
TETRABox – A Generic White-Box Testing
Framework for Model Transformations

J. Schönböck
Upper Austrian University of Applied

Sciences, Hagenberg, Austria
Email:johannes.schoenboeck@fh-hagenberg.at

G. Kappel, and M. Wimmer
Vienna University of Technology, Austria

Email: {lastname}@big.tuwien.ac.at

A. Kusel, W. Retschitzegger,
and W. Schwinger

Johannes Kepler University Linz, Austria
Email: {firstname.lastname}@cis.jku.at

Abstract—Model transformations play a vital role in Model-
Driven Engineering. Due to their increasing complexity, proper
means for ensuring their quality are needed. Although numerous
approaches for testing of model transformations have been
proposed, their focus is rather on formal verification than on
execution-based testing. Additionally, existing approaches do not
consider the actual transformation definition, rarely provide hints
for debugging in case of an error and are specific to a certain
transformation language. Therefore we propose TETRABox as
a language-independent framework for execution-based white-
box testing of transformation languages. For this, we base on
symbolic execution of model transformations. Additionally, by
employing our Pattern-based Modeling Language for Model
Transformations (PaMoMo), we are able to provide dedicated
failure traces that are aligned to the actual transformation
definition as a hint for debugging.

I. INTRODUCTION

Model-Driven Engineering (MDE) proposes an active use
of models to conduct the different phases of software develop-
ment [1]. For the success of MDE, model transformations are
crucial, being comparable in role and importance to compilers
for high-level programming languages. Given their prominent
role in MDE and their use in increasingly complex scenarios,
proper means for testing model transformations are inevitable
to ensure their correctness, i.e., the transformation definition
conforms to the specified requirements.

Although, various approaches for testing model transfor-
mations have been brought forward, their focus is mainly on
formal verification (cf. [2] for an overview) and metrics, which
are not the focus of this paper. In contrast, execution-based
testing of model transformations, i.e., testing the transforma-
tion by executing it in dedicated test runs, is still in its infancy
and suffers from three main shortcomings. Current methods
for source model generation, being the first prerequisite for
automating the test process, rely on the source metamodel
(MM) only, but do not consider the transformation definition
itself, i.e., a certain code coverage may not be achieved,
as envisioned by white-box testing. Second, test oracles that
decide wether the transformation under test behaves correctly,
often do not provide the failing elements, i.e., failure trace, in
the complex graph structures of the test source model, which
would be a prerequisite to provide hints for debugging. Finally,
current test methods lack genericity in that they are specific

This work has been partly funded by the FFG Bridge program under grant
832160, FFG FIT-IT Semantic Systems grant P21374-N13 and 825070 as well
as WTZ AR 18/2013 and UA 07/2013.

to a certain transformation language, being aggravated by the
fact that no transformation language has been accepted as the
state-of-the-art transformation language - not even the QVT
standard [3].

To tackle the aforementioned limitations of existing ap-
proaches, we propose a testing framework called TETRABox

(A Generic White-Box TEsting Framework for Model
TRAnsformations) that allows for automatic, execution-based
testing of model transformations in order to improve the
correctness of transformation definitions. To enable white-box-
based testing of model transformations, automatic generation
of test source models on the basis of the transformation defi-
nition, irrespective of the underlying transformation language
is enabled based on the notion of symbolic execution trees
[4]. Furthermore, by applying our Pattern-based Modeling
Language for Model Transformations (PaMoMo) [5], we are
able to provide a dedicated failure trace, if a test case fails. By
aligning this failure trace with the information of the symbolic
execution tree we are able to provide a link to the actual
source code in order to provide a starting point for debugging.
Finally, since we base on symbolic execution, our approach is
not restricted to a certain transformation language.

The rest of the paper is structured as follows. Section II
motivates the main challenges of execution based testing
by means of an example. PaMoMo is shortly introduced
in Section III. After introducing our approach for white-
box testing in Section IV, Section V explains how PaMoMo
and our approach for white-box testing may be employed
for fault localization. Section VI presents our prototypical
implementation. A comparison to related work is conducted
in Section VII before Section VIII concludes.

II. MODEL TRANSFORMATION TESTING IN A NUTSHELL

The general pattern for model transformations prescribes
that source models conforming to a source metamodel (MM)
are translated into target models conforming to a target MM
(cf. Fig. 1). For specifying transformations, numerous transfor-
mation languages exist (cf. [6] for an overview). The resulting
transformation definitions are typically executed by a dedicated
transformation engine, realizing their operational semantics. To
exemplify this, Fig. 1 provides a small excerpt of the well-
known Class2Relational transformation, being the pen-
dant of the “Hello World” example for model transformations.
As a first step, the requirements of this transformation need
to be specified (cf. specification phase in Fig. 1), which are
that all Packages should be transformed into Schemata,

Requirements of
Transformation

Target
Metamodel
Schema

name : String

Table
name : String

0..*
tables

Implementation

Source
Metamodel
Package

name : String

Class
name : String
persistent : bool

0..*
classes

rule Package2Schema{
from p: CD!Package
to s : ER!Schema(
name <- p.name,
tables <- p.classes
)
}

rule Class2Table{
from c: CD!Class
(c.persistent)

to t : ER!Table(
name <- c.name
)
}

Transformation
Definition

Specification

Oracle
(Test Result Evaluator) Test Result

output

conform to

Test Source Models

Employee Order
<<persistent>>
Company input

output

conform to

Resulting Target
Models

Company

Table Employee
Transformation

Engine

input
Testing

input input

input

Debugging

Fig. 1. Model Transformation Testing

whereas persistent Classes should result in Tables, only.
In order to ensure that the requirements are met by the
transformation definition (cf. implementation phase in Fig. 1),
execution-based testing is applied (cf. testing phase in Fig. 1).
For this, in a first step dedicated test source models, are
required. Due to the complexity of the source models, which
are graphs of objects that must conform to the constraints
defined in the MM, the manual assembling thereof is tedious
and error-prone [7], demanding for an automatic generation.
For deciding whether a resulting target model for a provided
source model meets the requirements, in a second step, an
oracle is needed. With this, it is evaluated, if the system under
test behaves correctly for a particular execution or not, i.e.,
it indicates, if a certain test passed or failed [8]. For this, the
oracle has to deal again with complex graph structures. In case
of an error, the source model elements that caused the test to
fail should be presented as a failure trace.

After introducing the general steps in testing model trans-
formations, in the following it is explained, how the require-
ments of a transformation may be formally specified by means
of PaMoMo.

III. SPECIFICATION OF REQUIREMENTS WITH PAMOMO

Our PaMoMo language (Pattern-based Modeling Lan-
guage for Model Transformations) [5] provides a visual,
declarative, formal specification language to describe, in an
implementation-independent way, correctness requirements of
transformations as well as their input and output models.
PaMoMo specifications express what a transformation should
do, but not how it should be done, providing an adequate level
of abstraction to express transformation requirements.

A PaMoMo contract consists of a set of declarative visual
patterns, which can either be positive or negative. Positive pat-
terns describe necessary conditions to happen (i.e., the pattern
is satisfied by a pair of models if these contain certain ele-
ments) while negative ones state forbidden situations (i.e., the
pattern is satisfied if certain elements are not found). We depict
positive patterns in green with its name enclosed in P(...), while
negative patterns are shown in red with its name enclosed

in N(...). Patterns are made of two compartments containing
object graphs, plus a pattern constraint expression using the
Object Constraint Language (OCL)1. The left compartment
contains objects typed on the source MM, while the objects to
the right are typed on the target MM. Patterns, where both -
the source and target compartments - are not empty are called
invariants, i.e., properties that the transformation specification
has to fulfill. Patterns that contain elements in the source
compartment only, are called preconditions, i.e., properties a
source model must fulfill in order to be allowed to participate
in a transformation. Finally, patterns that contain elements in
the target compartment only, are called postconditions, i.e.,
properties that must be fulfilled by the target model after the
transformation is executed. Objects in the source and target
compartments may have attributes that can be assigned either
a concrete value or a variable. A variable can be assigned to
several attributes to ensure equality of their values, or can be
used in the pattern constraint expression.

In our example in Fig. 1 it is required that every Package
instance is transformed into an equally named Schema el-
ement. To ensure this, a positive PaMoMo invariant is em-
ployed (cf. Fig. 2). One may see that the left compartment
contains elements typed to the Class source MM (Package
p), whereas the right compartment contains elements typed
to the Relational target MM (Schema s). Please note
that although in this simple example only one object is
contained in every compartment, arbitrary complex graphs are
allowed in general. To ensure that packages and schemas are
equally named, a variable X is introduced, which is assigned
to p.name as well as s.name, stating that both attributes
are required to exhibit the same value. For a more detailed
discussion of PaMoMo we refer to [5]

P(Package2Schema)
Class RelationalSource compartment

t i bj t
Target compartment

t i bj tp: Package
name=X

s: Schema
name=X

contains an object
graph typed on the
source metamodel

contains an object
graph typed on the
target metamodel

Variable constrains the allowed attribute values

Fig. 2. Requirements Specification using PaMoMo
In order to test an existing transformation against the

specified requirements, first a comprehensive set of source
models is needed for execution-based testing, as discussed in
the following.

IV. LANGUAGE-INDEPENDENT WHITE-BOX TESTING

A main goal of TETRABox is the provision of adequate
test source models with a focus on the language-independent,
white-box-based generation thereof. For achieving this goal,
a White-box-based Test Source Model Generator is provided,
whose main parts are sketched in Fig. 3 and described in detail
in the following.

Metamodel and Coverage Criteria. For the generation
of test source models two main sources of information are
considered. First, the source MM is incorporated, since a
generated source model must conform to the source MM.
Second, since we base on a white-box-based testing approach,

1http://www.omg.org/spec/OCL/2.3.1

Source
Metamodel

Coverage
Criteria

Constraint
Solver

Symbolic
Executor

Tree
Traversal

C l Symbolic

Path
Constraints

Path
ConstraintsHOT

Source
ModelSource
Model
Test

Source
ModelsTransformation

Definition

White‐Box‐Based Test Source Model Generator

Control
Flow Graph

Symbolic
Execution

TreeTrace Trace Trace

Fig. 3. Language Independent White-Box based Test Source Model Generation

we also include the transformation definition itself in order to
generate source models. This is done to ensure that we will
cover a certain part of the transformation, i.e., to ensure that
each transformation rule is executed once or that each possible
path is executed once. In order to allow the configuration of
this generation process, so-called coverage criteria are offered,
which determine the level of detail, the transformation under
test is investigated, e.g., a rule coverage ensures that every
transformation rule is executed once when the transformation
under test is executed with the generated source model.

HOT, Control Flow Graph and Symbolic Execution.
To allow the language-independent generation of a set of
test source models, the transformation definition needs to be
abstracted to a common representation. For this, we base on
control flow graphs (CFG) [9] since a CFG allows abstraction
by simplification by omitting parts, which are irrelevant for
the source model generation and abstraction by generalization
by allowing a transformation language-independent representa-
tion. For deriving a CFG from a certain transformation defini-
tion, a so-called higher-order model transformation (HOT) [10]

Start

Rule 1
[Package.allInstances()->size > 0]

Create Schema
Create Trace Entry
Set Attribute values

[true]

[true]

[Package.allInstances()->rejectAll
(p|Trace->includes(p))->size > 0]

[false]

[false]

[Class.allInstances()
->size > 0]

[c persistent]

[true]

[true]

[true]
Rule 2

Create Table
Create Trace Entry
Set Attribute values

[c.persistent] [true]

[false]

[Class.allInstances()
->rejectAll(c|not c.persistent)
->rejectAll(c|Trace->includes(c))

-> size > 0]

[false]

[false]

End

Fig. 4. Control Flow Graph of Example

as shown in Fig. 3 is employed, which takes the transformation
definition as source model and produces a corresponding CFG
as target model. Such a HOT must be specified once for each
transformation language for achieving the goal of language-
independent white-box testing.

Example. In order to exemplify the CFG representation,
Fig. 4 depicts the CFG for the example introduced in Fig. 1,
whereby the setting of links between the objects has been
omitted to keep the example simple. The CFG includes a single
starting node, representing the entry point of the transformation
as well as a single ending node, representing the exit point. In
between, each rule is represented as a loop, being responsible
for processing the source model elements as well as gener-
ating the target model elements. Furthermore, the loop being
responsible for transforming classes into tables includes the
specified condition as a decision node (cf. c.persistent).

In order to explicate all potential execution paths through
a CFG, the Symbolic Executor component (cf. Fig. 3) converts
a CFG into a symbolic execution tree, thereby assigning
symbolic values and path constraints to the nodes, following
the idea of symbolic execution in software engineering (cf.,
e.g., [11]).

Tree Traversal and Constraint Solver. In order to cover
specific paths of the symbolic execution tree by source models
following a certain coverage criterion, various tree traversal
algorithms are provided, which collect the path constraints
along a certain execution path. The collected path constraints
together with the source MM are then used by a dedicated
constraint solver, e.g., UMLtoCSP [12] in our case, in order
to generate a source model that fulfils all path constraints and
that is a valid instance of the source MM. To deal with the well-
known path explosion problem [13], hierarchies are introduced
in the CFG - e.g., a whole OCL2 expression may be either
considered as a single node (collapsed form) or a set of nodes
(expanded form), resulting in a different number of potential
execution paths in the symbolic execution tree.

Example. In order to exemplify this, Fig. 5 depicts the
symbolic execution tree for the CFG shown in Fig. 4, whereby
at most two iterations have been assumed for existing loops
in order to make them finite. Please note that repetitive parts
are shown only once in detail for the sake of simplicity. One
may see that each node contains certain path constraints on
symbolic variables. In order to follow a certain execution path,
all path constraints are collected from the start node to a leaf
node which must be fulfilled by a certain source model, e.g., in
the example “Package.allInstances()->size > 0

2http://www.omg.org/spec/OCL/2.3.1

Start

[Package.allInstances()
->size = 0]

[Package.allInstances()
->size > 0]

[Package.allInstances()
>reject(p1) >size > 0] [Package allInstances()->reject(p1)->size > 0] [Package.allInstances()

->reject(p1)->size = 0]

[Package.allInstances()[g ()
->reject(Set{p1,p2})
->size = 0]

[Class.allInstances()
->size > 0]

[Class.allInstances()
->size = 0]

[c1.persistent] [not c1.persistent]

[Class allInstances() [Cl llI t () [Class.allInstances()[Class.allInstances()
->reject(c1))
-> size > 0]

[Class.allInstances()
->reject(c1))
-> size = 0]

[Class.allInstances()

[Class.allInstances()
->reject(c1)
-> size = 0]

[c2.persistent] [not c2.persistent]
->reject(c1)
-> size > 0]

[not c2 persistent][c2 persistent]

[Class.allInstances()
->reject(Set{c1,c2})

-> size = 0]

[not c2.persistent]

[Class.allInstances()
->reject(Set{c1,c2})

[c2.persistent]

-> size = 0]

Fig. 5. Symbolic Execution Tree of Example

and Package.allInstances()-> reject(p1)->
size > 0 and ...”. These constraints are resolved by
the constraint solver resulting in a test source model with
exactly two Packages and two Classes, whereby both
Classes are persistent (cf. test sourced model in Fig. 8).

Adequate Test Source Models. In order to further increase
adequacy of the generated test source models, i.e., a test set
that is effective in finding errors, the set of generated test
source models on basis of the transformation definition is
complemented by the specified requirements. This is since the
transformation definition may be incomplete with respect to
the requirements. Therefore, we remove in on the one hand
the MM elements used in the transformation definition form
those used in PaMoMo contracts. If the resulting MM is
not empty, then the requirements include parts of the MM
that have not been covered in the code. Consequently, for
those parts dedicated additional test source models need to
be generated on a black-box basis. Furthermore,if negative
patterns are formulated, e.g., in order to ensure that non-
persistent Class instances are not translated into according
Table instances in our example, according test cases should
be provided as well. However, according test source models
may not be derived form the source code since this information
must not be in the transformation definition. On the other hand
we also remove the MM elements used in PaMoMo from the
MM elements used in the transformation definition. If the set
is not empty, the transformation exhibits parts for which no
according specification exists. Potentially, this is a hint that
certain requirements have not been specified accordingly.

Example. Considering the example depicted in Fig. 6, it

Target
Metamodel
Schema

name : String

Table
name : String

0..*
tables

Implementation
Source

Metamodel
Package

name : String

Class
name : String
persistent : bool

0..*
classes

rule Package2Schema{
from p: CD!Package
to s : ER!Schema(
name <- p.name,
)
} Transformation

Definition

P(Class2Table)
Class Relational

t: Table
name=Yname = Y

isPersistent=true

c: Class

p: Package
name=X

s: Schema
name=X

P(Package2Schema)
Class Relational
p: Package
name=X

s: Schema
name=X

p1:Package

White‐Box based
Test

Source Model

name=“Customer”

Additional Test
Source Model
stemming from
Requirements

c1:Class
name=“Person”
persistent=true

p1:Package
name=“Customer”

Fig. 6. Adequate Test Source Model Generation

can be seen that we only specified a single rule that transforms
Package instances into Table instances. For this, we could
generate a white-box based test source model which contains
a Package p1. However, with this test source model the
PaMoMo invariant Class2Table would not raise an error, as
it is never executed since there is no Class instance available.
With the approach described above, we identify that the MM
element Class has not been used in the transformation
definition and we therefore generate an according source model
based on the PaMoMo patterns, resulting in an additional test
source model. If we now execute the PaMoMo patterns, the
invariant Class2Table raises an according error.

V. FAULT LOCALIZATION IN MODEL TRANSFORMATION
TESTING

After having described our approach for language inde-
pendent, white-box-based generation of source test models we
elaborate in the following on the actual execution of a test case
and how we provide means for fault localization in case a test
case fails, as depicted in Fig. 7.

Oracle. After executing the transformation under test the
resulting target model is obtained. In order to verify, if the
specified requirements are fulfilled by the transformation,
PaMoMo compares the elements of the test source models
with the elements of the resulting target models on the basis
of PaMoMo patterns, i.e., PaMoMo acts as an oracle. For this,
PaMoMo patterns are compiled and executed by means of
QVT-Relations. This is, since QVT-Relations may be executed
in a so-called check-only mode, which may be used to identify
model elements, which are out of sync. If model elements are
out of sync, PaMoMo provides a failure trace.

White‐Box‐Based
Fault LocalizerOracle

Test
Result

Failure
Trace

Code
Alignment

Transformation
Definition

TraceWhite‐Box‐Based Test
Source Model Generator

Entry
Point
in CodeRequirements

Resulting
Target
Models

Source
ModelSource
Model
Test

Source
Models

Fig. 7. Overview on Fault Localizer Component

...
p1:Package

Test
Source ModelP(TableForPersistentClass) ...

Control Flow Graph Symbolic Execution TreePaMoMo Contract

[Class.allInstances()

[Package.allInstances()
->reject(Set{p1,p2})
->size = 0] c1:Class

p g
name=“Customer”t:Table

name=X

c:Class

name=X
persistent=true

rule Class2Table{

[()
->size > 0]

[true] [true] [Class.allInstances()
->size > 0]

]
name=“Person”
persistent=true

p2:Package

Transformation Definition
FailureFailure
Tracefrom c: CD!Class

(not c.persistent)
to t : ER!Table(
name <- c.name

Create Table

[not c.persistent]
[true]

[c1.persistent]
c2:Class

p2:Package
name=“Company”

TraceTrace

)
}

Create Table
Create Trace Entry
Set Attribute values

[false] [Class.allInstances()
->reject(c1)
-> size > 0]

name=“Product”
persistent=true

[Class.allInstances()
->rejectAll(c|not c.persistent)
>rejectAll(c|Trace >includes(c))

[false] > size > 0]

[c2.persistent] p1:Schema

Resulting
Target Model

“C ”
Trace

Information
Trace

Information ->rejectAll(c|Trace->includes(c))
-> size > 0]

End

[false]
[Class.allInstances()
->reject(Set{c1,c2})

-> size = 0]

p2:Schema

name=“Customer”

name=“Company”

InformationInformation

]

Fig. 8. Overview on Code Alignment

Example. For exemplifying oracles specified by
PaMoMo, Fig. 8 shows a simple pattern named
P(TableForPersistentClass), which demands
that for each persistent Class of a source model (cf. left
side of pattern) an equally named Table must exist in the
target model (cf. right side of pattern), being the second
requirement of our example in Fig. 1. In the transformation
definition shown in Fig. 8, an erroneous condition (cf. not
c.persistent) has been introduced. Given the PaMoMo
pattern P(TableForPersistentClass), the generated
test source model would cause the oracle to fail. In our
example the oracle would either provide Class c1 or
Class c2 as dedicated failure trace as highlighted in Fig. 8.

Code Alignment. As an entry point in code for debugging,
a precise alignment of the failing source model elements as
provided by the oracle to the transformation definition needs
to be provided. In order to achieve this goal, we exploit
the information provided by the White-box-based Test Source
Model Generator component, since it produces dedicated trace
information between the artifacts, e.g., between the elements
of the CFG and the elements of the symbolic execution tree.
Since the generated source model objects correspond to path
constraints of the symbolic execution tree, the nodes of the
symbolic execution tree can be traced back to the nodes of the
CFG and finally, the nodes of the CFG have corresponding
counterparts in the transformation definition. Consequently, an
alignment between failing source model elements provided by
the oracle and the responsible transformation definition parts,
i.e., the entry point in code, is established.

Example. Starting from one of the classes provided by
the failure trace, i.e., Class c1 or Class c2, and follow-
ing the traces backwards, one may end up with the nodes
of the transformation definition, which are close to the er-
ror, e.g., the rule Class2Table and the condition not
c.persistent itself as may be seen in Fig. 8.

VI. PROTOTYPICAL IMPLEMENTATION

Fig. 9 provides an overview on the main components of the
TETRABox framework. The TETRABox framework supports

all main phases in testing, being (i) requirements specification,
(ii) test source model generation, (iii) test execution, (iv) oracle
execution and (v) fault localization. TETRABox bases on a
pluggable architecture on the basis of the Eclipse framework,
whereby each component is represented as a separate plugin.
Consequently, the TETRABox framework may be extended,
e.g., by existing black-box-based test source model generators.
To achieve genericity, i.e., testing of different transformation
languages, existing transformation engines might be plugged
in. For the specification of requirements we currently provide
a graphical, GMF-based editor for modeling the PaMoMo
patterns, as depicted in Fig. 10. Furthermore, in order to allow
for automatic test source model generation, we provide the
White-box-based Test Source Model Generator component, as
described in Section IV. This component may be configured
by according coverage criteria. Additionally, we are currently
working on including existing black-box-based test source
model generators in order to generate further test models.
To achieve genericity, i.e., testing of different transformation
languages, existing transformation engines might be plugged
in and executed within the framework in order to achieve the
resulting target models. These are required inputs for the test
oracle. Currently, we base on PaMoMo as test oracle. In case
of a failing test case, the White-Box-Based Fault Localizer
component may be activated as described in Section V, which
provides an entry point in code and highlights suspicious lines
of codes in the transformation definition. Please note that this
component requires the White-box-based Test Source Model
Generator to be used for test source model generation, i.e.,
dependencies between components may exist.

VII. RELATED WORK

Testing of model transformations has been identified as the
key challenge in the field already in 2008 at the remarkable
workshops on “Model Engineering of Complex Systems”3

in Dagstuhl and on “Challenges in Model-Driven Software
Engineering” in Toulouse at MoDELS [14] as well as in
a recent CACM article by Bryent et al. [15] resulting in

3http://drops.dagstuhl.de/portals/index.php?semnr=08331

Pluggable
components
Pluggable

componentsRequirements componentscomponents
Transformation

Definition

Requirements

White‐Box‐
Based FaultWhite‐Box‐
B d F ltBased Fault
Localizer

Oracle
Based Fault
Localizer

Fault Localizer

Employee Order
<<persistent>>
Company CompanySource

Metamodel

Coverage

Test
Source
Model Entry

Test Source Models Resulting Target
Models

Table Employee Test
Result

Failure
Trace

Coverage
Criteria Generator

Suspicious
Lines in Code

ntry
Point
in Code

Test Source
Model Generation

Test
Execution

Oracle (Test
Result Evaluator) Fault Localization

Pluggable
components
Pluggable

components
Transformation

Engine

Lines in Code

componentscomponents Engine

Fig. 9. Overview on TETRABox Framework

several publications. When surveying the literature focussing
on testing of model transformations, one may see that research
mainly concentrated on non-execution-based testing methods,
and thereby mainly on formal verification (cf. [2] for an
overview) and metrics. In contrast, less research work has been
conducted in the area of execution-based testing in general and
on white-box testing in particular.

In the following, related work is discussed in detail by
targeting relevant research efforts in the area of model trans-
formations as well as useful complementary approaches from
the area of testing conventional software with respect to white-
box based testing of model transformations and means for fault
localization.

A. State-of-the-Art in White-Box Testing of Model Transfor-
mations

In the area of white-box based testing of model transfor-
mations we first investigate on dedicated approaches for the
generation of test source models and second on white-box
based coverage criteria that build the basis.

PaMoMo
elements

Positive Invariant

Source object Target objectSource object
graph

Target object
graph

Source MM
elements

Target MM Target MM
elementselements

Fig. 10. GMF Editor for Modeling PaMoMo Patterns

White-Box-Based Test Source Model Generation. One
of the most important components in a testing framework is an
automatic test data generator for a given program [16]. Much
research efforts have been investigated in software engineering
in this area, including (i) program-based methods, i.e., white-
box-based methods, and (ii) syntax-based methods, i.e., black-
box-based methods. Regarding white-box-based methods in
the area of model transformations, Küster et al. [17] focus
on this topic. However, in their approach, the existence of
a high-level design of model transformations, consisting of
conceptual transformation rules, is assumed. Consequently, to
apply this approach to existing model transformations, the
manual extraction of these conceptual transformation rules is
required, being in contrast to our vision of testing transforma-
tions automatically. Furthermore, González et al. [18] propose
a first approach for testing ATL transformations. For the
automatic generation of test source models, they also envision
the application of constraint solvers. However, in contrast to
our approach they are specific to ATL since they do not
provide a common formalism such as our CFG or the symbolic
execution tree. Additionally, no means for configuration, i.e.,
coverage criteria, or means for fault localization are provided.
Additionally, many approaches have been proposed for black-
box testing, i.e., test source models may be generated either on
basis of the source MM (e.g.,[19], [20], [21] or the specified
requirements [5], [22]. Finally, [23] provides a semi-automatic
approach, since the transformation designer must specify a
generation script on basis of the declarative ASSL language
[24]. For the actual test source model generation, most of
these approaches rely - similar to software engineering - on
constraint satisfaction, e.g., by means of SAT solvers [25].
Furthermore, an approach has been proposed, which allows
to automatically complete test source models, i.e., the tester
has to specify “an intention” by a model fragment, only, and
an algorithm complements this fragment to a valid test source
model [26].

White-Box-Based Coverage Criteria for Model Trans-
formations. In general, coverage criteria are used to derive
certain sets of test input data, i.e., they specify when sufficient
testing has been done such that it can be stopped [27]. In
software engineering, much research effort has been spent in

the investigation of suitable coverage criteria - including black-
box-based as well as white-box based ones (cf., e.g., [27] for
an overview). In contrast, in the area of model transformations,
research focused mainly on black-box-based coverage criteria
(cf. e.g., [5]). Only McQuillan et al. [28] proposed three basic
control-flow-based coverage criteria (rule coverage, instruction
coverage, and decision coverage) specifically for ATL [29]
transformations. Although these control-flow-based coverage
criteria represent a first step for tackling this challenge, lit-
erature in software engineering reveals (cf., e.g., [27] for
an overview) that also other categories of white-box-based
coverage criteria may be of interest for the domain of model
transformations, e.g., data-flow-based coverage criteria.

B. State-of-the-Art in Fault Localization

Since fault localization requires information on the el-
ements that caused a test case to fail, we first investigate
to which respect existing oracles provide failure traces and
second, to which respect means for aligning the failure trace
to the transformation definition are provided.

Oracles Providing Failure Traces. Different methods for
the specification of oracles have been proposed, including
comparison of pre-computed input/output pairs [30] or ded-
icated specification languages like Z [31]. In the area of
model transformations, similar groups of methods have been
proposed, comprising so-called (i) full oracles or (ii) partial
oracles. Approaches employing full oracles follow the idea of
model comparison, (e.g., [32]), whereby the desired target
models are assumed to be provided by the transformation
designer. In this context, basic support for a failure trace
is provided, since the difference elements (added, updated,
and deleted elements) between an actual target model and an
expected target model may be calculated, but the tracing to the
corresponding source model elements is left open. Approaches
using partial oracles base on specification languages like OCL
(cf. [33] for an overview) or graph patterns [34], [35] and
exhibit different capabilities concerning the provision of a
dedicated failure trace. The approaches presented in [36] and
[37], both basing on OCL do not provide any failure trace. The
same is true for the approaches presented in [34], [35], which
use graph patterns, and the approach of [22], which employs
the Human Usable Textual Notation (HUTN) language4 for
specifying object patterns and the Epsilon Validation Language
(EVL)5 for specifying the actual assertions. Finally, also [38],
which uses QVT-Operational [3], is not able to provide any
failure trace. In contrast, [23], which bases on the USE tool
[39] is capable of providing a dedicated failure trace including
those source model elements that caused the contract to fail.
However, to benefit from this tool, all artifacts involved in
a model transformation have to be represented in the USE-
compatible format.

Alignment of Failure to Transformation Definition.
Fault localization is one of the most expensive tasks in program
testing and debugging [40]. In software engineering, various
approaches have been presented, whereby in [41] an overview
is given. Thereby, approaches range from delta debugging
[42], i.e., comparing the input data of succeeding test cases

4http://www.omg.org/spec/HUTN
5http://www.eclipse.org/epsilon/doc/evl

to the input data of failing test cases, over visualization-based
techniques, e.g., in [43] and metrics-based approaches that
calculate suspicious ratings for statements [44], to white-box-
based approaches [45]. Currently, approaches (e.g.,[46], [47])
exist that base on techniques from program slicing [48], in
order to extract suspicious lines of codes in a transformation
definition. Nevertheless, to the best of our knowledge, up to
now, oracles used for testing model transformations provide
no means to automatically align a failing test to the suspicious
piece of code in a transformation definition.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented TETRABox as a generic frame-
work for execution-based testing of model transformations in
a white-box manner. In a first step we presented our PaMoMo
language for specifying requirements on transformations. In a
second step, PaMoMo patterns may act as oracle since they
may be compiled to check-only QVT-Relations which may be
used to identify model elements, which are out of sync. For
automatic generation of test source models, we derive a CGF
and a symbolic execution tree, being independent of a specific
transformation language. Depending on the desired coverage
criteria, we collect according path constraints of the symbolic
execution tree, which are then used by a constraint solver in
order to generate the test source model. Finally, in case a test
run fails, we provide means for aligning the failure trace of
the oracle to the actual transformation definition in order to
provide a starting point for debugging.

Concerning future work, several lines of work remain to
be done. First, the set of offered coverage criteria should
be complemented. In order to achieve this, coverage criteria
will be collected and adapted in a top-down approach by
investigating coverage criteria proposed in traditional software
testing [27]. On the other hand, coverage criteria being specific
to the domain of model transformations will be derived in a
bottom-up approach by investigating existing transformation
languages and their peculiarities. Furthermore, several transfor-
mation languages should be incorporated in our framework by
providing dedicated HOTs, transforming their transformation
syntax into our common CFG representation. Finally, an exten-
sive evaluation on basis of real-world examples is envisioned.

REFERENCES

[1] J. Bézivin, “On the Unification Power of Models,” Software and Systems
Modeling, vol. 4, pp. 171–188, 2005.

[2] M. Amrani, L. Lucio, G. Selim, B. Combemale, J. Dingel,
H. Vangheluwe, Y. L. Traon, and J. R. Cordy, “A Tridimensional Ap-
proach for Studying the Formal Verification of Model Transformations,”
in Proc. of Int. Conf. on Software Testing, Verification, and Validation.
IEEE, 2012, pp. 921–928.

[3] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification,” http://www.omg.org/spec/QVT/1.1/, 2009.

[4] L. Clarke, “A System to Generate Test Data and Symbolically Execute
Programs,” IEEE Transactions on Software Engineering, vol. SE-2, pp.
215 – 222, 1976.

[5] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Rets-
chitzegger, J. Schönböck, and W. Schwinger, “Automated Verification
of Model Transformations Based on Visual Contracts,” Automated
Software Engineering, pp. 1–42, 2012.

[6] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Trans-
formation Approaches,” IBM Systems Journal, vol. 45, pp. 621–645,
2006.

[7] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J.-
M. Mottu, “Barriers to Systematic Model Transformation Testing,”
Communications of the ACM, vol. 53, pp. 139–143, 2010.

[8] L. Baresi and M. Young, “Test Oracles,” Department of Computer and
Information Science, University of Oregon, Tech. Rep. CIS-TR01-02,
2001.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph,” ACM Transactions on Programming Languages
and Systems, vol. 13, pp. 451–490, 1991.

[10] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin, “On the Use
of Higher-Order Model Transformations,” in Proc. of Europ. Conf. on
Model Driven Architecture - Foundations and Applications. Springer,
2009, pp. 18–33.

[11] M. Borges, M. d’Amorim, S. Anand, D. Bushnell, and C. S. Pasareanu,
“Symbolic Execution with Interval Solving and Meta-heuristic Search,”
in Proc. of Int. Conf. on Software Testing, Verification and Validation.
IEEE, 2012, pp. 111–120.

[12] J. Cabot, R. Clarisó, and D. Riera, “UMLtoCSP: A Tool for the Formal
Verification of UML/OCL Models Using Constraint Programming,” in
Proc. of Int. Conf. on Automated Software Engineering. ACM, 2007,
pp. 547–548.

[13] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven Compo-
sitional Symbolic Execution,” in Proc. of Int. Conf. of Theory and
Practice of Software. Springer, 2008, pp. 367–381.

[14] R. Straeten, T. Mens, and S. Baelen, “Challenges in Model-Driven
Software Engineering,” in Models in Software Engineering. Springer-
Verlag, 2009, pp. 35–47.

[15] B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France, and
G. Karsai, “Challenges and Directions in Formalizing the Semantics
of Modeling Languages,” Computer Science and Information Systems,
vol. 8, pp. 225–253, 2011.

[16] J. Edvardsson, “A Survey on Automatic Test Data Generation,” in Proc.
of Conf. on Computer Science and Engineering. ACTA Press, 1999,
pp. 21–28.

[17] J. M. Küster and M. Abd-El-Razik, “Validation of Model Transforma-
tions: First Experiences Using a White Box Approach,” in Proc. of Int.
Conf. on Model Driven Engineering Languages and Systems. Springer,
2006, pp. 193–204.

[18] C. A. González and J. Cabot, “Atltest: A white-box test generation
approach for atl transformations,” in Proc. of 15th Int. Conf. on Model
Driven Engineering Languages and Systems. Springer, 2012, pp. 449–
464.

[19] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon, “Metamodel-
based Test Generation for Model Transformations: an Algorithm and a
Tool,” in Proc. of Int. Symp. on Software Reliability Engineering. IEEE,
2006, pp. 85–94.

[20] S. Sen, B. Baudry, and J.-M. Mottu, “On Combining Multi-formalism
Knowledge to Select Models for Model Transformation Testing,” in
Proc. of Int. Conf. on Software Testing, Verification, and Validation.
IEEE, 2008, pp. 328–337.

[21] ——, “Automatic Model Generation Strategies for Model Transforma-
tion Testing,” in Proc. of Int. Conf. on Theory and Practice of Model
Transformations. Springer, 2009, pp. 148–164.

[22] P. Giner and V. Pelechano, “Test-Driven Development of Model Trans-
formations,” in Model Driven Engineering Languages and Systems, ser.
LNCS. Springer Berlin / Heidelberg, 2009, pp. 748–752.

[23] M. Gogolla and A. Vallecillo, “Tractable Model Transformation Test-
ing,” in Proc. of Europ. Conf. on Modelling Foundations and Applica-
tions. Springer, 2011, pp. 221–235.

[24] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and OCL
Models in USE by Automatic Snapshot Generation,” Software and
Systems Modeling, vol. 4, pp. 386–398, 2005.

[25] L. Bordeaux, Y. Hamadi, and L. Zhang, “Propositional Satisfiability
and Constraint Programming: A Comparative Survey,” ACM Computing
Surveys, vol. 38, pp. 1–62, 2006.

[26] S. Sen, J.-M. Mottu, M. Tisi, and J. Cabot, “Using Models of Partial
Knowledge to Test Model Transformations,” in Proc. of Int. Conf. on
Model Transformations. Springer, 2012, pp. 24–39.

[27] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software Unit Test Coverage
and Adequacy,” ACM Computing Surveys, vol. 29, pp. 366–427, 1997.
[Online]. Available: http://doi.acm.org/10.1145/267580.267590

[28] J. McQuillan and J. Power, “White-Box Coverage Criteria for Model
Transformations,” in Proc. of Int. Works. on Model Transformation with
ATL. Online Publication, 2009, pp. 63–77.

[29] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A Model
Transformation Tool,” Science of Computer Programming, vol. 72, pp.
31–39, 2008.

[30] D. J. Panzl, “Automatic Software Test Drivers,” Computer, vol. 11, pp.
44–50, 1978.

[31] J. M. Spivey, “An Introduction to Z and Formal Specifications,”
Software Engineering Journal, vol. 4, pp. 40–50, 1989.

[32] A. Garcı́a-Domı́nguez, D. S. Kolovos, L. M. Rose, R. F. Paige,
and I. Medina-Bulo, “EUnit: A Unit Testing Framework for Model
Management Tasks,” in Proc. of Int. Conf. on Model Driven Engineering
Languages and Systems. Springer, 2011, pp. 395–409.

[33] J.-M. Mottu, B. Baudry, and Y. L. Traon, “Model Transformation
Testing: Oracle Issue,” in Proc. of Int. Conf. on Software Testing
Verification and Validation. IEEE, 2008, pp. 105–112.

[34] A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, Á. Horváth, I. Majzik,
A. Pataricza, B. Polgár, I. Ráth, D. Varró, and G. Varró, “Workflow-
Driven Tool Integration Using Model Transformations,” in Graph
Transformations and Model-Driven Engineering. Springer, 2010, pp.
224–248.

[35] T. A. Khan, O. Runge, and R. Heckel, “Visual Contracts as Test Oracle
in AGG 2.0,” ECEASST, vol. 47, 2012.

[36] E. Cariou, N. Belloir, F. Barbier, and N. Djemam, “OCL Contracts for
the Verification of Model Transformations,” Electronic Communications
of the EASST, vol. 24, 2009.

[37] J.-M. Mottu, B. Baudry, and Y. Le Traon, “Reusable MDA Components:
A Testing-for-Trust Approach,” in Proc. of Int. Conf. on Model Driven
Engineering Languages and Systems. Springer, 2006, pp. 589–603.

[38] A. Ciancone, A. Filieri, and R. Mirandola, “MANTra: Towards Model
Transformation Testing,” in Proc. of Int. Conf. on the Quality of
Information and Communications Technology. IEEE, 2010, pp. 97–
105.

[39] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based Spec-
ification Environment for Validating UML and OCL,” Science of
Computer Programming, vol. 69, pp. 27 – 34, 2007.

[40] T. Ball and S. G. Eick, “Software Visualization in the
Large,” Computer, vol. 29, pp. 33–43, 1996. [Online]. Available:
http://dx.doi.org/10.1109/2.488299

[41] J. A. Jones, “Semi-automatic Fault Localization,” Ph.D. dissertation,
School of Computer Science, Georgia Institute of Technology, Atlanta,
USA, 2008.

[42] H. Cleve and A. Zeller, “Locating Causes of Program Failures,” in
Proc. of Int. Conf. on Software Engineering. ACM, 2005, pp. 342–351.
[Online]. Available: http://doi.acm.org/10.1145/1062455.1062522

[43] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” in Proc. of Int. Conf. on
Software Engineering. IEEE, 2002, pp. 467–477.

[44] J. A. Jones and M. J. Harrold, “Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique,” in Proc. of Int. Conf. on
Automated Software Engineering. ACM, 2005, pp. 273–282.

[45] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Fault Localization for Dy-
namic Web Applications,” IEEE Transactions on Software Engineering,
vol. 38, pp. 314 –335, 2012.

[46] J. Schönböck, G. Kappel, A. Kusel, W. Retschitzegger, W. Schwinger,
and M. Wimmer, “Catch Me If You Can - Debugging Support for Model
Transformations,” in Proc. of Workshops and Symposia of Models in
Software Engineering. Springer, 2009, pp. 5–20.

[47] Z. Ujhelyi, Á. Horváth, and D. Varró, “Dynamic Backward Slicing of
Model Transformations,” in Proc. of Int. Conf. on Software Testing,
Verification and Validation. IEEE, 2012, pp. 1–10.

[48] M. Weiser, “Program slicing,” in Proc. of Int. Conf. on Software
Engineering. IEEE, 1981, pp. 439–449. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800078.802557

