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Abstract. The exchange of models among different modeling tools ever more 
becomes an important prerequisite for effective software development 
processes. Due to a lack of interoperability, however, it is often difficult to use 
tools in combination, thus the potential of model-driven software development 
cannot be fully exploited. This paper proposes ModelCVS, a system which 
enables tool integration through transparent transformation of models between 
different tools’ modeling languages expressed as MOF-based metamodels. 
ModelCVS provides versioning capabilities exploiting the rich syntax and 
semantics of models. Concurrent development is enabled by storing and 
versioning software artifacts that clients can access by a check-in/check-out 
mechanism, similar to a traditional CVS server. Semantic technologies in terms 
of ontologies are used together with a knowledge base to store machine-
readable, tool integration relevant information, thus allowing to minimize 
repetitive effort and partly automate the integration process. 

1 Introduction 

The shift from code-centric to model-centric software development places models as 
first-class entities in software development processes. A rich variety of tools is 
available supporting different tasks, such as model creation, model simulation, model 
checking, and code generation. Consequently the exchange of models among 
different modeling tools becomes an important prerequisite for effective software 
development processes. Due to a lack of interoperability, however, it is often difficult 
to use tools in combination, thus the potential of model-driven software development 
cannot be fully exploited. To illustrate the specific challenges we want to tackle in 
this paper, we consider a real-world scenario encountered in a project, which involves 
a partner of Computer Associates (CA) and the Austrian Ministry of Defense. This 
scenario also serves as a running example throughout this paper and assumes the 
integration of three tools, CA’s CASE tool AllFusion Gen (Gen for short), the UML 
tool Rational Software Modeler, and the Oracle BPEL Process Manager. Covering a 
wide range of modeling tasks, Gen is a CASE tool supporting a proprietary modeling 



language, with which many existing applications have been developed. UML should 
be employed for new projects  to link up with current technologies, and finally BPEL 
is required for developing certain web-enabled workflow applications. Without 
proper infrastructure support, integration of these tools poses severe problems as 
discussed in the following.  

First of all, the model exchange formats of these tools are different. The differences in 
representation – textual data by Gen, XMI by the UML tool, and XML by the BPEL 
tool – are the least problem, since specific tool adaptors can cope with that. A bigger 
problem, however, is difference in scope. Gen supports a variety of modeling 
domains, ranging from database via GUI to the definition of functions. UML also has 
a rather broad scope, which is a subset of Gen’s. BPEL, in contrary, has a very 
limited scope focusing on process modeling, which is related to Gen’s process model 
and UML’s activity diagram. Therefore, it is not possible to simply take a Gen model 
and directly translate it to UML or BPEL as only parts of it can be translated. 
Conversely, to allow for a translation back to Gen, precautions need to be taken to 
enable reassembly of any changed parts with the overall Gen model. No less of a 
problem are the differences in syntax and semantics. E.g., the control flow primitives 
of UML activity diagrams [12] and BPEL are somewhat different, although they 
express the same concepts. Furthermore, the metamodels of Gen and UML are very 
large and complex. For instance, Gen’s metamodel comprises more than 800 classes 
and the metamodel of UML2 more than 260 classes. Even if specific implementation 
technology for model transformation is used, e.g., the forthcoming QVT (Query/ 
Views/Transformations)-standard [22], it is clear that implementing a transformation 
for Gen and UML will require a lot of effort. Hence, the problem is not only to 
implement a single translation, but to deal also with scalability problems. If BPEL is 
added to the tool chain, two new translations have to be implemented. If even more 
tools need to be integrated, simple point-to-point integration quickly comes to its 
limits and the need for more powerful transformation architectures arises. 

Considering these challenges and based on experiences gained in various integration 
scenarios [11], [15], [19], [24], [26], we are currently realizing ModelCVS, a system 
which enables tool integration through transparent transformation of models between 
different tools’ modeling languages expressed as MOF-based metamodels. In 
addition, ModelCVS will support versioning capabilities exploiting the rich syntax 
and semantics of models. It enables concurrent development by storing and 
versioning software artifacts that clients can access by a check-in/check-out 
mechanism, similar to a traditional CVS server. Semantic technologies in terms of 
ontologies are used together with a knowledge base to store machine-readable, 
integration relevant information, thus allowing to minimize repetitive effort and 
partly automate the integration process.  

The remainder of the paper is structured as follows. Section 2 lays out the core 
concepts of ModelCVS while Section 3 proposes the system’s architecture together 
with a simple example demonstrating a prototypical implementation. An overview of 
related work is given in Section 4, followed by concluding remarks in Section 5.  



2 Layered Approach to Tool Integration 

To address the challenges identified above for providing interoperability between 
tools, the approach taken to the realization of ModelCVS (cf. Figure 1) is separated 
into three distinct conceptual layers that enable the integration of models produced by 
adjacent modeling tools. 
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Fig. 1. Layered Tool Integration Approach 

The bottom layer (1) is formed by architectural model integration patterns that 
ensure openness, scalability, and evolvability of our solution. Further elaborated on in 
subsection 2.1, these will serve as a basis to define specific bridging tasks and to 
develop appropriate bridging operators. The second layer (2) deals with the use of 
semantic technologies in the form of ontologies for the integration of tool 
metamodels, as well as for semantic versioning capabilities. The topic of semantic 
versioning, however, will not be further expanded in this paper (cf. [16]). Subsection 
2.2 addresses the integration problem at the semantic level using ontologies in more 
detail and shows how automation support can be achieved. Top layer (3) aims at 
providing reuse capabilities in the form of a tool integration knowledge base, which 
enhances support for metamodel bridging (cf. subsection 2.3). 

2.1 Patterns for Model-based Tool Integration 

The basis for our solution to model-based tool integration is a set of integration 
patterns that define requirements for the bridging language, which contains bridging 
operators that specifically support the identified integration patterns at a suitable 
abstraction level, and hence can be more efficiently used than, e.g., generic model 
transformation languages [24]. By finally deriving model transformation code to 
enforce specific bridging semantics on models, the bridging language is made 
executable. For reasons of brevity we resort to only elaborating on two proposed 
integration patterns, namely translation and modularization, dealing with openness 
and scalability issues. Other patterns relevant for model-based tool integration include 
the alignment of models, which allows to keep models of conceptually disparate 
metamodels synchronized, as well as metamodel versioning aiming at supporting the 
evolution of metamodels. For a description of these patterns we refer to [16]. 

Metamodel translation. The basic case of tool integration occurs when two different 
tools’ modeling languages overlap to a large extent. This means, that both modeling 
languages cover the same or very similar domains, in a way that semantically 
equivalent concepts can be identified in either metamodel so that models can be 



translated accordingly. As an example, we refer to the joint modeling of a workflow: 
One of the modelers employs a dedicated BPEL modeling tool, whereas the other 
colleague makes use of UML activity diagrams. Both modelers are able to 
transparently check-out versions of the latest model, edit it, and check it in again 
without having to deal with modeling languages other than their own, as the language 
heterogeneity between modeling languages is implicitly translated by ModelCVS.  

Variations of this pattern address directionality and completeness of translation. A 
translation may be bidirectional, allowing two-way transformations between 
metamodels. In case a tool, for instance a code generator, is purely consuming and 
not producing models, unidirectional translations suffice. In case modeling languages 
do not entirely overlap, meaning that some concepts expressible in one modeling 
language cannot be expressed in another, a translation may be lossy. A solution to 
solve this problem is to explicitly store information that would get lost in the course 
of a transformation and to reincorporate it when performing the roundtrip. A further 
variation, which is advisable in case multiple tools with similar domains have to be 
integrated, is to construct a so-called pivot metamodel, which can be seen as 
representing a universal language covering a certain domain. In practice, however, 
such a universal language encompassing all possible concepts that can occur in a 
certain domain is hard to find. Nevertheless, finding a pivot metamodel for a specific 
enough modeling domain can be feasible, allowing to reduce the amount of mappings 
required when translating between n-many tools from O(n²) to O(n). Figure 2 shows 
the translation approach involving the process metamodel of Gen (MMGen), UML’s 
activity diagram metamodel (MMUML-AD), and BPEL’s metamodel (MMBPEL).  

Gen Tool UML Tool BPEL Tool

MMGen MMUML-AD MMBPEL

MMWF
Gen2UML-AD

Translation

Gen2WF
Translation

UML-AD2WF
Translation

BPEL2WF
Translation

 

Fig. 2. Metamodel Translation 

The domain common to all three could be described in a generic, tool independent 
workflow metamodel (MMWF), which serves as a pivot facilitating tool integration in 
a scalable way. As starting point, lets assume that a Gen2UML-AD translation already 
existed and that for integration of further metamodels like MMBPEL, the establishment 
of a pivot metamodel was chosen. Then a specific requirement on bridging operators 
resulting from this scenario is re-usability of the existing bridge Gen2UML-AD for 
construction of the pivot metamodel and the translations Gen2WF and UML-AD2WF. 
Now the pivot metamodel MMWF can be used in order to generate a translation to 
MMBPEL, namely BPEL2WF. 

Metamodel modularization. The modularization pattern addresses the scalability 
issue of two related integration scenarios. On the one hand, to fulfill the scalability 
requirement, the effectiveness of a tool integration process may not be affected by the 
size of the metamodels involved. Hence, a model-based tool integration approach 



must allow to deal with large, monolithic tool metamodels in a manageable way. As 
an example, the integration of two large tool metamodels, like those of UML and 
Gen, has to be supported in a way that keeps the integration task comprehensible. On 
the other hand, scalability is required when it comes to the integration of tools with a 
varying scope, regarding the domain specificity of the underlying modeling 
languages. As an example, it should be possible to integrate a UML tool with a BPEL 
tool. Thereby, the domain specific BPEL tool will conceptually overlap with the 
domain covered by the UML tool to a certain extent, only. Nevertheless, the 
integration of the BPEL metamodel with the overlapping part of the UML metamodel 
should not become unwieldy. To keep the integration of large metamodels with 
varying scopes manageable, modularization enables the decomposition of these 
metamodels according to certain concerns, resulting in smaller metamodels, so-called 
metamodel fragments, each expressing a certain aspect of the entire metamodel. 
Analogous to the decomposition of a metamodel, models conforming to such a 
metamodel are modularized accordingly to allow model exchange in a scalable way. 

The example depicted in Figure 3 shows the integration of tools with differing scopes 
using modularization. The top section of the figure shows the Gen metamodel 
(MMGen) modularized into several smaller fragments representing more specific 
domains (MMGenGUI, MMGenWF, MMGenClasses, and MMGenStates). As shown, the 
fragments may overlap each other, which can result in interdependencies that shall be 
taken care of in a transparent way, as described in the alignment example in [16]. The 
bottom left part of the figure shows the integration of domain specific GUI and BPEL 
modeling tools, whose metamodels are directly mapped to metamodel fragments of 
the Gen tool. Similar to the modularization of MMGen, the bottom right part of the 
figure illustrates a UML tool’s metamodel (MMUML) being modularized (MMUML-AD, 
MMUML-CD, and MMUML-SM). The integration of large tools is made possible in a 
scalable way, as the metamodel fragments of either tool covering semantically equal 
domains are mapped onto each other instead of mapping the original huge 
metamodels. 
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Fig. 3. Metamodel Modularization 

At check-out time, models conforming to fragments have to be reassembled. This 
implies that links between model elements that have been cut off during 
modularization have to be re-established. The rules specifying how the models should 
be reassembled have to be derived from the applied bridging operators. To enable 



reassembly, information about linked model elements must be explicitly stored. 

2.2 ModelCVS Semantic Infrastructure 

In the following, the core functionalities of ModelCVS are laid out, which are 
founded on the use of ontologies to express the semantics of modeling languages. We 
believe that in doing so, semantic technologies can yield significant benefits for 
effectively driving a model-based tool integration solution as envisioned with 
ModelCVS.  

As a strictly manual bridging specification can become an error prone task, 
ModelCVS offers automation support to do so. The following paragraphs describe a 
sequence of steps showing how ModelCVS’ semantic infrastructure can be utilized. 
For the sake of simplicity, in the following our running example focuses on the 
metamodels of BPEL and UML Activity Diagrams to be integrated, only. Details on 
Figure 4, which generally depicts our setup used for ontology-based metamodel 
integration, are given throughout the next subsections. 

(1) Metamodel lifting. The creation of an ontology from some kind of metadata like 
an XML schema [8] or a DB schema [30] is generally referred to as lifting. 
Metamodel lifting in particular encompasses a mapping of elements in the metamodel 
to concepts in the ontology, thereby performing a step of abstraction and semantical 
enrichment such that the ontology explicitly expresses the semantics of the modeling 
concepts whose syntax is defined by the metamodel. Automatic as well as semi-
automatic approaches to lifting have already been presented in literature (cf. Section 
5). For a more elaborated description of ModelCVS’ metamodel lifting functionalities 
we kindly refer the reader to a technical report [16]. In our case, a generic solution for 
lifting arbitrary MOF models (tool metamodels) to so-called tool ontologies can 
partly automate the lifting process. However, the entailment of specific semantics for 
newly lifted ontologies, naturally requires user intervention. Referring to our 
example, this would mean to lift both the BPEL and the UML-AD metamodel 
resulting in the respective tool ontologies.  

(2) Ontology-level integration. The use of ontologies is based on the assumption that 
integration on the ontology layer is more easy to understand and can be automated to 
a greater extent. Lifting different metamodels’ elements to concepts of some common 
ontology provides the first step of integration by establishing a common terminology. 
Thereby, it is necessary that the chosen generic ontology covers the domains of both 
tool ontologies appropriately. Furthermore, based on defined relations between 
concepts in the ontology, relations between the concepts of specific tools can be 
deduced, e.g., equivalence, subsumption, or substitutability. Continuing our example, 
we assume a generic Workflow ontology as the common upper ontology. As an 
example, we can imagine to map all of BPEL’s control flow constructs onto the 
semantically appropriate classes in the Workflow ontology. Analogously we proceed 
with mapping the UML-AD metamodel onto the Workflow ontology. From the two 
mappings between tool and Workflow ontologies we employ structural reasoning to 



deduce relationships between ontology classes representing the control flow 
constructs of BPEL and ontology classes representing the UML-AD metamodel 
elements.  

(3) Derivation of bridging.  Once a mapping between tool ontologies exists, the next 
logical step is to derive bridging operators to express the desired integration behavior 
on the metamodel level. In a derived bridge between metamodels, depending on the 
integration pattern in use, semantic correspondence can be expressed by certain 
metamodel bridging operators accordingly. In case of a translation, a bridging 
operator might denote the creation of a new target model element for every 
encountered source model element, whereas in the modularization case, a bridging 
operator could denote that two model elements should be merged into one at check-
out. Getting back to our example, the translation pattern will be the most appropriate, 
as both the ActivityDiagram and the BPEL metamodels cover a largely similar 
domain. Hence, a relationship on the ontology level between ‘equivalent’ classes 
would be derived into a bridging operator relating the metamodel elements that 
initially got lifted to the respective ontology classes. 
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Fig. 4. Ontology-based Metamodel Integration 

(4) Derivation of transformation. After bridging operators between metamodels are 
established, a code generation step results in QVT eventually representing executable 
transformations. In the context of a translation from BPEL to UML at execution time, 
this would basically result in code querying the source model and populating the 
target model with new elements appropriately.  

2.3 Knowledge Base for Tool Integration 

As described in the previous paragraphs, ModelCVS’ semantic infrastructure makes 
use of ontologies for means of the integration of metamodels by relying on tool 
ontologies. Just like metamodels, these tool ontologies represent valuable assets in 
terms of conceptualizing a domain. Hence, similar to a class library of a programming 
language, it is intended to foster reuse capabilities of ontological knowledge 
concerning the field of tool integration by building up a so-called tool integration 
knowledge base. This knowledge base is made up of tool ontologies (i.e. products of 



liftings) capturing knowledge about  modeling languages, and thus foster immediate 
reuse capabilities. Concerning the running example, tool ontologies for Gen, UML, 
and BPEL would fall into this category. As one can see, in the same way as tool 
metamodels may either represent conceptual modeling languages (e.g., UML) or 
domain-specific languages (e.g., BPEL), tool ontologies will also vary in their 
domain specificity accordingly. Therefore, similar as more specific classes in a class 
hierarchy of a programming language reuse concepts of more general classes, a 
hierarchical structure of ontologies is to be imposed that enables reuse of semantic 
concepts for tool ontologies. For instance, a user entailing specific semantics during 
the lifting process - usually by manually editing the resulting ontology - can reuse 
concepts in the tool integration knowledge base by establishing subsumption 
relationships to concepts in the respective tool ontology. Thus, apart from specific 
tool ontologies, the resulting knowledge base will also comprise so-called generic 
ontologies in a hierarchical order providing reusable semantics (cf. Figure 4). For 
instance, the BPEL and the UML ActivityDiagram ontology can reuse concepts from 
the generic ‘Workflow’ ontology, which in turn can play a role in integrating these 
tool ontologies, as described in the BPEL to UML-AD example (cf. Section 2.2) 
earlier. Furthermore, the ontologies within the proposed tool integration knowledge 
base will be populated with specific instance data from reference examples of case 
studies. These examples contained in the knowledge base enable the semi-automatic 
mapping with newly created tool ontologies that are as well populated with instance 
data from a suitable reference model. Thus, the process of specifying semantics for 
tool ontologies can be enhanced considerably. The reference models have to be made 
up such that they produce satisfying results with respect to enhance ModelCVS’ 
matching and reuse capabilities. 

3 Architecture and Prototype Implementation 

As can be seen in Figure 5, the proposed architecture for ModelCVS is organized into 
three major components.  
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Fig. 5. ModelCVS Architecture 



First, a Technological Framework provides the actual tool integration services and 
comprises among others, a repository supporting semantic versioning and transparent 
model transformation. It is supported by Tool Adapters, i.e., external components that 
mediate between proprietary tool interfaces and ModelCVS. Second, the Metamodel 
Bridging Toolkit provides support for defining bridges as to realize integration 
patterns, manually or automatically. Third, the Ontology Toolkit supports ontology-
based metamodel integration in terms of lifting, mapping, and editing capabilities. In 
the following we will elaborate ModelCVS’ components in more detail and lay out 
some of the design decisions taken during the realization of our prototype, whose 
functionality is detailed in a simple example. 

3.1 ModelCVS Architectural Components 

Technological Framework. The Technological Framework performs the actual tool 
integration, based on the configurations defined using the Metamodel Bridging 
Toolkit and the Ontology Toolkit. Its main component is the Repository which 
provides persistent storage and versioning of complex artefacts. The Repository is 
divided into two parts. First, the Model and Metamodel Base is dedicated to artefacts 
of the model and metamodel level, comprising, e.g., models, metamodels, and 
bridging definitions. Second, the Tool Integration Knowledge Base contains the 
ontology level artefacts such as tool and generic ontologies, as well as associated 
mappings and liftings. Concerning the repository for the model and metamodel base, 
our prototype relies on the Eclipse Modeling Framework (www.eclipse.org./emf) and 
Subversion (subversion.tigris.org) for persistence and versioning capabilities, along 
an ontology repository for hosting the tool integration knowledge base. The ontology 
repository is the only component among those depicted in Figure 5 for which no 
prototypical solution exists, as for the moment an evaluation of viable solutions is still 
ongoing we simply store ontologies in the filesystem. The Model Transformer plugs 
into the repository and provides model transformation capabilities as required for the 
various tasks defined by the integration patterns. The prototype currently realizes 
model transformations with  ATL [13] as a QVT Engine [22]. The metamodel bridges 
that are specified in a high-level language (cf. Section 2.1) using the Metamodel 
Bridging Toolkit have to be translated into that transformation language. A QVT 
Generator, prototypically realized through a template based approach, will perform 
this compilation task. The Model Merger also plugs into the Repository to provide 
merge conflict detection for models, based on the versioning capabilities provided by 
the repository back-end. Tool adaptors are a practical necessity, since it cannot be 
assumed that all tools to be integrated in a tool chain support the data format of 
ModelCVS. XMI is a natural candidate for exchanging models, as it is based on 
MOF, and supported by many tools, particularly UML tools. 

Metamodel Bridging Toolkit. This component provides all functionalities dealing 
with the handling of metamodels and especially the creation of metamodel bridges 
according to the various integration patterns. A Bridging Editor for the bridging 
language can for instance be implemented by reusing a generic mapping tool like the 
Atlas Model Weaver [4] that can be customized to accommodate the specific 



concepts of the bridging language, as was done in our prototype implementation. The 
Bridging Generator makes use of any mappings created at the ontology level to 
automatically derive bridges between metamodels. These automatically generated 
bridges usually have to be reviewed and refined by the user, using the Metamodel 
Bridging Editor.  

Ontology Toolkit. Finally, the Ontology Toolkit provides the means for metamodel 
lifting as well as mapping and editing of ontologies. Its key component is the 
Metamodel Lifting Jack, which provides means for the creation of an ontology from a 
metamodel through lifting. Our prototypical lifting solution is able to map EMF’s 
Ecore metamodels onto OWL ontologies, enabling the further process of semantic 
enrichment. To actually manipulate and make use of the resulting ontologies further, 
tools like Protégé (protege.stanford.edu), the JENA API (jena.sourceforge.net) as 
well as several specialized inference engines like F-OWL (fowl.sourceforge.net) can 
be used, contributing to the Ontology Mapper and the Ontology Editor. Our prototype 
is currently built on IBM’s Integrated Ontology Development Toolkit (IODT)1. 

3.2 ModelCVS Integration Example 

To exemplify the above described functionalities and demonstrate the feasibility of 
our prototype, Figure 6 shows two ontologies that have been lifted from a simple 
UML ActivityDiagram and a BPEL Process metamodel.  
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Fig. 6. Structural Reasoning for Mapping Tool Ontologies 

For reasons of simplicity we use a ‘minimized’ BPEL metamodel, in which we 
assume that all activities reside in one Flow activity with Links excplicitly defined 
between the contained Activities. Thus, our simple BPEL metamodel is made 
unambiguous, as “human-friendly” control structures are omitted without loosing 
semantics. Similarly, a simplified subset of the UML 1.4 metamodel is employed, as 
it is used in the UML profile for Automated Business Processes2. After the automated 
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lifting step, subsumption relationships are being established to a generic upper 
ontology conceptualizing structural notions such as ‘connection’ and ‘containment’. 
Note that only a few semantic enrichments relevant for the example are shown in 
Figure 6. Based upon the mapping towards the common upper ontology, which for 
instance assumes that an ActivityGraph is a Container as it is made up of Transitions 
and StateVertices, or that a Reply, Receive and Invoke are Containees due to the 
atomicitiy of primitive BPEL activities, structural reasoning can yield ‘semantically 
equivalent’ (or at least conceptually related) classes and properties. For instance, 
since Process and Flow subsume Container and Activity subsumes Containee (which 
means Flow is a Containee as well by inheritance), one can reason that the properties 
activity and contains linking the respective classes are equivalent, too. Analogously 
we proceed with the Activity Diagram ontology. Finally, we can, e.g., deduce that 
subVertex and activity are ‘equivalent’ properties. As another example, one sees that 
both Activity and StateVertex are Connectees, and Link and Transition are 
Connectors. Hence, one can see target and source are ‘equivalent’ to incoming and 
outgoing respectively. In this case structural reasoning on the ontology level was able 
to resolve semantic heterogeneity that a name matching heuristic would have not 
found, namely that the source and target properties contained in both ontologies do 
not(!) carry the same semantics. Momentarily, the ModelCVS prototype is able to 
carry out TBox reasoning on ontologies as described above to find equivalent classes 
and properties. 

In a next step, depending on a certain integration pattern, ontological mapping 
information is used to derive bridgings between metamodels. Figure 7 shows a 
screenshot of our prototypical bridging editor, with a specific bridging model being 
edited, that consist of three different kinds of operators ‘translating’ the BPEL and the 
UML Activity Diagram metamodel: ExclusiveEquivalence, SharedEquivalence, and 
GeneralizedEquivalence. These operators should not be considered complete, but 
nevertheless allow to illustrate the use of bridging operators derived from ontology 
mappings for the purpose of this example.  

 

Fig. 7. Screenshot of Bridging Editor 

In case an ontology mapping yields a one-to-one relation between classes, as it is the 
case with Link and Transition, or with Process and ActivityGraph, one can deduct 



that each class will have one counterpart, and no semantics is being lost when 
translating. However, in case of Reply, Receive, and Invoke mapping to ActionState, 
we identify a SharedEquivalence. This means, that multiple classes are being mapped 
on a single class, only, which would result in loss of semantics. Thus, additional 
information is introduced to the target model element, for instance in the form of an 
identifying attribute value or by a stereotyped class. A GeneralizedEquivalence 
indicates that their subclasses are involved in other, more specialized bridgings.  

The described example shows that a mapping between ontologies yields a conceptual 
mapping, which has to be further refined by bridging operators on the metamodel 
level, allowing to make design decisions (SharedEquivalence using stereotypes, 
attribute, etc.) about the implementation of the translation. Utilizing a bridging model, 
our prototype then makes use of a template mechanism to create ATL code that 
finally implements the mapping. Although code generation is not complete, as for 
instance certain queries or helper functions require manual refinement, overall, a 
substantial amount of work can be avoided compared to traditional transformation 
development. 

4 Related Work 

This section gives an overview of related work that we deem relevant to ours. These 
fields encompass work on tool integration, which is helpful to put our goals in 
context with past efforts, model transformation languages building our system’s 
backbone, and work on integrating heterogeneous data in terms of models and 
ontologies. 

Tool Integration. Brown [5] categorized tool integration into a conceptual (“what is 
integration?”) and a mechanical level (“how to provide integration?”). Regarding the 
conceptual level, Wasserman [31] first suggested a categorization to describe the 
integration of tools from a functional point of view comprising integration in terms of 
platforms, GUIs, data, control, and processes. Research efforts at the mechanical 
level of tool integration include (1) a series of standardization and middleware efforts 
like, CDIF [9] and OMG’s recent RFP OTIF3

 (open tool integration framework) and 
(2) infrastructures like the ToolBus architecture [3]. Some of these efforts were often 
grounded in large initiatives but have not been widely accepted, such as CDIF, which 
in the meanwhile has been replaced by MOF and XMI, for example. Despite of all 
these important efforts, tool integration is still a challenge, leading most often to 
strongly technology-dependent, hand-crafted solutions  that suffer from high 
maintenance overheads and most importantly, poor scalability. 

Model transformation languages. Existing approaches in this area having been 
either submitted to OMG’s QVT request for proposals or being already part of 
existing MDA tools ranging from algorithmic and imperative approaches, via graph-
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transformation-based approaches to template rule-driven, and hybrid approaches 
[7]. Tratt et al. [29], e.g., provide an extensible, imperative model transformation 
language with some rule-based elements for pattern matching purposes. With ATL 
[13] Bezivin et al. have developed a hybrid (declarative/imperative) transformation 
language in response to QVT built upon EMF, making it especially applicable in 
context of Eclipse development. Such is the Eclipse based MTF4 by IBM, which with 
a purely declarative transformation definition style might be harder to practically 
apply than ATL, for instance. BOTL5 allows the definition of modular, rule-based 
transformations, with independent rules for sets of metamodel elements. Based on 
these several kinds of QVT-like transformation language proposals, infrastructures 
and frameworks have been built for tool integration [25]. For example, WOTIF (Web-
based open tool integration framework)6 uses a graph-transformation mechanism and 
realizes different tool integration patterns, but requires that every client tool supports 
certain APIs for installing plugins, which is in contrast to our approach. Finally, 
although MDDi (Model-driven Development Integration Project of Eclipse)7 is still in 
its drafting phase, it provides some interesting ideas for model integration in terms of 
a bus architecture similar to AMMA8. Although QVT-like model transformation 
languages are a cornerstone also of our vision, existing proposals are too generic and 
lack appropriate abstraction mechanisms for different kinds of model integration 
patterns, which are highly needed in practice and well-known from other research 
areas such as federated and multi database systems [27] and web service composition 
[18]. Such integration patterns (cf. Section 3) would require a series of basic model 
transformations which will not scale up when manually specified for complex 
models.  

Integration patterns and bridging operators. There are only few related 
approaches  (cf. e.g., [23]) providing abstraction mechanisms in terms of, e.g., high-
level bridging operators or modularization techniques in the areas of model 
management and model integration. For instance Rondo [20] provides high-level 
operations facilitating the integration of relational and XML schemata. Another 
interesting approach from the database community is MDM and its successor 
ModelGen [2], which to the best of our knowledge caters for the translation 
integration pattern, only.  However, we believe that another M3 level other than MOF 
and the ‘supermodel’ approach may work well for integrating database models, we 
also believe that for general modeling languages their approach may not scale 
adequately. Nevertheless, the ideas behind the ‘axiomatic’ approach in which model 
transformations are derived from set of predefined rules may prove valuable to us 
with respect to  the QVT generation.  

In the modeling realm, Clarke [6] and Straw et al. [28]  introduce Model Composition 
Semantics and Model Composition Directives respectively, which represent 
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composition mechanisms for UML class diagrams. Both approaches are fit to UML 
models only, and do not immediately provide an appropriate abstraction as would be 
required for the integration patterns identified above (c.f. Section 2). Furthermore, 
ideas from the area of aspect-orientated modeling dealing with modularization of 
cross-cutting-concerns and the weaving of aspects are relevant to the definition of 
bridging operators for our integration patterns. In this respect, C-SAW by Gray et al. 
[10] which is a so called cross-cutting-concern weaver, is of interest. However, it 
lacks support for abstract integration mechanisms and is based on a meta-metamodel 
different from MOF, making the approach not immediately applicable for us. 

Ontology-based Integration. Although concepts from related work in the area of 
lifting metadata to ontologies are of relevance to our approach, tools like the 
OntoLIFT prototype [30] for database schemata or the automatic mechanism 
introduced by Ferdinand et al. to lift XML schemata, are not immediately reusable in 
our metamodel-centric context. As ModelCVS performs tool metamodel integration 
on basis of semantics covered by tool ontologies, integrating these individual tool 
ontologies is an issue. The central burden making ontology integration a rather 
comprehensive challenge are heterogeneity issues that have to be coped with [17], 
which are similar to heterogeneities in database research [27]. Thus, our approach has 
to deal with different forms of heterogeneity, establish a certain ontology integration 
architecture, and provide appropriate mechanisms for mapping discovery, 
representation and, reasoning [21]. Although having different goals in mind since we 
use ontologies as a basic vehicle for the integration of tool metamodels, we can 
benefit from a large body of literature which can provide useful input for our 
approach. For a comprehensive overview of this active research area compare, e.g., 
[1], [14], and [21].  

5 Concluding Remarks 

Currently, an early prototype of the proposed system exists, that already allows to 
carry out a comprehensive range of intended functionality. Besides further developing 
the existing implementation, our focus lies on extending bridging languages and 
concepts for the implementation of ontology-based integration. We are aware that a 
successful realization of a system like ModelCVS as laid out in this paper faces a 
number of issues mainly concerning technological feasibility and practical 
applicability of the final result:  

Incompatible standards. At the time of writing it is a fact that the interchange of 
models via XMI still poses a practical problem, which stems from incompatible XMI 
output produced by different modeling tools. Nevertheless has XMI become a widely 
adopted standard by most modeling tools and it can be expected that tool vendors will 
eventually converge on producing interchangeable XMI serializations. Furthermore, 
although MOF is a widely accepted standard, several interpretations – and resulting 
from that – different implementations in terms of model repositories exist. For 
seamless interchange of tool metamodels with ModelCVS, strict adherence to a 



common standard like MOF is necessary. In general, however, the problems with 
incompatible XMI files and differing meta-metamodel standards are issues which can 
be solved with the construction of specific tool adapters. 

Quality of integration. Considering the fact that we use an ontology rather than a 
mapping to some semantic domain [11] to denote the semantics of a modeling 
language, this is reasonable since ontologies have been developed as a means for 
integration, whereas semantic domains are more appropriate for reasoning about 
intrinsic properties of a model. Furthermore, it is often difficult or even impossible to 
define a mapping from a modeling language to a semantic domain, as is the case with 
UML [11]. The consequences of not using a semantic domain are that a mapping 
between ontologies and therefore a derived bridging between metamodels may not be 
precise enough as to ensure exact equivalence of models – a property that would be 
important if executable code should be generated from models. Ontologies can, 
however, be used to explicitly keep track of the quality of a mapping, i.e., whether a 
mapping is precise or not, and which caveats have to be considered. Therefore, the 
knowledge base and bridging operators should support this kind of quality control. 

Integration overhead. Considering the manual effort involved in metamodel lifting, 
the question arises whether that effort pays off by the improved support in defining 
metamodel bridges and in semantic versioning. We assume that moving to the more 
abstract semantic level becomes beneficial especially if a metamodel is complex, as is 
the case, e.g., in our case study with more than 800 classes of Gen. The ontology will 
express semantics of concepts and consequently integration mappings more 
concisely, thus helping to keep mappings comprehensible and manageable. Another 
net benefit resulting from lifting metamodels is to build up a comprehensive tool 
integration knowledge base containing readily reusable semantic definitions. 
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