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Abstract In the area of model-driven engineering, model
transformations are proposed as the technique to systemat-
ically manipulate models. For increasing development pro-
ductivity as well as quality of model transformations, reuse
mechanisms are indispensable. Although numerous mecha-
nisms have been proposed, no systematic comparison exists,
making it unclear, which reuse mechanisms may be best
employed in a certain situation. Thus, this paper provides
an in-depth comparison of reuse mechanisms in model-to-
model transformation languages and categorizes them along
their intended scope of application. Finally, current barriers
and facilitators to model transformation reuse are discussed.
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1 Introduction

Model-driven engineering (MDE) [59] proposes an active
use of models to conduct the different phases of software
development. Hence, models become first-class artifacts
throughout the software lifecycle, leading to a shift from
the “everything is an object” paradigm to the “everything
is a model” paradigm [8]. Thereby, model transformations
[62] are proposed to systematically manipulate models. Thus,
model transformations are crucial for the success of MDE,
being comparable in role and importance to compilers for
high-level programming languages, since there is a recur-
ring need (i) to transform models between different abstrac-
tion levels to bridge the gap between design and implemen-
tation, (ii) to migrate models between different language
versions, or (iii) to translate models into semantic domains
[4,27]. These kinds of transformations are called model-
to-model (M2M) transformations and are focused in this
paper.

Given the prominent role of M2M transformations in
MDE and their use in increasingly complex scenarios, appro-
priate reuse mechanisms are indispensable to increase devel-
opment productivity as well as quality of model transforma-
tions. Although this need has been recognized by the research
community, as a plethora of proposed reuse mechanisms
reveals, most of today’s transformation designers still follow
an ad hoc manner to specify model transformations [32].
This is not least due to the fact that (i) the application scenar-
ios of the different reuse mechanisms are not clearly defined,
(ii) it is still unclear which M2M transformation languages
support which reuse mechanisms, since diverse mechanisms
have been proposed by researches, which base on different
transformation languages, and (iii) to which extent, syntac-
tically similar reuse mechanisms of different M2M transfor-
mation languages vary semantically.

123



A. Kusel et al.

To alleviate this situation, this paper provides an in-depth
survey of proposed reuse mechanisms in M2M transforma-
tion languages. In this survey, first typical reuse scenarios
are identified by systematically combining the dimensions
of (i) the granularity of the reusable artifact, (ii) the speci-
ficity of the reusable artifact, and (iii) the scope, where the
reusable artifact is going to be integrated. Second, to expli-
cate the main differences as well as commonalities between
the reuse mechanisms along these dimensions, a comparison
framework analogous to the main phases of software reuse
[44] is derived, comprising the four phases of abstraction,
selection, specialization, and integration. Third, representa-
tive M2M transformation languages and reuse mechanisms
are selected to discuss syntactical as well as semantical dif-
ferences for providing the reader a sound basis for selecting
a certain reuse mechanism and/or language. Finally, barriers
and facilitators for applying current reuse mechanisms for
model transformations are discussed to provide a roadmap
for model transformation reuse research.
Outline Section 2 presents a three-dimensional space for
classifying reuse mechanisms and explicating typical reuse
scenarios, acting as basis for deriving a common comparison
framework. This framework is used in Sect. 3 to compare
reuse mechanisms and supporting languages that have been
found in the literature. Based on the results of the compari-
son, Sect. 4 presents barriers and facilitators to reuse in M2M
transformations, and finally, Sect. 5 concludes the paper.

This paper goes far beyond the work described in [82],
adding the following two main contributions. First, the dif-
ferent reuse scenarios have been introduced by meansof a
systematic categorization providing a sound basis for the pro-
posed comparison framework. Second, in the original ver-
sion, we compared the different reuse mechanisms without
investigating dedicated M2M transformation languages. In
contrast, in this paper, we elicit in detail the provided means
for reuse in diverse M2M transformation languages.

2 Classifying reuse mechanisms

When investigating literature on M2M transformation reuse,
a plethora of approaches may be found. However, there is a
lack of comparing different approaches. Such a comparison
would be highly beneficial to reason about commonalities
and differences between the different approaches and may
act as basis for selecting a certain approach for a specific situ-
ation. For classifying reuse mechanisms and explicating typ-
ical reuse scenarios, we introduce a three-dimensional space
in the following.

2.1 Dimensions of transformation reuse mechanisms

Central to any transformation reuse mechanism is that trans-
formation logic should be reused, which is denoted as

Fig. 1 Dimensions of transformation reuse mechanisms

reusable artifact in the following. For identifying typical
reuse scenarios, the key dimensions of the reusable artifact
are illustrated in Fig. 1. In this respect, first, the reusable arti-
fact may exhibit different granularities, i.e., if small parts
(rules or functions) or large parts (including the whole trans-
formations themselves) are going to be reused. Furthermore,
the reusable artifact may be bound to concrete metamodel
types or not by using generic types, leading to the sec-
ond dimension named specificity. Finally, the reusable arti-
fact may be employed in different scopes, i.e., whether the
reusable artifact is reused within a single transformation only
(source and target metamodels are the same or subtypes—
further referred as intra) or across transformation boundaries
(at least one source or target metamodel is not the same or a
subtype—further referred as inter). Please note that although
at first sight there may be a strong interrelationship between
the two dimensions “scope” and “granularity,” these two
dimensions are nevertheless orthogonal, since, e.g., a func-
tion, which would be classified as small in granularity may be
reused within a single transformation (cf. intra) or between
different transformations (cf. inter).

2.2 Reuse scenarios

By systematically combining the potential values of the three
dimensions, eight scenarios may be identified as summarized
in Table 1 and detailed in the following. For exemplifying
the different reuse scenarios, additionally an example per
scenario on basis of the well-known Class2ER example
[9] is given.

2.2.1 Reuse scenario 1: concrete intra-transformation
reuse in the small

The first reuse scenario is characterized by (intra, concrete,
small), which targets reuse within a single transformation,
whereby the reusable artifact is bound to concrete metamodel
types, and the reused transformation artifact is small.

Example An example for this reuse scenario is depicted in
Fig. 2, where a single transformation between the Class
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Table 1 Reuse scenarios and their reuse mechanisms

Reuse scenario Scope Specificity Granularity Classified reuse mechanisms
Inter/intra Concrete/generic Small/large

Scenario 1 Intra Concrete small Code scavenging, user-defined functions, rule inheritance

Inter Concrete Small

Scenario 2 Intra Concrete Large Module import, transformation product lines

Scenario 3 Inter Generic Small HOT, AOP, reflection, generic functions, embedded DSLs

Intra Generic Small

Scenario 4 Inter Generic Large Generic transformations, stand-alone DSLs

Intra Generic Large

Scenario 5 Inter Concrete Large Orchestration

Fig. 2 Running example—reuse scenario 1

metamodel and the Entity Relationship metamodel
should be developed, and recurring parts of the transforma-
tion logic should be specified only once and reused accord-
ingly. Typical reuse mechanisms which are suitable for such
a scenario are code scavenging, user-defined functions, and
rule inheritance.

2.2.2 Reuse scenario 2: concrete intra-transformation
reuse in the large

The second reuse scenario is described by the attributes
(intra, concrete, large), which means that reuse should again
take place within a transformation, whereby “within” means
a family of similar transformations between the same meta-
models. The reused artifact is bound to concrete metamodel
types, and the portion of reuse is rather large.

Example To exemplify such a reuse scenario, Fig. 3 provides
an example. In this example, a transformation OneTable
PerHierarchy between the metamodels Class and

Entity Relationship should be developed on basis of
an existing transformation OneTablePer Class between
the same metamodels. The difference between them is that
different OR-mapping approaches should be realized. Reuse
mechanisms facilitating such a scenario are module import
and transformation product lines.

2.2.3 Reuse scenario 3: generic inter-transformation reuse
in the small

The third reuse scenario exhibits the values of (inter, generic,
small), demanding for reuse across transformation bound-
aries. Furthermore, the reusable artifacts are independent of
concrete metamodel types and are small.

Example A typical example falling into this category is shown
in Fig. 4, where transformation logic independent of the
concrete metamodels or transformations should be reused.
An example for this is cross-cutting concerns like debug-
ging or tracing. Reuse mechanisms that allow to realize
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Fig. 3 Running example—reuse scenario 2

such scenarios are higher-order transformations (HOTs),
aspect-orientation, reflection, generic functions, and embed-
ded DSLs.

2.2.4 Reuse scenario 4: generic inter-transformation reuse
in the large

The fourth reuse scenario refers to the values of (inter,
generic, large), meaning that reuse should take place between
transformations. Additionally, the reusable artifact abstracts
from concrete metamodels types and is large.

Example To exemplify such a reuse scenario, Fig. 5 shows
a simple transformation scenario, where the transformation
logic of the Class2ER transformation should be reused
in an Ontology2XML transformation, since the included
metamodels are structurally similar. Generic Transforma-
tions and stand-alone DSLs are reuse mechanisms, which
are suitable for these requirements.

2.2.5 Reuse scenario 5: concrete inter-transformation reuse
in the large

Finally, the fifth reuse scenario includes the attributes of
(inter, concrete, large); thus, reuse occurs across transfor-
mation boundaries, whereby the reusable artifacts are bound
to concrete metamodel types and are large.

Example To exemplify this reuse scenario, Fig. 6 depicts
the case that a Class2Relational transformation is
realized by reusing a Class2ER transformation and an
ER2Relational transformation. A reuse mechanism

which allows to realize such a scenario is the orchestration
of existing model transformations into a more coarse-grained
transformation.

2.2.6 Remaining combinations

Please note that three of the potential eight combinations
are not explicitly discussed in this paper, because the reuse
techniques for other scenarios are sufficient to be applied for
them. These three comprise the combinations of (i) (intra,
generic, small), which would mean that, e.g., generic func-
tions are specified for a single transformation only. We con-
sider this combination to be solvable with techniques dis-
cussed for scenario 3. (ii) (intra, generic, large), which would
mean that, e.g., a whole generic transformation is specified
to be reused for a set of subtype languages. Again, this sce-
nario does not essentially require different techniques used
in scenario 4. (iii) (inter, concrete, small), which would mean
that, e.g., concretely typed functions are reused across trans-
formation boundaries, which would only be possible, if the
transformations share at least some metamodel types. Thus,
solutions for scenario 1 can be successfully applied.

This section now introduces the general process involved
in reuse, which is used to derive a common comparison
framework for reuse in model transformations.

2.3 Reuse process and conceptual comparison framework

Software reuse has been described as the “process of cre-
ating software systems from existing software rather than
building software systems from scratch” [44]. In M2M trans-
formations, reuse mechanisms focus on different application
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Fig. 4 Running example—reuse scenario 3

Fig. 5 Running example—reuse scenario 4

123



A. Kusel et al.

How to reuse5
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Fig. 6 Running example—reuse scenario 5

Fig. 7 Comparison framework with comparison criteria

scenarios and thus exhibit different characteristics. How-
ever, according to [44], they follow a common process
which is cyclic in nature to accommodate for continu-
ous reuse (cf. Fig. 7). The process comprises the com-
mon phases (i) abstraction, (ii) selection, (iii) specializa-
tion, and (iv) integration and is used to derive a compar-
ison framework (cf. Fig. 7) including dedicated criteria to
characterize different reuse mechanisms, as discussed in the
following.

Abstraction To enable reuse, abstraction is the key of any
reuse mechanism. According to [43], one might distin-
guish between abstraction by generalization and abstrac-
tion by simplification. Abstraction by generalization allows
to make an artifact reusable in different situations. To achieve
this in the context of model transformations, it should be

possible to decouple transformation logic from type infor-
mation, i.e., the source and the target metamodels. Fur-
thermore, reuse of transformation logic across platforms
should be possible by generalizing from a certain trans-
formation language. Abstraction by simplification allows
to explicitly represent the information necessary for reuse,
i.e., the visible part (e.g., the interface of a function to be
reused), but to hide the actual realization of the artifact, i.e.,
the hidden part (e.g., the implementation of the function)
[44].

Selection Provided that repositories of reusable artifacts
exist, mechanisms are needed to efficiently find the arti-
facts therein. Such mechanisms range from metainfor-
mation, e.g., in terms of a documentation or pre-/post-
conditions, to automatism in the form of wizards or more
advanced techniques stemming from the area of information
retrieval [52].

Specialization Specialization means the adaptation of an
abstracted artifact to a specific transformation. Ideally, only
knowledge of the interface of the abstracted artifact is needed,
i.e., black-box reuse. In contrast, white-box reuse demands
additional knowledge of the realization. Typical specializa-
tion mechanisms are, e.g., passing of parameter values to
functions or overriding/extending parts in the context of
inheritance. Finally, language inherent means may be applied
for specialization, i.e., the same formalism for specializa-
tion is used as for the definition of the reusable artifact,
or not.

Integration Whereas specialization solely configures an arti-
fact, integration focuses on how reusable artifacts interact
with the already existing parts of the specified transformation.
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Integration mechanisms in software engineering are typi-
cally categorized into composition and generation mecha-
nisms [10,53]. Thereby, composition implies that integration
must take place. In contrast, generation implies that an exe-
cutable transformation without further need for integration is
produced. Therefore, the first criterion ability distinguishes
between composition and generation, whereas the second cri-
terion kind differentiates potential ways of composition. In
this respect, according to [47], composition can be realized
by (i) containment, i.e., the specified transformation nests the
reusable artifact, (ii) connection, i.e., the specified transfor-
mation reuses the artifact by delegation, (iii) extension, i.e.,
the reusable artifact is extended and refined, and (iv) coordi-
nation, i.e., a synchronization language is used to coordinate
the reusable artifacts.

3 Comparison of reuse mechanisms

In the following, the identified reuse mechanisms, which are
based on the findings of [44] and extracted from the field of
software engineering, are compared along the five different
scenarios of reuse. For each mechanism, first the basic notion
is explained, second the mechanism is exemplified, and third,
conceptually evaluated based on the introduced comparison
framework. The results of this conceptual evaluation for each
mechanism are summarized in Table 13. Finally, we inves-
tigate on the realization of the reuse mechanisms offered
by dedicated M2M transformation languages or approaches
introduced in literature.

To compare different realizations of reuse mechanisms,
three orthogonal dimensions analogous to the three pri-
mary building blocks of programming languages [2] are
investigated. The first two dimensions comprise static cri-
teria: (i) the syntax a transformation language offers with
respect to reuse mechanisms and (ii) the static seman-
tics, which indicates whether the specification is well
formed at design time or not. The third dimension of
the comparison framework describes how reuse mecha-
nisms behave at run-time, i.e., their dynamic semantics. The
whole comparison framework as well as its relationships
to reuse mechanisms and reuse scenarios is illustrated in
Fig. 8.

3.1 Selected transformation languages and reuse
mechanisms

In order to provide an extensive survey of reuse in dedicated
M2M transformation languages, representatives of the three
common paradigms of imperative, declarative, and hybrid
transformation languages have been chosen [22]. The ratio-
nale behind this selection was to assort a representative mix
of well-published approaches or standards and to keep the

ratio between the different paradigms. Concerning impera-
tive approaches, we considered Kermeta1 (version 1.4.0) and
the QVT Operations language of the QVT standard. Concern-
ing declarative approaches, we investigated on the QVT Rela-
tions, being the declarative language of the QVT standard,
TGGs,2 VIATRA,3, and our own transformation language
called Transformation Nets [60]. As hybrid transformation
languages, we considered ATL4 (version 3.1.0), ETL5 (ver-
sion 0.9.1), and RubyTL6 (version 3—alpha).

To identify reuse mechanisms that base on existing trans-
formation languages (as often proposed for reuse scenarios
3–5), the methodology was to start from a comparison of
reuse mechanisms in software engineering conducted in [44].
The identified mechanisms in this survey have been the start-
ing point for our comparison, whereby we added more recent
reuse mechanisms such as AOP as well as reuse mechanisms
being specific to transformation languages such as HOTs by
conducting a systematic literature review. First, we investi-
gated the publication record of renowned authors of transfor-
mation languages in order to identify proposed reuse mecha-
nisms. Second, we considered proceedings of conferences in
the area model engineering, in particular those of MoDELS,
ICMT, ECMFA, and their co-located workshops, as well as
publications in journals, especially, SoSym.

3.2 Scenario 1: concrete intra-transformation reuse
in the small

Mechanisms to avoid code duplication and thus to enhance
readability and maintainability within a single transformation
include functions and rule inheritance, since they depend on
concrete metamodel types. Before we go into detail on these
mechanisms, we first shortly introduce code scavenging for
integrity reasons.

3.2.1 Code scavenging

Similar to traditional programming, transformation design-
ers may adopt an ad hoc reuse mechanism by scavenging
a reusable artifact from existing transformations and using
them as part of their new transformation.

Conceptual evaluation Code scavenging does not sup-
port explicit means for abstraction. Instead, abstraction
exists only in the mind of the transformation designer

1 http://www.kermeta.org.
2 http://www.moflon.org.
3 http://www.eclipse.org/viatra2.
4 http://www.eclipse.org/atl.
5 http://www.eclipse.org/epsilon/doc/etl.
6 http://rubytl.rubyforge.org.

123

http://www.kermeta.org
http://www.moflon.org
http://www.eclipse.org/viatra2
http://www.eclipse.org/atl
http://www.eclipse.org/epsilon/doc/etl
http://rubytl.rubyforge.org


A. Kusel et al.

Fig. 8 Overview on classification of reuse mechanisms and on applied comparison framework

[44]. Concerning selection, transformation designers typi-
cally recognize similarities between (parts of) transforma-
tions they currently design and (parts of) transformations they
have previously defined, i.e., the selection process is purely
manual. Therefore, the main repository for code scavenging
is the own code. Specialization must be done manually by
the transformation designer in a white-box manner. Since
the reused artifacts are just copied into the new transforma-
tion, the composition kind is containment. Thus, although
code scavenging is a reuse mechanism, which is possible in
all transformation languages, its effectiveness is restricted
by its informality. Therefore, no detailed comparison across
different transformation languages is provided.

3.2.2 Functions

Functions provide means to extract and then reuse recurring
logic. They are a well-known reuse mechanism from pro-
gramming, and thus, have also been considered in numerous
transformation languages.

Example Figure 9 shows an ATL helper function, realiz-
ing the concatenation of the name attribute with the string

Fig. 9 Example: functions in ATL

“_translated.” This function is then invoked several
times in the transformation specification.

Conceptual evaluation The gained abstraction of this reuse
mechanism is low, since functions typically depend on con-
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Table 2 Realization of functions in M2M transformation languages

Criteria Values Kermeta QVT-O QVT-R ATL ETL

Syntax

Context � (Supported)/
× (Not supported)/

� (MM as
classes)

� × � �

Overloading � (Supported)/
× (Not supported)/

× � � � (But not
interpreted)

�

Static semantics

Compatibility with
declaration

[Compile-time/
run-time/no] error

Compile-time
error

Compile-time
error

Run-time
error

Run-time
error

Run-time
error

Duplicate
declarations

[Compile-time/
run-time/no] error

Compile-time
error

Compile-time
error

No error (first
function selected)

Compile-time
error

No error (first
function selected)

Dynamic semantics

Dynamic binding � (Supported)/
× (Not supported)/

� (MM as
classes)

� n.a. (no context) � (only on
MM types)

�

crete metamodel types (cf. context NamedElement in
Fig. 9). However, abstraction by simplification is gained,
since the implementation is hidden. For selection, no pub-
licly available repository exists, instead user-defined libraries
may exist, only. Specialization is done black-box based, i.e.,
functions are specialized in a language-inherent manner by
parameter values. Concerning integration, functions are a
connection-based composition mechanism.

Numerous transformation languages provide support for
functions. To achieve a representative set for comparison,
we selected: (i) imperative languages, being Kermeta [69]
and QVT-O [25], (ii) declarative languages, being QVT-R
based on ModelMorf [66], and (iii) hybrid languages, being
ATL [5] and ETL [70]. Although the concept of functions
is well understood in general, functions in transformation
languages are realized differently, as summarized in Table 2
and discussed in the following.

Criteria for language evaluation With respect to the syntax
of functions, we investigated two criteria. First, a function
may depend on a certain context, i.e., the function may be
called for a certain type of element, only, which is typically
an element of the source or target metamodel. Second, the
possibility of overloading functions, i.e., functions exhibiting
the same name, but a different parameter list, is explored.

Concerning the static semantics of functions, it should be
ensured that the called function is compatible to its declara-
tion, e.g., that a called function has been declared before and
that the types and numbers of parameters are valid. Further-
more, duplicate declarations of functions should be detected
at compile-time, i.e., equally named functions with the same
parameter list.

Finally, regarding the dynamic semantics, it should be ana-
lyzed if functions support dynamic binding, i.e., functions
should be called depending on their dynamic context type.
Evaluation of languages When investigating the syntacti-
cal specification of functions, it has to be noted that QVT

Relations do not allow to specify a context for a function. In
Kermeta, this criterion is only applicable if transformation
rules as well as the metamodels are represented as classes and
according functions as operations. Furthermore, ATL distin-
guishes between so-called functional helpers and attribute
helpers. In contrast to functional helpers, which are consid-
ered in the following only, attribute helpers do not allow the
specification of parameters. Such attribute helpers are often
used to introduce derived attributes. Overloading is sup-
ported by the investigated transformation languages except
Kermeta. However, in ATL, overloading is not interpreted,
since parameters are not used to discriminate helpers that
have the same name and the same context. This implies that
all the helpers defined within a given context in an ATL pro-
gram must have a distinct name. In case that two equally
named helpers with the same context are defined, the last
declared helper is called. A further peculiarity of ATL is the
super keyword in functions which allows to call functions
with the same name defined for a super type of the context
type.

Regarding static semantics, only Kermeta and QVT-O
evaluate if a function call is compatible with its declara-
tion at compile-time. All other investigated languages throw
a run-time error if the according function does not exist or
exhibits a different parameter list. Concerning the detection
of duplicate declarations of functions, Kermata, QVT-O, and
ATL raise a compile-time error. In contrast, QVT-R and ETL
do not raise any error, neither at compile-time nor at run-
time. Instead, the first function specified in the source code
is called.

With respect to the dynamic semantics, all languages
which allow to specify a context of a function support
dynamic binding, i.e., equally named functions exhibiting
a different context are selected on basis of the dynamic type.
However, ATL exhibits the constraint that dynamic binding
is not supported for primitive types, whereas this is supported
in QVT-O and ETL.

123



A. Kusel et al.

3.2.3 Rule inheritance

The concept of inheritance plays a major role in metamodels,
as revealed, e.g., by the evolution of the UML standard [51].
In metamodels, it is common to employ inheritance between
classes to reuse feature definitions from parent classes. Since
classes and their respective objects are typically input or out-
put for transformation rules, inheritance between transfor-
mation rules dealing with classes that are in an inheritance
hierarchy in the metamodels may be applied in order to avoid
code duplication.

Example Figure 10 shows an example of rule inheritance in
ATL, where inheritance is used to avoid the re-specification
of thename assignment by inheriting from the abstract trans-
formation rule NElem2MElem.

Conceptual evaluation Rule inheritance does neither
achieve abstraction from the actual metamodel types nor
from the underlying transformation language. Furthermore,
no abstraction by simplification takes place, since the whole
implementation of the superrules is exposed to transforma-
tion designers. For selection, no repository exists since inher-
itance is currently specific to a single transformation. Super-
rules might be specialized by overriding them in a white-box,
language-inherent manner. With respect to integration, inher-
itance represents an extension-based composition mecha-
nism.

Although inheritance is a well understood and commonly
agreed reuse mechanism in software engineering, current
transformation languages supporting inheritance exhibit dif-
ferences as illustrated by a selection of languages, comprising
(i) the imperative languages Kermeta [69] and QVT-O [25],
(ii) the declarative languages TGGs [41] and TNs [60], and
(iii) the hybrid languages ATL [5] and ETL [70]. The results
of the comparison are summarized in Table 3.

Fig. 10 Example: rule inheritance in ATL

Criteria for language evaluation Concerning the syntax of
inheritance, two criteria have been investigated. First, a trans-
formation rule may inherit from either one or multiple other
transformation rules, depending on whether single or multi-
ple inheritance is supported. Second, the concept of abstract
rules may be supported in order to specify that a certain rule
is not executable per se but provides core behavior that may
be reused in subrules.

With respect to the static semantics of inheritance, it must
be statically ensured that subrules refine the types of the
superrules in a co-variant manner, only. Second, concrete
rules targeting an abstract class should result in a compile-
time error, since abstract classes are not instantiable. Finally,
in case of multiple inheritance, potentially arising diamonds
should be statically checked.

Regarding the dynamic semantics, it is of interest, which
rules apply to which instances, i.e., whether a transformation
language supports the well-known principle of type substi-
tutability [49]. In the context of model transformations, this
means if no specific subrule is defined for instances of a
subclass, then these instances of the subclass may be trans-
formed by the rule defined for the superclass. Second, it is
of interest, how inherited conditions are treated, i.e., whether
inherited conditions are also evaluated in subrules (cf. com-
posing behavior) or not (cf. asymmetric behavior). Finally,
the same question is relevant for assignments, i.e., how inher-
ited assignments are treated.

Evaluation of languages Concerning the syntax of inheri-
tance, all the languages evaluated except ATL support mul-
tiple inheritance. Furthermore, abstract rules are possible in
all languages.

With respect to the static semantics, one may see that
checking the static semantics is still limited in transforma-
tion languages. Regarding type changes, Kermeta is most
restrictive, since no type changes are allowed. In contrast,
all the other languages allow for co-variance of input ele-
ments and output elements, which is typically ensured at
compile-time—the only exceptions are ATL and ETL. With
respect to concrete rules targeting abstract classes, most of
the languages detect this not before run-time, except QVT-O
and TNs. Finally, the diamond problem is statically detected
in all languages that support multiple inheritance, except in
QVT-O.

Regarding the dynamic semantics, one main difference is
the application of type substitutability in the different lan-
guages as may be seen in Table 3. Whereas ATL, TGGs, and
TNs provide support by default, ETL allows the transforma-
tion designer to interfere. However, type substitutability is
interpreted differently in ETL anyhow, since a superrule still
regards all instances irrespective of whether the instances
have already been matched by subrules or not. Furthermore,
the imperative languages QVT-O and Kermeta also allow
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Table 3 Realization of rule inheritance in M2M transformation languages

Criteria Values Kermeta QVT-O TGGs TNs ATL ETL

Syntax

Type of
inheritance

Single/multiple Multiple Multiple Multiple Multiple Single Multiple

Abstract rules Yes/no Yes Yes Yes Yes Yes Yes

Static semantics

Non-co-variant
type change

[Compile-time/
run-time/no]
error

n.a. (signature
must not be
changed)

Compile-time
error

Compile-time
error

Compile-time
error

Run-time error No error

Abstract target
classes

[Compile-time/
run-time/no]
error

Run-time
error

Compile-time
error

Run-time
error
(application
fails)

Compile-time
error

Run-time
error

Run-time
error

Diamond
problem

[Compile-time/
run-time/no]
error

Compile-time
error

No error Compile-time
error

Compile-time
error

n.a. (single
inheritance)

Compile-time
error

Dynamic semantics

Type
substitutability

Yes/no n.a. (depends on
rule calling
order)

n.a. (depends on
rule calling
order)

Yes Yes Yes User-definable

Condition
semantics

Asymmetric/
composing

n.a. (determined by
programmer)

Asymmetric Composing Composing Composing Composing

Assignment
semantics

Asymmetric/
composing

n.a. (determined by
programmer)

Composing Composing Composing Composing Composing

the transformation designer to interfere, since the calling of
rules is performed by the transformation designer. In addi-
tion to that conditions are evaluated by a composing com-
pletion of the lookup—the only exception thereof is QVT-O,
adhering to an asymmetric approach. Finally, all evaluated
transformation languages implement a composing behavior
for assignments.

3.2.4 Synopsis

Functions as well as rule inheritance are both mechanisms to
avoid code duplication within a single transformation, com-
plementing each other. Functions allow to reuse arbitrary
expressions and are supported by diverse languages. How-
ever, semantic differences, especially concerning overload-
ing, arise. In contrast, rule inheritance reuses assignments and
conditions provided that the metamodels incorporate inher-
itance relationships between meta-classes. Although inher-
itance is an important reuse mechanism in object-oriented
programming, not all transformation languages support rule
inheritance, or if they do, they offer different semantics as
has been shown in detail in [83].

3.3 Scenario 2: concrete intra-transformation reuse
in the large

Provided that a similar transformation scenario has to be real-
ized on the basis of an existing transformation, i.e., a transfor-
mation between the same source and target metamodels, but
with different transformation logic, mechanisms are needed

that allow to either alter the existing transformation, e.g., by
module import, or to configure an existing transformation
such that it meets certain requirements, e.g., by transforma-
tion product lines.

3.3.1 Module import

Import of functionality is a well-known reuse mechanism in
software engineering, since the introduction of the module
concept, which has also been considered in numerous trans-
formation languages to split up transformations into manage-
able size and scope [21,79]. Module import allows to build
the union of transformation rules from different transforma-
tions. Thereby, rules or helpers may be eventually redefined,
i.e., a rule or a function may be replaced by a new one, and
additional rules and functions may be added.

Example For exemplifying module import, Fig. 11 pro-
vides an example in ATL, whereby ATL calls the module
import mechanism superimposition. A new transformation
implementing a “one table per hierarchy” strategy should
base on an existing “one table per class” transformation.
Thereby, the superimposed transformation redefines the rule
Class2Entity and adds an additional helper Closure
for calculating the transitive closure.

Conceptual evaluation Module import neither abstracts
from the metamodels, since old and redefined rules are bound
to concrete metamodel types, nor from the transformation
language. Module import also does not abstract by simpli-
fication, since the whole original transformation is visible
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Fig. 11 Example: superimposition in ATL

to the transformation designer. Concerning selection, any
existing transformation could be reused in general. However,
currently only the “ATL Model Transformation Zoo”7 with
publicly available transformations exists. Nevertheless, the
selection process is supported by documentation, only. Spe-
cialization is done in a language-inherent, black-box manner,
since redefining existing transformation rules has to be done
in the same language and requires to know the exact sig-
natures of the to be redefined transformation rules. Regard-
ing integration, module import represents an extension-based
composition mechanism.

In the following, we investigate module import support
in the imperative transformation language QVT-O [25], the
declarative transformation languages TGGs [41] and QVT-
R based on ModelMorf [66], and the hybrid transformation
languages ATL [5], ETL [70], and RubyTL [17]. The results
may be found in Table 4.

Criteria for language evaluation With respect to the syntax,
first we investigated, which keywords are offered for speci-
fying the module import. Furthermore, the possibility for
redefining transformation rules is investigated and how this
may be achieved, e.g., either implicitly, e.g., by using equal
rule names, or explicitly, e.g., in the form of specific key-
words.

Concerning static semantics, it is evaluated whether static
checks take place across module boundaries, e.g., if a certain
transformation rule exists in one of the imported transforma-
tions. Furthermore, since transformation rules are bound to
concrete source metamodel types, it should be prohibited to
change the source type, since otherwise an additional rule is
added rather than an existing one is changed. Concerning the
output elements, it should be possible to change the according
target type in order to alter the transformation behavior. Nev-
ertheless, since other transformation rules may depend on the
result of the to be refined rule, e.g., to set certain links, it has
to be ensured that the types are compatible. In this respect,
only co-variant changes, i.e., refined rules may return a sub-
type, should be allowed and contravariant type changes or a
return type not contained in the inheritance hierarchy should
be detected at compile-time.

7 http://www.eclipse.org/m2m/atl/atlTransformations.

Finally, regarding dynamic semantics, it is first inves-
tigated which “union” semantics is considered for rede-
fined transformation rules. Thereby, override means that the
new rule redefines the existing rule, whereas generalization
means that the behavior of the redefined rule is kept, but
additional logic may be added by a redefining rule. Finally, it
is investigated whether inheriting transformation rules still
behave correctly in case a superrule is refined, i.e., if mod-
ule import or superimposition work properly in combination
with inheritance.
Evaluation of languages All languages except ATL allow
to import transformation definitions statically by means of
explicit keywords. In QVT-O, the keyword extends is pro-
vided, in order to base a new transformation on an existing
one. In TGGs, it is possible to merge the rule types, i.e.,
the high-level correspondences from one transformation with
those of a new one. In QVT-R, it is possible to import a depen-
dent transformation file and to extend a certain transformation
of this file. Please note that QVT-R allows to specify more
than one transformation per file, and thus, both keywords are
required in order to identify the transformation to extend.
ETL allows to import rules from a different transformation
definition and so does RubyTL. In contrast, ATL provides the
so-called superimposition mechanism, which builds a virtual
transformation that contains the union of all transformation
rules dynamically at load time [78]. The transformations that
should be superimposed may be specified in the run-time con-
figuration of an ATL transformation. With the exception of
QVT-R, rules of the base transformation are implicitly rede-
fined, if the imported transformation exhibits equally named
transformation rules or as in RubyTL, traces for the source
and target elements of a match are already available from the
execution of the imported module. In contrast, in QVT-R, the
redefinition of rules needs to be explicitly specified by means
of the keyword override.

Concerning the evaluation of static semantics, those
approaches that import transformations at compile-time pro-
vide means for static cross-module checks. In TGGs, this is
not applicable, since currently there is no implementation
available that supports merging of transformation rules—
instead the evaluation is based on [41], but no details are men-
tioned regarding this point. Furthermore, QVT-O, TGGs, and
QVT-R raise a compile-time error, if the type of the source
metamodel element is changed in case a rule is redefined. In
ATL and ETL, no error is raised—not even at run-time. Con-
cerning a contravariant change of output elements, QVT-O
and TGGs raise an according compile-time error. In QVT-R,
this property is handled even more strictly, since no changes
of the types of output elements are allowed at all. In contrast,
ATL and ETL do not raise any error. Because the merging
of rules in RubyTL is a purely dynamic approach based on
refining already available traces, static semantic checks are
not applicable.
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Table 4 Realization of module import in M2M transformation languages

Criteria Values QVT-O TGGs QVT-R ATL ETL RubyTL

Syntax

Import speci-
fication

Keyword extends merge import,
extends

Run configu-
ration

import import

Rule redefinition Implicit/explicit Implicit
(equal
names)

Implicit (equal
names)

Explicit
(keyword
overrides)

Implicit (equal
names)

Implicit
(equal
names)

Implicit (trace
exists)

Static semantics

Cross-module
checks

[Compile-time/
run-time/no] error

Compile-time
error

n.a. (no
prototype)

Compile-time
error

n.a. (load-time
composition)

Compile-time
error

n.a. (purely
dynamic)

Change of source
type

[Compile-time/
run-time/no] error

Compile-time
error

Compile-time
error

Compile-time
error

No error No error n.a. (purely
dynamic)

Contravariant
change of
output

[Compile-time/
run-time/no] error

Compile-time
error

Compile-time
error

Compile-time
error (no
change)

No error No error n.a. (purely
dynamic)

Dynamic semantics

Semantics of
redefinition

Override/
generalization/
refinement

Override Generalization Override Override Override Refinement

Rule inheritance Broken/not
broken

Broken (old
base rule)

n.a. (no
prototype)

n.a. (no
inheritance)

Broken (old
base rule)

n.a. (base rule
may be
substituted)

n.a. (no
inheritance)

Concerning the dynamic semantics of the redefinition of
transformation rules, QVT-O, QVT-R, ATL, and ETL pro-
vide an override semantics, i.e., rules with the same name
override the existing rule. Thereby, overriding means that
the original rule is replaced with a new one, and it is not
possible to refer to the original rule anymore. In contrast,
TGGs impose a generalization semantics, i.e., the redefined
TGG rule extends the original one. In RubyTL, rules are not
composed, but refining rules are executed after the refined
rules. In particular, refining rules only add additional bind-
ings that are executed in addition to the bindings of the refined
rules by following a similar check-before-enforce seman-
tics as known from QVT Relations. Concerning the interplay
between inheritance and module import, it has to be noted
that in QVT-O, the rule inheritance hierarchy is broken, since
inheriting rules still depend on the original base rule. Addi-
tionally, the refined base rule does not recognize that elements
may have been matched by a more specific subrule, resulting
in too many target elements. In TGGs, this criterion is not
evaluated, since no prototype is available, and no information
may be found on this aspect in [41]. Since QVT-R does not
support rule inheritance, this criterion is not applicable. In
ATL, superimposition is a load-time mechanism, whereas
rule inheritance is flattened already at compile-time, i.e.,
transformation logic of the superrule is copied to the subrule
during compilation. This leads to the fact that the inheritance
hierarchy is broken, since a new base rule may not be consid-
ered by subrules anymore, because the overriding rule is not
imposed before run-time. In ETL, this criterion is not eval-
uated, since type substitutability may be defined by the user

(cf. previous subsection). Finally, RubyTL does not provide
rule inheritance.

3.3.2 Transformation product lines

Software product line engineering is a method for creat-
ing a collection of similar software systems [16]. Similar
approaches recently gained attraction in the area of model
transformations allowing to externally configure a transfor-
mation for easing its adaptation to slightly different scenarios.
We call such a configurable family of model transformations
transformation product lines (TPLs). These approaches use
a proper variability representation, e.g., in terms of a feature
model [23], to guide the generation of a specific transforma-
tion.

Example Figure 12 shows a simplistic TPL for our run-
ning example, whereby a feature model allows to choose the
classes to be translated as well as the applied object/relational
mapping approach. From a specific selection in the feature
model, the corresponding transformation satisfying the fea-
ture selection is produced.

Conceptual evaluation In TPLs, the reusable artifact is not
only the already existing transformation, but also addition-
ally the feature model, which models interdependencies and
constraints of a model transformation. Since TPLs realize
a set of related transformations, they are bound to concrete
metamodel types and thus abstract neither from metamodels
nor from the transformation language. Currently, no publicly
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Fig. 12 Example: transformation product lines in ATL

available TPLs may be selected from a repository. Special-
ization is done by configuring the feature model; thus, no
internals of the transformation need to be known, being a
black-box, non-language-inherent mechanism. Concerning
integration, TPLs represent a generation-based reuse mech-
anism on basis of the configured feature model.

In the following, we investigate dedicated approaches that
allow to realize TPLs. Since transformation product lines are
a rather young research field in the area of model transfor-
mations, currently only two dedicated approaches are avail-
able (cf. Table 5). First, Kavimandan et al. [39] presented
an approach called Model Transformation Templatization
and Specialization (MTS) basing on the graph transforma-
tion language GReAT [7]. The second approach presented
by Sijtema [63] introduces so-called variability rules on top
of ATL.

Criteria for language evaluation First, syntactic means for
the specification of variabilities are required. Thereby, we
investigate if proprietary representations are employed or if
the configuration is based on a standard feature model. Sec-
ond, it is examined, if and with which means the transforma-
tion needs to be adapted, such that it becomes configurable.

Concerning the static semantics, invalid selections in the
variability model, e.g., incomplete selections, should be sta-
tically prohibited. Second, it should be ensured that for all
valid combinations in the feature model, transformation code
is available, as represented by the criterion inconsistencies
between the variability model and the transformation.

Regarding the dynamic semantics, the criterion execution
mode examines if there is an interpreter that is able to execute
the TPL or if the TPL specification is compiled to standard
transformation code. Provided that compilation takes place,
it is further investigated to which target language the vari-
ability model is translated to, i.e., the underlying execution
semantics.

Evaluation of languages With respect to the syntactic
specification of variability, MTS uses a proprietary model,
whereby an existing model transformation may be annotated
in order to identify variable parts by comments. Based on

these comments, a variability metamodel is automatically
extracted. In contrast, Sijtema bases on standard feature mod-
els. Concerning the specification of variability within the
transformation, both approaches demand for adaptations of
the transformation. In MTS, the transformation needs first
to be annotated, in order to derive the variability metamodel,
and second, it needs to be defined in a generic manner. The
approach of Sijtema requires the specification of so-called
variability rules that realize the different possible transfor-
mations configured by the feature model.

Concerning static semantics, both approaches do not
ensure statically that a selection in the variability model
represents a valid combination. Furthermore, none of the
approaches checks whether the transformation covers the
whole variability model, i.e., if there are inconsistencies
between the transformation and the variability model.

Regarding dynamic semantics, both approaches rely on
compilation by applying a HOT (cf. Sect. 3.4.1) to dedicated
transformation languages. In MTS, the configuration of the
variability model is used to instantiate a transformation in
GReAT, thereby making use of the C++ template feature,
to which GReAT is finally compiled to. In the approach of
Sijtema, variability rules are transformed to standard ATL
code, i.e., variability is translated to called rules in ATL,
which refine a rule realizing a common base behavior.

3.3.3 Synopsis

Both module import and TPLs allow to realize related trans-
formation scenarios. Nevertheless, module import follows
an ad hoc development approach, i.e., a transformation may
be incrementally modified on demand, whereas TPLs repre-
sent a planned development approach, i.e., all potential vari-
abilities of a transformation have to be modeled in advance.
Although changes in TPLs themselves are challenging, since
the feature model, the transformation code, as well as the
code generator have to be adapted accordingly, TPLs have
the advantage, that even domain experts without profound
knowledge of a transformation language might configure
transformations by just selecting values from the feature
model. In contrast to TPLs, module import requires profound
knowledge of the transformation language, but allows flexi-
ble changes of transformations.

3.4 Scenario 3: generic inter-transformation reuse
in the small

Parts of transformation logic might be independent of any
concrete scenario and might thus occur in various transfor-
mations, e.g., cross-cutting concerns like tracing or debug-
ging. For the scenario of generic inter-transformation reuse in
the small, higher-order transformations, aspect-orientation,
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Table 5 Realization of
transformation product lines Criteria Values MTS Sijtema

Syntax

Variability model Proprietary
model/feature model

Proprietary
model

Feature model

Transformation
adaptation
needed

Yes/no Yes (comments) Yes (variability
rules)

Static semantics

Invalid selection
in variability
model

[Compile-time/
run-time/no] error

No error No error

Inconsistencies
between variability
model/transformation

[Compile-time/
run-time/no] error

No error No error

Dynamic semantics

Execution mode Interpretation/
compilation

Compilation (HOT
to GReAT)

Compilation
(HOT to ATL)

Execution
semantics

Target language GReAT (C++) ATL

reflection, generic functions, and embedded domain-specific
languages have been found in literature, which are charac-
terized in the following.

3.4.1 Higher-order transformations (HOTs)

HOTs are model transformations that either take a model
transformation as input, produce a model transformation
as output, or do both. As detailed in [68], HOTs may be
applied in several ways to achieve reuse in model transforma-
tions, being (i) transformation composition, (ii) transforma-
tion synthesis, and (iii) transformation modification. Trans-
formation composition means that a HOT takes at least one
transformation and potentially other configuration models as
input and produces a transformation as output. Consequently,
transformation composition may be used, e.g., to achieve
genericity (cf. Sect. 3.5.1). Transformation synthesis implies
that a transformation is generated from other artifacts. Thus,
this type of HOTs is often applied in the context of domain-
specific languages (DSLs) to generate transformations from
DSL constructs (cf. Sects. 3.4.5, 3.5.2). Therefore, in this
section, we focus on HOTs in the sense of transformation
modification, e.g., a HOT takes a transformation as input to
introduce cross-cutting concerns like debugging or tracing.

Example Figure 13 depicts a HOT developed with ATL that
is able to add debugging messages to arbitrary ATL trans-
formation rules. Consequently, the reusable artifact in terms
of the HOT is independent of the concrete metamodels and
may be reused across transformation boundaries.

Conceptual evaluation In the context of HOTs, the reusable
artifact might be either the transformation, the introduced

HOT or even both, depending on what is being newly devel-
oped. HOTs abstract from concrete metamodel types, but
not from the underlying transformation language. Further-
more, they do not abstract by simplification, since no parts
are explicitly hidden. Existing HOTS may be selected from
a transformation repository, whereby several ATL-based
HOTs are available in the ATL zoo. Specialization happens
in a black-box manner, provided that only transformation-
independent modifications take place, e.g., for each assign-
ment add a debug message. The specialization mechanism is
the HOT itself. Provided that the transformation to be spe-
cialized and the HOT itself are both written in the same trans-
formation language, the HOT is considered to be language
inherent. Concerning integration, HOTs form a composition-
based reuse mechanisms in terms of extension.

Evaluation of languages HOTs are ordinary M2M trans-
formations with the exception that the source and/or target
metamodel is that of a transformation language [68]. Just like
any model may be created, modified, or augmented through a
model transformation, a model transformation itself may be
created, modified, and augmented [67]. Consequently, ordi-
nary transformation languages are used to develop HOTs.
However, these transformation languages do not represent a
dedicated reuse mechanism on their own—thus, languages
for specifying HOTs have not been evaluated separately.

3.4.2 Aspect-orientated transformations

The idea of aspect-oriented software engineering is to pro-
vide proper means to separate concerns [40]. For this, aspect-
orientation allows to weave code—denoted as advices—into
different points inside existing software. All potential points,
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Fig. 13 Example: higher-order transformation in ATL

where code may be weaved into, are called join points. Fur-
thermore, point cuts allow to specify a kind of “query” on the
potential join points, in order to select a subset of join points,
where to actually weave advices into. This approach is sum-
marized by the term asymmetric aspect-orientation [85]. In
contrast, the symmetric aspect-orientated approach allows to
assemble a program on the basis of equitable concerns, com-
parable to the reuse mechanism module import. The notion
of aspects may also be adopted for model transformations as
introduced in [57,76], e.g., to weave cross-cutting transfor-
mation code into existing transformations.

Example In Fig. 14, AOP is applied for separating the concern
of printing debugging messages from a Kermeta transforma-
tion. Although this advice would be independent of concrete
metamodels and may thus be reused across transformation
boundaries in general, the realization in Kermeta is tightly
bound to the class ModelElem2Element. This is, since a
merge of concerns takes place, only, if the concerns in terms
of classes are all equally named in Kermeta.

Conceptual evaluation In aspect-oriented transformations,
the reusable artifact is the code of the advice, if the advice
represents a general transformation code that is applica-
ble across transformation boundaries, e.g., debugging mes-
sages. Similar to HOTs, aspect-oriented transformations
abstract from concrete metamodel types, but they do not
abstract from the underlying transformation language, since
aspect-orientation is a language-inherent feature. Further-
more, aspect-orientation does not abstract by simplifica-
tion, since no parts are explicitly hidden. Although external
advices could be easily reused, currently no repository for
selecting aspects is available. Specialization happens typi-

Fig. 14 Example: AOP in Kermeta

cally as a black-box, e.g., for adding a debug message, no
internals need to be known about the underlying transfor-
mation. The specialization mechanism is the language in
which aspects and advices are defined as well as the join
point model. Similar to HOTs, specialization is considered
to be language inherent, if aspects and advice code are speci-
fied within the transformation itself. Concerning integration,
aspect-oriented transformations form a composition-based
reuse mechanisms in terms of extension.
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Evaluation of languages To the best of our knowledge, the
only M2M transformation language that currently supports
aspect-orientation is Kermeta [69]. However, Kermeta pro-
vides symmetric aspect-orientation only, since no dedicated
point cut model exists. Instead, classes may be marked by
the keyword aspect allowing to contribute features (e.g.,
attributes or operations) to existing classes. As mentioned
above, the assignment of the advice to the actual class repre-
senting the transformation rule is established by name equal-
ity. However, the semantics behind is a merge, i.e., all features
of the aspect class and the base class are merged into a com-
mon class. Thereby, equally named features are overridden.
Furthermore, overriding depends on the order in the file. In
summary, this mechanism is rather comparable to module
import than to traditional AOP, and therefore, we did not
derive further specific criteria.

3.4.3 Reflection

In object-oriented programming, reflection allows to exam-
ine and modify the structure and behavior of objects at run-
time. Consequently, in the area of model transformations,
reflection should allow to investigate (i) the involved meta-
models (the structure) and (ii) the model transformation (the
behavior).

Example Figure 15 shows an example of the reflective capa-
bilities of Mistral. The target of the reflection is the behavior,
i.e., the transformation. The provided example allows to add
the production of trace information to arbitrary transforma-
tion rule executions, i.e., the addition of the trace concern is
done at run-time.

Conceptual evaluation The reusable artifact in reflection
is the reflective transformation. Reflective transformations
abstract from concrete metamodel types, but not from the
underlying transformation language, since reflective capa-
bilities are typically tightly bound to a specific transfor-
mation language. Furthermore, reflection does not abstract
by simplification, since no parts are explicitly hidden. With
respect to selection, currently no dedicated repository of
reflective transformations is available, although existing
metarules could be reused in general. Specialization hap-
pens typically as a black-box, provided that transformation-
independent modifications take place, only, e.g., adding a
trace as shown in Fig. 15. The specialization mechanism is the
reflective language itself, i.e., so-called metarules. Similar to
HOTs, specialization is considered to be language inherent,
if the reflection mechanism is integrated into the transfor-
mation language. Concerning integration, reflection forms a
composition-based reuse mechanism in terms of extension.

Currently, reflection is explicitly supported by Mistral
[46], a language on top of ATL, and TGGs in terms of the

underlying language SDM (Story Driven Modeling) [48],
as summarized in Table 6. Furthermore, it has to be noted
that Kermeta, ETL, and RubyTL also support reflective
techniques. While Kermeta has language inherent, object-
oriented programming language like support for reflection,
the latter two inherit this support from their respective host
languages. In the following, we will focus on reflection mech-
anisms of Mistral and SDM, because they have been intro-
duced specifically for transformation languages.

Criteria for language evaluation With respect to syntax,
we examined first the target of the reflection, i.e., if syntactic
means are provided to reflect on the transformation, on the
metamodels, or on both. Second, the information accessible
by reflection is investigated. In this respect, reflection may
either access the static structure, i.e., information available
at compile-time, or additionally access the dynamic behavior
of the transformation, i.e., run-time information.

Concerning static semantics, no criteria have been inves-
tigated, since reflection is a mechanism that allows to query
and change properties at run-time without dedicated assump-
tions at compile-time.

Finally, regarding dynamic semantics, two different reflec-
tive capabilities may be distinguished. First, reflection may
enable read access, which is typically denoted as introspec-
tion. Second, reflection may also enable write access, e.g., to
alter the transformation execution or metamodels at run-time,
which is called intercession. Concerning the actual execution
mode of the reflection mechanism, a preprocessing step may
be introduced, e.g., a transformation language is syntactically
extended, and the new constructs are translated to the exist-
ing languages’ constructs by applying a HOT. Furthermore,
the interpreter or compiler of the transformation language
itself may have been extended to support reflection.

Evaluation of languages Regarding syntax, Mistral’s reflec-
tive features exclusively target the transformation
specification itself, whereas TGGs exclusively focus on the
metamodels. Concerning the accessible information in the
reflection process, Mistral supports compile-time as well as
run-time reflection. To support run-time reflection, the trans-
formation language metamodel is extended to represent the
execution semantics of a transformation language. In con-
trast, TGGs only allow to access the information available at
compile-time.

Concerning the dynamic semantics of reflection, Mis-
tral offers the ability of introspection and intercession. For
instance, it is possible to add an additional output parameter
to a transformation rule at run-time (cf. Fig. 15). TGGs also
support both mechanisms, e.g., it is possible to initialize all
String-typed attributes of a certain class with the empty String
by a single reflective rule. Concerning the execution mode of
reflection, Mistral extends its interpreter by dedicated means
for reflection. Since TGGs are compiled to Java, at least in
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Fig. 15 Example: run-time reflection in Mistral

Table 6 Realization of
reflection in M2M
transformation languages

Criteria Values Mistral TGGs

Syntax

Target of reflection Metamodel/transformation Transformation Metamodel

Accessible
information

Compile-time
information/run-time
information

Compile-time
and run-time
information

Compile-time
information

Dynamic semantics

Reflective capabilities Introspection (read
access)/intercession
(write access)

Introspection and
intercession

Introspection and
intercession

Execution mode Preprocessing/interpreter/
compiler

Interpreter Compiler

case of MOFLON, the compiler has been extended, since
Java already supports reflection.

3.4.4 Generic functions

Genericity is a well-accepted concept to decouple strong typ-
ing from implementation logic, e.g., it allows to parameter-
ize methods with types. The same idea is applied to model
transformations by parameterizing transformation rules with
types, such that the transformation logic becomes decoupled
from concrete metamodel types.

Example Figure 16 shows a generic function in TGGs, real-
izing a simple equality comparison of an attribute value with
a given value, i.e., it compares whether a parameterizable Fig. 16 Example: generic function in TGGs

123



Reuse in model-to-model transformation languages

Table 7 Realization of generic functions in M2M transformation languages

Criteria Values Kermeta TGGs VIATRA

Syntax

Typing constraints on
type parameters

Yes/no Yes No Yes

Template specialization Yes/no No No No

Static semantics

Access to undeclared
features

[Compile-time/
run-time/no] error

Compile-time
error

Run-time error Run-time error

Call of undeclared
operations

[Compile-time/
run-time/no] error

Compile-time
error

Run-time error n.a. (no operations)

Dynamic semantics

Treatment of type
parameter

Elimination/retention Elimination (by
type erasure)

Elimination (by
type erasure)

Retention (native
support)

Target language – Scala Java n.a (Interpreter)

attribute exhibits a provided value, whereby type parameters
are denoted by the “$” sign in TGGs.

Conceptual evaluation Generic functions abstract from
concrete metamodels, but not from the underlying trans-
formation language. The transformation designer only has
to care about the source/target metamodels representing the
visible part, whereas the implementation is hidden. Never-
theless, although the idea of generic functions is promising,
no library for selection has been established so far, although
generic functions would provide a high potential for reuse.
Since specialization is done by setting type parameters, it
is considered as black-box based. Finally, the specialization
process occurs language inherent, and generic functions rep-
resent a connection-based composition mechanism for inte-
gration.

Although generic functions would be highly beneficial
in the area of model transformations, little support is pro-
vided by current transformation languages. To the best of
our knowledge, three transformation languages offer dedi-
cated support, being Kermeta [69], TGGs [48], and VIA-
TRA [73]. The results of the subsequent comparison are
shown in Table 7.

Criteria for language evaluation Concerning the syntax
of generic functions, we first examine whether it is possi-
ble to impose typing constraints on the type parameters.
Furthermore, it is investigated whether it is possible to spe-
cialize templates—as known from C++. Template special-
ization allows—similar to method overloading—to specify
several equally named templates, whereby one or more type
parameters are specified using a concrete type. When instan-
tiating a template, the most specific template is selected, auto-
matically.

With respect to the static semantics, it should be ensured
at compile-time that all accessed features of types are also

declared, accordingly. Furthermore, the calling of undeclared
operations should be statically recognized.

Finally, concerning the dynamic semantics, it shall be
examined, how the type parameters are substituted by their
concrete instantiation types and to which target language the
transformation language is compiled to.

Evaluation of languages Concerning syntax of generic func-
tions, Kermeta and VIATRA allow for typing constraints on
generic functions. The situation is different in TGGs, since it
is not possible to constrain the type parameters. Furthermore,
all approaches do not allow to specialize templates. Concern-
ing static semantics, Kermeta is able to statically detect, if
certain features or operations accessed on a type parameter
have also been declared, accordingly. In contrast, TGGs are
not able to check this statically, since the type parameters
are substituted at run-time. Thus, it is not possible to check
whether a certain operation or a certain feature is present not
before run-time. The same applies for VIATRA concerning
features. Regarding dynamic semantics, the replacement of
type parameters happens in Kermeta and VIATRA by type
erasure [3], i.e., the compiler replaces all type parameters
by the type object and introduces according type casts if
needed, supported by the underlying target languages, i.e.,
Scala in case of Kermeta and Java in case of TGGs. VIATRA
has native support by the accompanying interpreter where
types are also represented as objects by applying multi-level
metamodeling, i.e., also the instance of relationship between
objects and types is a usual relationship.

3.4.5 Embedded domain-specific languages

Another way to reuse logic in different scenarios are DSLs,
which provide dedicated language constructs to simplify
specification of recurring problems in transformations. In
general, DSLs allow programs to be written at an abstraction
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Fig. 17 Example: embedded
DSL in ATL

level closer to the problem domain than general-purpose pro-
gramming languages [20]. In the area of model transforma-
tions, two dedicated kinds of DSLs have been proposed, com-
prising embedded DSLs and stand-alone DSLs,8 whereby
the former refers to the introduction of new language con-
structs in an already given transformation language, and the
latter refers to the development of a DSL from scratch being
independent from existing transformation languages. Con-
sequently, DSLs demand for an additional compilation step,
since the DSL constructs have to be either reduced to the orig-
inal transformation languages’ constructs in case of embed-
ded DSLs or they have to be transformed to an executable
form in case of stand-alone DSLs.

Example For exemplifying this category of reuse mecha-
nisms, Fig. 17 depicts the proposed DSL construct
“allSuperclasses” for ATL, stemming from the High-
Level Navigation Language (HNL) [19]. It allows to cal-
culate the transitive closure of all classes for a given
inheritance hierarchy, whereby in the provided example
“CD!Class.superclasses” has been bound to the
DSL construct. Consequently, a transformation designer has
to employ this simple DSL construct, only, instead of explic-
itly coding the underlying OCL query.

Conceptual evaluation Embedded DSLs provide abstrac-
tion from concrete metamodels, since the DSL constructs
might be reused across metamodel boundaries, but not from
the underlying transformation language, since the embedded
DSL constructs are tightly coupled to a certain transforma-
tion language. Concerning simplification, the provided DSL
syntax, i.e., the visible part, abstracts from the operational
semantics, i.e., the hidden part. Selection of a certain reusable
artifact, i.e., a DSL construct, is typically semi-automatically
supported by editors, e.g., by means of code completion
based on the DSL’s grammar. DSLs are specialized in a black-
box, language-inherent manner, since specialization is done

8 We refrain to speak about internal versus external DSLs, because this
dichotomy reflects if a DSL is implemented by using the host language
in which it is used or not. In contrast, we are only considering if the
DSL is intended to be usable within a host language or not, independent
of how it is implemented.

by binding a certain grammar element to metamodel types.
Since DSL constructs are compiled to ordinary transforma-
tion code, generation-based integration takes place.

As two representatives for embedded DSLs, we found the
HNL [19], which hides complex OCL navigation expres-
sions and ATL4pros [56], which eases the handling of UML
profiles in ATL transformations. Since we refer to dedi-
cated extensions of existing model transformation languages,
only, we do not consider approaches that have used general-
purpose languages to create new M2M transformation lan-
guages as internal DSL, e.g., RubyTL [20] (based on Ruby)
or an ATL dialect implemented in Scala [28]. The results of
our comparison are summarized in Table 8.

Criteria for language evaluation Concerning syntax, we
will first examine the purpose of the DSL. In this respect,
DSLs may be divided along four different kinds of purposes
being (i) generalization, (ii) compression, (iii) representa-
tion, and (iv) abstraction [34]. In this context, generalization
aims at reducing the amount of concepts, e.g., by building
generalization hierarchies. The purpose of compression is
to provide a concise language that is less verbose and eas-
ier to read, e.g., to reduce the amount of expressions with-
out changing the semantics. DSLs, whose main purpose is
on representation, focus on the provision of notations and
abstractions that are best suited for a certain domain. Finally,
the purpose abstraction summarizes DSLs, whose focus is
on making common assumptions about a domain, which are
kept transparent from the developer to deemphasize techni-
cal details. Second, it is of interest how the embedded DSL
is specified. This may be either done by extending the meta-
model of the transformation language itself or by defining a
separate metamodel.

With respect to static semantics, it is of interest if the
bound parameters to the DSL constructs are correct in type
and number, i.e., if type checking takes place. Furthermore, it
is examined if the embedded DSLs allow for validation, i.e.,
if the DSL constructs are syntactically correctly encoded.

Finally, concerning dynamic semantics, first, the actual
mechanism applied is investigated, i.e., either if there exists
an extension in the compiler or interpreter of the transforma-
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Table 8 Realization of
embedded DSLs Criteria Values HNL ATL4pros

Syntax

Purpose [Generalization/compression/
representation/abstraction]

Compression Compression

DSL specification MM extension/
separate MM

Separate MM MM extension

Static semantics

Type checking of
parameters

[Compile-time/
run-time/no] error

Run-time error Run-time error

DSL validation [Compile-time/
run-time/no] error

Compile-time
error

Compile-time
error

Dynamic semantics

Mechanism HOT/compiler Compiler HOT (in place)

Host language – ATL/OCL ATL

tion language or if a HOT is used to replace the specifications
in the DSL solely by constructs of the host language. Second,
the host language of the embedded DSL is examined.

Evaluation of languages With respect to syntax, the purpose
of both embedded DSLs evaluated is to provide more simple
language constructs, i.e., compression. In order to specify
the HNL language features, a separate metamodel has been
used, whereas in ATL4pros, the ATL metamodel has been
extended, accordingly.

Regarding the static semantics, none of the DSLs eval-
uated provide type checking of parameters, but they both
support validation of the DSL constructs.

Finally, concerning dynamic semantics, the mechanism
for executing HNL statements is to accordingly extend the
compiler. In contrast, ATL4pros applies a HOT to convert
the DSL language constructs into standard ATL transforma-
tion code by introducing imperative do-Blocks. Thereby, the
implemented HOT makes use of the in place mode of ATL in
order to keep the HOT transformation as concise as possible.
Second, regarding the host language, both approaches rely
on ATL.

3.4.6 Synopsis

Although the first three reuse mechanisms of this scenario
pursue similar goals, i.e., introducing additional transforma-
tion logic into existing transformations in a non-intrusive
way, the main difference lies in the kind of specialization.
Since HOTs are defined on the abstract syntax of a trans-
formation language, a transformation designer must have
profound knowledge thereof. In contrast, aspect-orientation
allows specialization on basis of the concrete syntax (offered
for defining the point cuts and advices) and reflection on basis
of the provided language extensions. Generic functions are
suitable to specify recurring transformation logic that should
be reusable irrespective of the used metamodels. Finally, con-
cerning embedded DSLs, they aim at similar goals as generic

functions, but allow to introduce syntactic sugar by providing
additional keywords.

3.5 Scenario 4: generic inter-transformation reuse
in the large

Assuming that the same transformation logic should be
reused in a different scenario, i.e., different source/target
metamodels, mechanisms to decouple transformation logic
from concrete metamodel types are needed. In this respect,
generic transformations and stand-alone DSLs have been
proposed as detailed in the following.

3.5.1 Generic transformations

Such transformations allow to parameterize transformation
logic with types. However, in generic transformations not
only functions should be decoupled from concrete type infor-
mation, but also the transformations themselves to reuse a
transformation by binding elements to different metamod-
els.

Example Figure 18 shows an example, whereby the whole
Class2ER transformation should be reused for an
Ontology2XML transformation. This is possible, since
the metamodels of the new transformation are structurally
similar to the metamodels of the existing transformation.
For applying generic transformations, the transformation
designer has to specify a binding model, which states, which
generic types should be replaced by concrete types, e.g.,
NamedElement is replaced by MElement. The actual
replacement of types is performed by a dedicated HOT [84].

Conceptual evaluation Generic transformations abstract
from concrete metamodels. To achieve this for whole trans-
formations, two kinds of approaches have been proposed.
First, an extrinsic binding may be used by means of a binding
model in case that the underlying transformation language
does not support genericity or second an intrinsic binding
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Fig. 18 Example: generic transformation in ATL

in case that the underlying transformation language allows
for generic rules. However, in both cases, the transformation
designer has to take care about the source/target metamodels,
only, representing the visible part, whereas the implementa-
tion is always hidden. Up to now, no library to select generic
transformations has been established. Since specialization is
done by specifying an extrinsic binding model or by bind-
ing parameters to generic functions, this reuse mechanism
is considered as being black-box based. Finally, the special-
ization process occurs either non-language inherent in case
of extrinsic binding models or language inherent in case of
intrinsic bindings. Concerning integration, again two cases
are possible: in case of extrinsic bindings, a generation-based
integration takes place, whereas in case of intrinsic bindings,
a composition-based integration is applied.

When investigating literature with respect to generic trans-
formations, three approaches have been proposed, including
[54,74,84], whereby the former two rely on intrinsic bind-
ings and the latter one relies on extrinsic bindings. In the
following, a detailed comparison is conducted.

Criteria for language evaluation Concerning the syntax of
generic transformations, five main criteria have been investi-
gated. First, the realizable transformations, i.e., the transfor-

mations that instantiate the generic transformations, may be
metamodel dependent, i.e., the generic transformation makes
assumptions about the structures of the metamodels by so-
called concept metamodels [18]. To replace a concept meta-
model by a specific metamodel, each element of the con-
cept metamodel must be bound to an element of the specific
metamodel as shown in Fig. 18. This approach is applicable,
only, if a so-called subtype relationship between the con-
cept metamodel and the specific metamodel might be estab-
lished according to [64]. In contrast, the generic transfor-
mation may be metamodel independent, i.e., the transfor-
mation does not depend on the structures specified in the
metamodels at all. Second, the generic parts are either the
source metamodel, the target metamodel, or both. Third, the
language for the transformation template specification is of
interest. After having specified a transformation template,
the binding mechanism to concrete metamodels is impor-
tant, representing the fourth criterion. The final criterion
refers to support for resolution of heterogeneities between
the concept metamodel and the specific metamodel, i.e.,
if occurring heterogeneities need to be resolved manually
or not.

With respect to the static semantics of generic transfor-
mations, two criteria have been employed. First, the ques-
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tion arises if missing bindings are detected, thus checking
whether all type parameters of the concept metamodel are
bound to concrete types in the specific metamodel. The sec-
ond criterion investigates on whether the bound parameters
are statically checked for type errors, i.e., if wrongly typed
parameters are detected at compile-time.

Regarding dynamic semantics, it is first investigated how
the replacement of the type parameters is performed: either
by means of a pre-compiler or by means of type erasure [3].
Second, the underlying target transformation language is of
interest.

Evaluation of languages Concerning the syntax of generic
transformations, the two approaches of Moha et al. [54] and
Wimmer et al. [84] are metamodel dependent, i.e., make
assumptions about the structure of the metamodels, whereas
the approach of Varro et al. [74] does not. This is since
the approach of Varro et al. introduces reflective graph pat-
terns, which may be applied to all possible instances of
metamodels irrespective of the concrete metamodel struc-
ture. For instance, such a graph pattern matches for all
instances of arbitrary classes. Consequently, this approach
is quite general, but suitable for very specific transforma-
tions, only, e.g., the translation of MOF-based metamodels
into XMI. Concerning the substitutable entities, i.e., those
metamodels, which might be exchanged, the approaches of
Moha et al. and of Wimmer et al. allow to exchange both
the source metamodel and the target metamodel. In con-
trast, the approach of Varro et al. allows for the exchange
of the source metamodel, only. For specifying the transfor-
mation template, Moha et al. rely on generic Kermeta meth-
ods, Varro et al. on reflective VIATRA graph patterns, and
Wimmer et al. on standard ATL transformations, which are
rewritten in the binding process. The binding of the transfor-
mation templates to concrete metamodels is done by para-
meter binding in Kermeta by Moha et al. [54], by auto-
matically binding all possible metamodel classes with a so-
called metatransformation in VIATRA (a metatransforma-
tion has only one template type to which all metamodel
classes are bound implicitly, thus a metatransformation may
be seen as a special case of generic transformations) or by
an explicit binding model in Wimmer et al. [84]. Concern-
ing the resolution support of heterogeneities between the
concept metamodel and the specific metamodel, Moha et
al. do not provide any support. Instead, they propose reso-
lution by manually specifying aspects in Kermeta. In con-
trast, the approach of Wimmer et al. provides dedicated
resolution support for common heterogeneities. The trans-
formation designer specifies one-to-one bindings between
elements of the concept metamodel and the specific meta-
model. Subsequently, the code for establishing the subtype
relationship is automatically derived from these bindings.
Regarding the approach of Varro et al., heterogeneities do

not play a role, since the approach is metamodel indepen-
dent.

With respect to the static semantics, the problem of miss-
ing bindings is recognized at compile-time by Moha et al.,
whereas Wimmer et al. do not detect this before run-time.
Varro et al. are not confronted with missing bindings, since
the type parameters in the reflective patters are automati-
cally substituted with all available concrete types. The same
evaluation results are also valid for type checking of the
bindings.

Finally, regarding the dynamic semantics of generic trans-
formations, the replacement of the type parameters is typi-
cally performed by a precompiler, whereby in case of Ker-
meta this step is delegated to Scala, where native support for
generic methods is offered, basing on the concept of type
erasure. Finally, Moha et al. base on Kermeta as target trans-
formation language, Varro et al. on VIATRA, and Wimmer
et al. on ATL (cf. Table 9).

3.5.2 Stand-alone domain-specific languages

As embedded DSLs provide dedicated language constructs
to simplify specification of recurring transformation logic,
stand-alone DSLs provide the same functionality, but may
be used independently from the underlying transformation
language. In order to execute a DSL-based specification, it
may either be translated into a certain executable transfor-
mation language or interpreted directly.
Example For providing an example, Fig. 19 shows a solu-
tion for the Class2ER transformation with the stand-
alone DSL denoted as mapping operators (MOps) [80].
One may see that dedicated reusable components have been
employed to describe the transformation logic such as the
VPartitioner component, which allows to vertically
split the instances of one class into instances of several
classes. The reusable components ease the specification of
recurring transformation scenarios. By a dedicated genera-
tion step, e.g., ATL code may be generated from the DSL
specification (Table 10).

Conceptual evaluation Since being independent of a trans-
formation language, stand-alone DSLs abstract from both the
concrete metamodels and the underlying transformation lan-
guage. Concerning simplification, the DSL
syntax represents the visible part and abstracts from the
operational semantics, i.e., the hidden part. Selection of a
certain reusable artifact, i.e., a DSL construct, is typically
semi-automatically supported by editors, e.g., by means
of code completion based on the DSLs’ grammar. DSLs
are specialized in a black-box, language-inherent manner,
since specialization is done by binding a certain gram-
mar element to metamodel types, e.g., so-called ports need
to be bound to a certain metamodel element in [80] (cf.
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Fig. 19 Example: stand-alone DSL [80] compiled to ATL

Table 9 Realization of generic transformation approaches

Criteria Values Moha et al. VIATRA Wimmer et al.

Syntax

Realizable
transformations

MM-independent/
MM-dependent

MM-dependent MM-independent MM-dependent

Substitutable entities Source MM/target
MM/source/target MMs

Source/target
MMs

Source MM Source/target
MM

Transformation template
specification

Applied mechanism Generic Kermeta
operations

Reflective
VIATRA graph
patterns

Standard ATL
transformations

Template binding Applied mechanism Parameter binding of
generic operations

Automatically all model
elements are bound

Binding model

Resolution support Manual/semi-
automatic/automatic

Manual n.a. (arbitrary source MMs
supported)

Automatic

Static semantics

Missing bindings [Compile-time/
run-time/no] error

Compile-time
error (Kermeta)

n.a. (automatic
binding)

Run-time error

Type checking of
bindings

[Compile-time/
run-time/no] error

Compile-time
error (Kermeta)

n.a. (arbitrary
source MMs)

Run-time error

Dynamic semantics

Replacement of
type parameter

Precompiler/type
erasure

Type erasure (compilation
to Scala)

Precompiler
(metatransformations)

Precompiler
(HOT)

Target language – Kermeta VIATRA ATL

Fig. 19). Since DSL constructs are typically compiled to ordi-
nary transformation code, generation-based integration takes
place.

Two dedicated stand-alone DSLs for specifying model
transformations have been proposed, comprising AMW [24]
and MOps [80], which are compared in the following with
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Table 10 Realization of stand-alone DSL

Criteria Values AMW MOps

Syntax

Formalism Textual/graphical Graphical Graphical

Composite DSL constructs � (Supported)/
× (Not supported)/
? (Unknown)

� �

DSL extensibility � (Supported)/
× (Not supported)/
? (Unknown)

� (Heavy-weight) � (Light-weight)

Expressivity

Copying � (Supported)/
∼ (Partly supported)/
× (Not supported)/

� �

Generating � (Supported)/
∼ (Partly supported)/
× (Not supported)

∼ �

Merging � (Supported)/
∼ (Partly supported)/
× (Not supported)

∼ �

Static semantics

Type checking [Compile-time/run-time/no] error Compile-time error Compile-time error

Validation [Compile-time/run-time/no] error No error Compile-time error
(inheritance checks)

Dynamic semantics

Execution mode Compilation/interpretation Compilation (HOT) Compilation (HOT)

Compilation to
several target
languages

Yes/no No (ATL) Yes (ATL, TNs)

dedicated evaluation criteria. The results of the comparison
are summarized in Table 10.

Criteria for language evaluation Concerning the syntax of
stand-alone DSLs, four main criteria have been investigated.
First, the DSL’s syntax, i.e., the formalism for specification,
may either be textual or be graphical. Second, a DSL may
not only allow for flat DSL constructs, but also for compos-
ite DSL constructs, i.e., nesting of DSL constructs for hiding
complexity of a model transformation may be supported or
not. Third, a dedicated set of DSL constructs may be allowed
to be extended by user-defined ones or not, whereby one may
distinguish between light-weight extensibility, i.e., extensi-
bility without the need to adapt the compiler/interpreter and
heavyweight extensibility, i.e., extensibility, which entails the
adjustment of the compiler/interpreter. Finally, the expressiv-
ity for specifying transformations on basis of DSL constructs
is of interest. For evaluating this, the support for the three
major transformation primitives of copying, generating, and
merging has been investigated.

With respect to static semantics of stand-alone DSLs, two
criteria have been employed. The first criterion refers to the
possibility of type checking, i.e., whether the DSL ensures
statically that only correctly typed metamodel elements are
bound to the DSL constructs. Second, the possibility for val-

idation is evaluated, i.e., whether the structure of the DSL
constructs is validated according to certain criteria, e.g., if
DSL constructs build a valid inheritance hierarchy.

Regarding dynamic semantics, again two criteria are of
interest. First, it is checked whether the execution of the
DSL constructs is done by compilation, i.e., by compiling
the DSL constructs in another executable language, or by
interpretation, i.e., if the DSL constructs are directly inter-
preted by, e.g., some virtual machine. Second, provided that a
compilation-based approach is followed, the question arises
whether the DSL constructs may be compiled into several
different target languages or a single one, only.

Evaluation of languages Regarding the syntax of the
two DSLs investigated, both approaches provide a graph-
ical formalism for specification, allowing to hide com-
plexity by composition. Concerning the extensibility of the
languages by new DSL constructs, AMW provides a heavy-
weight approach, only. In contrast, MOps employ a light-
weight approach, since MOps rely on a set of primitive DSL
constructs, denoted as kernel MOps, which are used in the
compilation process. Consequently, arbitrary new composite
MOps, which solely rely on kernel MOps, may be added,
without the need of adjusting the compiler. Finally, regard-
ing expressivity, only MOps provide an extensive set of DSL
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Fig. 20 Simple orchestration
example in Wires*

constructs, since all three transformation primitives of copy-
ing, generating, and merging are supported.

With respect to static semantics, one may see that type
checking is provided in both DSLs at compile-time. In con-
trast, static validation of the DSL specification is provided
by MOps, only.

Finally, regarding dynamic semantics of DSLs, both of
them rely on compilation, whereby the approach of AMW
is compiled into ATL, only. In contrast, MOps allow for a
compilation of the DSL specification to ATL and to TNs
[60].

3.5.3 Synopsis

Generic transformations as well as stand-alone DSLs allow
to decouple transformation logic from concrete metamodel
types. The former are a promising approach to reuse transfor-
mation logic for structurally similar metamodels. Although
large parts of transformation logic are reusable, the drawback
is that they rely on structural similarity, resulting in a lower
probability for application. In contrast, DSL constructs usu-
ally abstract from structural similarity to a certain extent, e.g.,
in [80] structural flexibility is supported by providing fixed
parts as well as configurable parts. Consequently, DSLs may
have a higher probability for application but do not provide
transformations out of the box.

3.6 Scenario 5: concrete inter-transformation reuse in the
large

To achieve reuse in the large, a set of transformations may be
reused by consecutive execution. Thus, means to orchestrate
model transformations are needed, e.g., describing sequential
or conditional executions of M2M transformations (control
flow) and how the models are streamed through the net of
transformations (data flow).

3.6.1 Orchestration

Orchestration languages have been proposed to replace low-
level descriptions, e.g., Ant9 tasks, to execute chains of trans-
formations.
Example Figure 20 shows an example of orchestration in
Wires* [58], specifying that the two ATL model transfor-
mations Class2ER and ER2Relational should be exe-

9 http://ant.apache.org/.

cuted sequentially. Thereby, the output of the first transfor-
mation is used as input for the second one.

Conceptual evaluation Through the usage of orchestra-
tion languages, no abstraction from metamodels is achieved,
since the transformations to be reused still operate on con-
crete metamodels. Also, no abstraction from the underlying
transformation language is achieved, except the orchestra-
tion allows for transformations written in different languages.
Concerning simplification, the hidden parts comprise the
implementation of the transformation, since for orchestra-
tion the source and target metamodels of the transformations
are of interest, only. In general, any existing transformation
may be selected, however, currently only ATL transforma-
tions might be selected from the ATL zoo. Since transforma-
tions may be reused without adaptations, no specialization
must occur. Integration happens by means of the orchestra-
tion language; thus, it is classified as coordination.

Orchestration of model transformations is supported by
several approaches. In the following, we compare the orches-
tration languages Wires* [58], UniTI [72], the Transforma-
tion Composition Modeling Framework [55], MCC [42],
ATLflow,10 QVT-O, and RubyTL. The results are summa-
rized in Table 11.

Criteria for language evaluation Concerning the syntax
of orchestration mechanisms, five main criteria have been
investigated. First, the specification of the transformation
orchestration may be either intrinsic, i.e., a transformation
language itself offers language constructs to orchestrate sev-
eral model transformations or extrinsic, i.e., a separate for-
malism (e.g., activity diagrams) is employed for describing
orchestrations. Furthermore, the employed formalism may be
either textual or graphical, representing the second criterion.
Third, the orchestration formalism may allow to orchestrate
transformations written in different languages or the same
language only, which is meant by cross-language support.
Fourth, the possibility to persist intermediate results of the
transformation chain is considered. Finally, the expressivity
of the orchestration language has been investigated, checking
whether the language allows for nesting for hiding complex-
ity in transformation chains, sequential composition, condi-
tional composition, repetitive composition, and parallel com-
position.

With respect to static semantics of orchestration, two cri-
teria have been employed. First, before executing a specified
model transformation chain, it should be ensured that the
provided models are valid instances of the provided meta-

10 http://opensource.urszeidler.de/ATLflow/.
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models, i.e., model validation should take place. Second, it
must be ensured that actual parameters of the transformation
orchestration are valid types given the formal parameters of
the transformation orchestration, i.e., type checking should
take place.

Regarding dynamic semantics, it is first examined, how
the transformation orchestration is executed, i.e., the execu-
tion order, which is of special interest in case that parallel
execution of several model transformations is possible. Sec-
ond, it is relevant whether a transformation execution is able
to establish cross-transformation traceability, i.e., whether a
given source model element might be traced across the whole
transformation chain to the resulting model element(s).

Evaluation of languages Concerning the syntax of orches-
tration mechanisms, all the languages evaluated except QVT-
O and RubyTL are extrinsic to a specific transformation
language. The employed formalisms to specify orchestra-
tions of model transformations are in four cases graphical,
whereby only MCC, QVT-O, and RubyTL rely on a tex-
tual specification. With respect to cross-language support,
UniTI, the Transformation Composition Modeling Frame-
work, and MCC allow for the orchestration of transforma-
tions written in different transformation languages. In con-
trast, Wires*, ATLflow, QVT-O, and RubyTL are specific to
a single transformation language, only. Regarding the pos-
sibility to persist intermediate results of a transformation
chain, all languages seem to provide support, whereby in two
cases, this property is unknown, since the corresponding tools
could not be tested, and thus, a paper-based evaluation has
taken place. The expressivity of the different orchestration
languages mainly differs in the support for nested orches-
trations, which are allowed by Wires*, UniTI, the Trans-
formation Composition Modeling Framework, and RubyTL,
only and in the support for repetitive compositions, which
are allowed by Wires*, QVT-O, and RubyTL.

With respect to static semantics, one may see that checking
thereof is still limited in the various orchestration languages.
Instead, run-time errors occur concerning model validation
and type checking.

Finally, regarding dynamic semantics of orchestration lan-
guages, most of the languages do not expose the internal
execution order to the transformation designer, e.g., in case
of parallel execution. Furthermore, the support for cross-
transformation traceability is not available in a single orches-
tration language.

3.6.2 Synopsis

Orchestration is a promising approach for reusing transfor-
mation logic without specialization efforts. Nevertheless, the
frequency of occurrence is constrained by the specificity
of the reused transformations, since each one is bound to

concrete source and target metamodels. Thus, it might be
beneficial to combine orchestration with generic transfor-
mations [84]. Furthermore, to allow specialization of the
chained transformations, module import as well as HOTs,
AOP, and reflection seems to be supplementary for transfor-
mation chains.

3.7 Summary of comparison of reuse mechanisms

Table 12 gives an overview on the comparison results.
Thereby, a language may either provide no support (indicated
by a cross), direct support (indicated by a check mark), or
indirect support, i.e., additional reuse approaches are defined
on top of the language (indicated by a check mark in paren-
theses). From this summary, one may conclude that some
languages already provide some support for all reuse sce-
narios (such as Kermeta and ATL), although not all reuse
mechanisms are supported. The most supported reuse sce-
nario is scenario 1, which is also considered to be the sim-
plest scenario, since being the scenario of concrete intra-
transformation reuse in the small. In contrast, the reuse sce-
narios 2–5 are scarcely supported, which is further detailed
in the following section, discussing current barriers and facil-
itators to model transformation reuse. However, it has to be
noted that for scenario 2 and for scenario 3, modules and
HOTs are the current mechanisms of choice, respectively.

4 Barriers and facilitators to model transformation
reuse

As may be seen in Sect. 3 and in the summarizing Table 13,
numerous reuse mechanisms have been proposed in litera-
ture. Nevertheless, when examining the results in Table 13,
severe barriers to model transformation reuse may be
deduced, hindering the successful adoption in practice. In
the following, the main barriers derived from our compar-
ison are presented, identifying further research potentials.
Additionally, first facilitators for model transformation reuse
are given.

Insufficient abstraction from metamodels As may be seen
in Table 13, many of the proposed reuse mechanisms depend
on concrete metamodel types. Additionally, those allowing
to decouple transformation logic from concrete metamodel
types, as, e.g., genericity, are nevertheless still dependent
on the internal structure of the metamodels. Thus, reuse of
transformation logic between different metamodels is ham-
pered. To improve this situation, not only standardized meta-
models but also standardized transformations might be ben-
eficial. By extending the standardized metamodels, also the
standardized transformations might be reused to realize spe-
cific transformations, resembling the idea of subtyping for
model transformations [71]. Based on this, hierarchies of
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Table 12 Overview on reuse support of investigated languages

Reuse scenario Imperative Declarative Hybrid

Kermeta QVT-O QVT-R TGGs Viatra TNs ATL ETL RubyTL

Reuse scenario 1

Code scavenging � � � � � � � � �
User-defined functions � � � × � × � � �
Rule inheritance � � × � × � � � ×
Reuse scenario 2

Module import � � � � � × � � �
Transformation product lines × × × × × × (�) × ×
Reuse scenario 3

HOT � � � � � � � � �
AOP � × × × × × × × ×
Reflection � × × � × × (�) � �
Generic functions � × × � � × × × ×
Embedded DSLs × × × × × × (�) × ×
Reuse scenario 4

Generic transformations � × × × � × (�) × ×
Stand-alone DSLs × × × × × (�) (�) × ×
Reuse scenario 5

Orchestration � � × × × × (�) × �

model transformations may be defined between hierarchies
of metamodels to enable transformation reuse in practice.
Nevertheless, additional costs for connecting standardized
metamodels to specific metamodels may occur, because of
structural heterogeneities between them [35].

Insufficient abstraction from transformation languages
Except stand-alone DSLs, all reuse mechanisms target a sin-
gle transformation language as may be seen in Table 13. Con-
sequently, there is little work on how to reuse transformation
logic across transformation language boundaries. A first step
in this direction is presented in [81], where a classification
of structural heterogeneities in model-to-model transforma-
tions is given, which may serve as a pattern library for model
transformations. Furthermore, reusable transformation pat-
terns have been presented in [1] for graph transformation lan-
guages and idioms for QVT in [36]. Going one step further,
reuse should be enabled during the whole development cycle
including also requirements analysis, design, and testing to
guarantee the development of high-quality model transfor-
mations [32,65].

Missing repositories for selection As may be seen from
our comparison and in Table 13, hardly any repository of
reusable artifacts has been established so far, except the ATL
model transformation zoo. However, the zoo basically con-
stitutes a collection of ATL transformations and was thus not
explicitly designed for reuse. This is similar to research on
transformation libraries, since the main focus was on the stan-

dard OCL libraries and their extensions [12,15]. However,
a general mechanism to provide user-defined OCL library
extensions in a flexible and systematic manner is missing [6].
This undesirable situation is in contrast to software engineer-
ing, where different kinds of repositories of reusable artifacts
exist, ranging from fine-grained class libraries over compo-
nents to coarse-grained frameworks which can be reused out
of the box. In this respect, repositories with means to effi-
ciently select reusable artifacts are key to successful reuse in
model transformations.

Lack of meta-information in selection Apart from missing
repositories for selection, there is also little meta-information
available for selecting a reusable artifact without having
to know its internals, as Table 13 reveals. Therefore, it
would be important to provide transformations with accord-
ing meta-information, comprising source/target metamod-
els, test models, pre- and postconditions, and documenta-
tion. Preconditions may be used, e.g., to check whether
input models conform to the implemented transformation
logic [13]. More abstract models for model transformations,
e.g., requirements, would provide an additional source of
meta-information. To support the transformation designer
in finding reusable artifacts, transformation search engines,
in analogy to model search engines such as Moogle [50],
seem to be an interesting future research direction. Such
search engines may base on recent advances in metamodel
matching [26,38,77] as a starting point. Furthermore, model
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transformation testing is currently gaining a huge momentum
in the research landscape of model transformations. Sev-
eral approaches for (i) defining contracts as specifications
for transformations [29,33] and (ii) (semi)-automatic gener-
ation of test input models [30,31,61] are emerging. Going
further in all these mentioned directions will contribute to
the quality of model transformations, and in return, to their
reuse.

Challenging specialization As may be seen in Table 13,
most reuse mechanisms allow for specialization. However,
the specialization is often challenging to be applied in prac-
tice. This includes especially HOTs as also stated by Tisi et
al. [67], where the user must be familiar with the abstract
syntax of the transformation language. To speed up develop-
ment, Kühne et al. [45] proposed to work with the concrete
syntax of the transformation language instead. The situation
is even worse in case of rule inheritance, since specialization
is limited. This may be derived from the fact that none of the
approaches allows to define reuse policies, e.g., to disallow
rule inheritance (cf. final keyword in Java) or to define
some access rights (cf. keywords private, protected
or public) [83].

Insufficient support for integration in the large Although
orchestration languages have been proposed to chain trans-
formations (cf. Table 11), a main issue is the compatibility
of source/target metamodels between the orchestrated trans-
formations [75]. Thus, mechanisms are needed to ensure
type compatibility in transformation chains similar to type
checks in ordinary programs. This would incorporate com-
pilation errors, if compatibility between metamodels is vio-
lated. However, there may be additional conditions for mean-
ingful chaining of model transformations [14]. For example,
if the former transformation in a transformation chain pro-
duces a UML class diagram that conforms to the UML meta-
model, and the subsequent transformation expects a UML
activity diagram which also conforms to the UML meta-
model, the latter one will never be able to produce any
result, although typing is correct. Emerging work on estimat-
ing footprints of model transformations on the metamodel
[11,37] may serve as foundation to reason about compatibil-
ity of transformations.

Reuse in practice: are we there yet? Finally, the ques-
tion raised by the title of the paper should be answered.
For this, we conducted a case study11 with content of the
ATL model transformation zoo. In this context, we analyzed,
which reuse mechanisms have been employed in design-
ing the transformations. Results of this case study show
that around 80 % of the transformations available in the zoo
make use of user-defined functions. Furthermore, 4 % rep-
resent HOTs and may thus be reused themselves and 11 %

11 Online at http://www.modeltransformation.net.

are orchestrations of model transformations. Interestingly,
although around 75 % of the metamodels available in the
zoo make use of inheritance, only 4 % of the transforma-
tions apply rule inheritance, and thus, potential for reuse is
wasted. Finally, none of the transformations in the zoo makes
use of superimposition and TPLs. These numbers show that
reuse for scope 1 is performed in practice. In contrast, reuse
across transformation boundaries and metamodel boundaries
is still in its infancy. Consequently, the question whether
reuse has found its way to practice may be answered in the
negative.

5 Conclusion

Model transformation reuse has made major advances in the
last years. A huge number of papers have been published
on this topic, and model transformation languages offer sev-
eral reuse mechanisms out of the box or additionally built
on top of them. In this paper, we have provided an overview
on the proposed reuse mechanisms for M2M transforma-
tions. First, we have conducted a conceptual comparison of
reuse mechanisms on the basis of a framework covering (i)
the main dimensions of transformation reuse mechanisms
to cluster reuse scenarios and (ii) the main phases in the
reuse process, comprising abstraction, selection, specializa-
tion, and integration. Second, we compared the realization of
the reuse mechanisms in different M2M transformation lan-
guages. Based on this comparison, we conclude that a vari-
ety of mechanisms for reuse are available in current model
transformation languages; however, their concrete realiza-
tion may differ between the different languages. Third, we
identified several barriers during our studies hindering the
successful and broad application of reuse mechanisms, but
also facilitators that may help to overcome the barriers in the
future.

Finally, we want to emphasize that currently there is a
strong focus on reuse in the implementation phase, but reuse
across all development phases would be urgently needed,
e.g., general guidelines on how to design transformations.
Thus, in our opinion, further research is needed to anchor
model transformation reuse as a central part of model trans-
formation engineering.
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