.
(2014). CARE – A Constraint-Based Approach for
Re-Establishing Conformance-Relationships. In Proc.
of APCCM.

Sendall, S. and Kozaczynski, W. (2003). Model Transfor-
mation: The Heart and Soul of Model-Driven Soft-
ware Development. Software, IEEE, 20(5):42–45.

Wachsmuth, G. (2007). Metamodel Adaptation and Model
Co-adaptation. In Proc. of European Conf. on Object-
Oriented Programming, volume 4609 of LNCS, pages
600–624. Springer.

On the Evolution of Modeling Ecosystems: An Evaluation of Co-Evolution Approaches

99

