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Abstract. Cyber-physical systems (CPS), which are computerized sys-
tems directly interfacing their real-world surroundings, leverage the con-
struction of increasingly autonomous systems. To meet the high safety
demands of CPS, verification of their behavior is crucial, which has led
to a wide range of tools for modeling and verification of hybrid systems.
These tools are often used in combination, because they employ a wide
range of different formalisms for modeling, and aim at distinct verifica-
tion goals and techniques. To manage and exchange knowledge in the
verification process and to overcome a lack of a common classification,
we unify different terminologies and concepts of a variety of modeling
and verification tools in a conceptual reference model (CRM). Further-
more, we illustrate how the CRM can support comparing models and
propose future extension.

1 Introduction

Systems that exhibit physical behavior by interfacing and interacting directly
with their real-world surroundings through sensors and actuators are known
as cyber-physical systems (CPS). CPS become increasingly autonomous (e. g.,
autonomous cars); consequently, significant demands are imposed on the safety
of such a CPS and the knowledge needed to design and implement them correctly.
Therefore, the field of formal verification, i. e., mathematically proving that a
CPS behaves as intended, is key to engineering CPS for safety-critical application
domains. The behavior of a CPS can be described using hybrid system models [2],
which simultaneously capture the continuously evolving real-world behavior and
the discrete control decisions of the CPS within one model.

In order to model a CPS and formally verify the desired behavior, the com-
putational and the physical behavior of a CPS need to be considered in con-
junction, which introduces unprecedented complexity into verification. Modelers
face many modeling and verification tools, which employ a wide range of mod-
eling formalisms (e. g., hybrid automata [18], hybrid programs [36,38]), aim at
distinct verification goals (e. g., safety, liveness) and incorporate heterogeneous
verification techniques (e. g., theorem proving, reachability analysis). Often, us-
ing multiple tools in combination is beneficial because their capabilities differ



strongly. The downside of this diversity are compatibility issues, where specifi-
cally questions of knowledge management arise, such as: (i) which model repre-
sentation is useful for which aspect of the system? (ii) which parts of the system
can be formally verified using which tools? (iii) what are the trade-offs between
modeling and verification (detail vs. automation)? (iv) which parts of a system
are verified and how should the verification results be composed to a compre-
hensive correctness argument? A major difficulty for systematically analyzing
modeling and verification and managing knowledge in the verification process of
hybrid systems is a lack of a common classification of hybrid system modeling
and verification concepts.

To overcome this lack of a common classification, we unify different terminolo-
gies and concepts of a variety of modeling and verification tools in a conceptual
reference model (CRM), methodologically adhering to our previous work (e. g.,
[49]). We illustrate how the CRM can assist in classifying the capabilities of
modeling formalisms and tools. Additionally, we identify future extensions and
enhancements for modeling and verification tools for CPS.

2 Related Work

To the best of our knowledge, no other CRM for hybrid system modeling and ver-
ification concepts has been proposed so far. Nevertheless, prior surveys on CPS
and hybrid system modeling and verification provide classification fragments,
which will be discussed below.

Broman et al. [8] introduce a coarse-grained model for categorizing hybrid
systems. Their framework comprises Viewpoints (of stakeholders and their con-
cerns), Formalisms (modeling formalisms for hybrid systems) and Languages
and Tools (which implement formalisms). They conclude that their framework
serves as a basis for assisting CPS designers in the modeling process. Their
framework reviews tools primarily based on the requirements of stakeholders,
whereas we focus on the engineering and knowledge representation aspects of
hybrid systems design. Alur [1] reviews formal verification approaches, but not
modeling and tool support. Carloni et al. [9] analyze the syntax and semantics
for hybrid systems modeling w.r.t. verification and simulation. We, in addition,
discuss modeling and tool support.

A large body of research addresses solely the systematic modeling and speci-
fication of CPS, but does not address verification: Giese et al. [15] survey visual
model-driven development of software-intensive systems. Shi et al. [45] provide a
short overview and further research challenges of CPS. Sanislav et al. [43] focus
their work on challenges, concepts and research goals in the area of CPS. Wan
et al. [48] investigate the applicability of different composition mechanisms for
cyber-physical applications. Kim et al. [23] provide a broad overview of CPS re-
search and Lee [27] examines the challenges in designing CPS. Finally, the Open
Model Community’s3 formal definition of modeling methods [13] may act as an
alternative to UML for representing our CRM.

3 http://www.omilab.org
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Fig. 1: Systems and tool support concepts of the CRM

3 Conceptual Reference Model

In this section, we present a CRM of modeling and verification concepts for
hybrid systems. In principle we followed a top-down approach for constructing
the CRM, meaning that several concepts of the CRM have been adopted from
existing other surveys in this area as referred to in Section 2. We supplemented
our CRM in a bottom-up way with concepts prevalent in existing tools. Finally,
we structured our CRM into four packages: (i) the Systems package describes
the real world systems; (ii) the Modeling package abstracts from real-world
systems to models of their behavior and specifications of important properties;
(iii) the Verification package aims at verifying the modeled systems; (iv) the
ToolSupport package contains tool related aspects. In the following sections,
the concepts of the CRM are described along these four packages (see http:

//cis.jku.at for complete CRM).

We express the CRM as Unified Modeling Language (UML) classes, since
UML is the prevailing standard in object-oriented modeling4 and expose the
basic components of hybrid systems and the interrelations between them. Natu-
rally, the CRM thus serves also as a framework, which can be extended by means
of sub-classing if further hybrid system concepts need to be captured.

3.1 Systems

The classes in the systems package (cf. Fig. 1a) describe a high-level systems
perspective to anchor modeling and verification tools. We follow Teschl [46], and
distinguish DynamicalSystems into DiscreteDynamicalSystems (state space is
N/Z) and ContinuousDynamicalSystems (state space is R); systems that have
both characteristics are HybridSystems [18], focused on in this paper. Specifi-
cally, the dimensions of space and time are important characteristics for many
systems. A difference in handling those in a discrete or continuous manner indi-
cates a potentially fundamental conflict between modeling concepts and tools.

4 UML meta-model as included in the OMG “Unified Modeling Language: Su-
perstructure” version 2.4.1, available at http://www.omg.org/spec/UML/2.4.1/

Superstructure/PDF/.



3.2 Modeling

For the modeling package (cf. Fig. 2a) we follow Gupta [16] to distinguish a
model and its correctness specification (implementation and specification).

Model. A Model captures the relevant features of a dynamic system. It is ex-
pressed in a ModelingFormalism and can be constrained by Conditions.

Verification Specification. A VerificationSpecification describes a model’s
expected behavior utilizing a SpecificationFormalism [11], [16]. A verification
specification, being a logical formula in many approaches (e. g., [26], [36]), con-
sists of a StartCondition that specifies the initial conditions under which we
want a system to be safe to start, and a CorrectnessCriterion that we want a
system to fulfill (e. g., throughout, after all, or after at least one of its executions).
Furthermore, it is often possible to annotate models with Hints/Strategies,
that guide a verification tool but do not influence the behavior of a model directly
(e. g., invariants in KeYmaera [40] and UPPAAL [26]).

Formalism. A major part of the Modeling package is the Formalism sub-package,
which is divided into modeling formalisms for creating models and specifica-
tion formalisms for creating verification specifications (these may reference the
created models). The included formalisms are the most commonly used in lit-
erature, namely Automata and Programs [16] for modeling of discrete systems,
Differential Equation for modeling of continuous systems [10], as well as their
combination in the form of HybridAutomata/HybridPrograms [18], [36]. In order
to constrain a model to realistic behavior (e. g., the “bouncing ball” can never
fall through the floor), the CRM introduces conditions. Following Meyer [28],
these conditions are further subdivided into PreConditions, PostConditions
and Invariants. Moreover, a modeling formalism can have multiple characteris-
tics further describing its capabilities. We include subclasses of Characteristic
in the CRM to handle Compositionality (compositional models, for instance,
through Parallelism [19], Urgency [5], Synchronization or sequences [44])
and Non-Determinism (e. g., non-deterministic choice in dL [36]).

Automaton and Program. An automaton comprises a set of States and a set
of Transitions, and can be visualized as a directed graph [20]. A condition,
when attached to an AutomatonElement, restricts or details the behavior of the
automaton. Another modeling formalism are programs, representing a sequence
of instructions. Although they are often interchangeable we separate these for-
malisms, because their structural differences can be utilized by verification tools.

Differential Equations. Following [51] we classify differential equations (DE) into
PartialDE (PDE) and OrdinaryDE (ODE). Both can have special restricted
constant and linear forms (i. e., LinearPDE, LinearODE). In accordance with
[37], we allow conditions to restrict a DE to remain within a particular region,
transforming DEs into DifferentialAlgebraicEquations (DAE). DAEs can
further be equivalently transformed into differential inclusion, which is useful to
express disturbance in continuous dynamics.
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Fig. 2: Modeling and Verification Concepts of the CRM

HybridAutomaton (HA) and HybridProgram (HP). The generic concept of HA is
the basis for numerous hybrid formalisms with different levels of expressiveness
and detail, such as HybridUML [6] or Hybrid Petri Nets [12], [34]. For HA, we
introduce a ContinuousState that references a set of DEs. These differential
equations represent the continuous behavior of a system while their respective
state is active. TimedAutomata are restricted to modeling real-time systems and
correspond to HA with only clocks [4]. Like above, we introduce HPs [36], [38]
as sub-class of programs which allows differential equations as instruction. As
already mentioned, although HA can be encoded as HPs [36], they differ in
structural aspects that can be exploited by hybrid system verification tools.

Logic. A verification specification is expressed in terms of a Logic [16], such as
Temporal Logic (TL) [41] or differential dynamic logic (dL) [36]. These logics
differ in terms of capabilities and expressiveness, and support various kinds of
quantifiers and modalities (e. g., []-safety or <>-liveness modalities in dL, A
or E path quantifiers in CTL). Logics currently included in the CRM are CTL,
LTL, and their common superset CTL*, dL used together with HP for deductive
verification and TCTL used in model checking of timed systems.

3.3 Verification

Verification Goal. Verification is usually defined to check the behavior of a sys-
tem w.r.t. its intent [24]. Kern et al. [22] conceptually distinguish between prop-
erty- and implementation verification. Property verification is concerned with
specifying properties that are desired for a design (equivalent to what we con-
sider verification in our CRM), while implementation verification deals with the
relationship between high-level models and the implementation. In the CRM
(cf. Fig. 2b) we focus on property verification, as implementation verification is
rather a topic of model transformation which is not dealt with here. For en-
suring such an intended behavior, formal verification methods are typically dis-
tinguished into Model Checking and Verification by Deduction [24]. Such meth-
ods provide rigorous evidence (e. g., a proof) that a specification aiming at a
VerificationGoal is correct. Common verification goals include Safety (i. e.,



something will not happen) or Liveness (i. e., something must happen) [25],
Controllability/Reactivity [38], Fairness [47] and Deadlock Freedom [7].

Verification Evidence. VerificationEvidence witnesses the correctness of a
model w.r.t. a verification specification. What is considered a witness typically
depends on the employed formal verification method (e. g., reachable states for
model checking, a formal proof for deductive verification or counterexamples in
both methods to witness correctness violation).

Proof. A Proof consists of arbitrary many proof steps and aims at verifying that
the model is correct w.r.t. the specification. Entire proofs or parts of a proof
might be transferred to other users using either the same tool or other tools to
make progress or even close the entire proof. An implementation of the CRM
should support composition and decomposition of proofs, as well as exchanging
proofs, partial proofs, and lemmas. An important aspect arises from exchanging
evidence: how can the correctness of exchanged artifacts be substantiated (e. g.,
certificates or by providing an exact listing of all proof steps)?

CounterExample. A specification for a selected technique can be refuted by a
CounterExample, which is mutually exclusive to a successful proof. Multiple
counter examples might be found for each open proof step. As soon as one is
found, the refutation of the entire verification specification is inferred.

ReachableStates. Another possible output is the set of ReachableStates, if a
reachability analysis was performed.

3.4 Tool Support

Because of the large number of tools available for modeling and verification of
CPS (cf. Fig. 1b), in this section we restrict the discussion to classes related
to modeling and proof collaboration, as motivated by our previous work [30].
However, as usual, the package can be extended to fit other tools as required.

Tool. The ToolSupport package includes concepts for Tools: (i) a ModelingTool

supports users in creating a model using one of the respective formalism, (ii) a
VerificationSpecificationTool allows formulation of a verification specifi-
cation about a model, and (iii) the VerificationTool takes the model and its
specification and produces a verification result.

A tool manipulates various Artifacts; it uses input (e. g., a model) to pro-
duce a corresponding output (e. g., a verification specification). Tools might re-
quire UserInput at run-time and additional prior Configuration (i. e., meta in-
formation required to run the tool, e. g., library paths). For example, verification
tools often make a trade-off between expressiveness to achieve full automation
(e. g., affine linear dynamics in SpaceEx [14]) and user interaction to handle un-
decidability (e. g., KeYmaera [40]). Furthermore, tools might interact with each
other to enable Collaboration between instances of a single tool (e. g., multiple
users might collaboratively produce a complex model) or different kinds of tools
(e. g., different verification tools can be used to verify a single specification).



Refactorings. Artifacts can influence other artifacts (e. g., a counterexample may
lead to revision of the initial model), since hybrid systems are often developed in-
crementally by model refinement. Refactorings support the refinement process
through automated restructuring of artifacts. In case a model is accompanied
with a correctness specification and a proof, it is important to spare full re-
verification when the behavior of the model is refactored [31].

Another benefit of refactoring is to reduce verification complexity. For ex-
ample, concurrent transition systems are exponentially harder to verify than se-
quential ones [17]; so concurrent real-world components that are independent
in their read-write variables can be modeled sequentially in arbitrary order
to reduce verification complexity. We can therefore further distinguish refac-
torings that change the behavior of a model into those increasing modeling
detail (Refinement Refactorings) and those reducing details (Abstraction
Refactorings).

Verification Tools. In our CRM we include two types of verification tools corre-
sponding to the two major verification techniques: model checking and theorem
proving [33]. For theorem proving, we introduce the class DeductiveVerifi-

cationTool. These tools are based on some logic and use inference rules (i. e.,
proof rules) to transform formulas until they yield axioms or logical tautologies.
Kern et al. [22] refer to these techniques as Deductive Methods, while Clarke et
al. [11] call them Theorem Proving. Model checkers calculate the states that can
be reached by a model and check if all are desirable. Since the term model check-
ing, however, refers to a technique mainly used for verification of purely discrete
systems, we choose reachability analysis as the equivalent of model checking for
hybrid systems. A ReachabilityAnalyzer calculates reachable states either in
an exact manner by limiting the continuous dynamics to simple abstractions or
in an approximate manner by over-approximating the set of reachable states [3].
Many of the techniques that work with (over-)approximations have to deal with
floating point issues. The exactness of a verification technique (e. g., floating
point variables do not store exact real valued numbers, but might result in
rounding errors) has to be exchanged when different tools interact.

4 Knowledge Representation in the CRM

In this section we use the CRM to represent knowledge about hybrid systems.In
order to simplify comparison of verification and modeling tools with the help of
our CRM, we deduce a set of criteria that allow to classify and evaluate hybrid
systems modeling and verification tools.

Detailed criteria are analogous to the concepts of the CRM and reveal funda-
mental differences between the hybrid systems modeling and verification tools as
discussed below. As sample tools, we chose verification tools for hybrid systems
(SpaceEx [14], and KeYmaera [40]) and for timed systems (UPPAAL [26]). The
tools have different capabilities (cf. Fig. 3a): SpaceEx is a verification platform



(a) Knowledge about SpaceEx, UPPAAL and KeYmaera (b) Robot Example

Fig. 3: Knowledge representation in the CRM

for hybrid systems by performing reachability analysis, UPPAAL is an environ-
ment for verification of timed automata through model-checking and reachability
analysis, and KeYmaera is a theorem prover for hybrid systems.

Modeling Formalism. Each of the tools uses a slightly different modeling for-
malism. SpaceEx and UPPAAL both work with networks of automata, where
SpaceEx accepts HA and UPPAAL is restricted to timed automata. KeYmaera
chooses a different approach and uses HPs. As for continuous dynamics, UP-
PAAL is restricted to the use of synchronous clocks, while the other tools can
handle differential equations. However, SpaceEx is limited to affine linear dy-
namics while KeYmaera can also handle non-linear ODEs, algebraic DEs and
differential inclusion. Additionally, SpaceEx and UPPAAL—as they use net-
works of automata—support compositionality (e. g., by parallel composition).

Timed automata can be translated into HA, but not necessarily the other
way around, as modeled through timed automata being a subclass of HA. This
in turn means that transformations from SpaceEx models containing differential
equations will fail when translated to UPPAAL. Similarly, specifications pro-
vided in UPPAAL (e. g., safety properties) in terms of TCTL, will be lost when
translating a model to SpaceEx. Furthermore, both SpaceEx and UPPAAL sup-
port guards and invariants (highlighted in the CRM by means of the marked
Condition class), allowing loss-less translation of conditions.

Additionally, the CRM can be implemented as an object-oriented knowl-
edge representation scheme to provide automated support for model selection
and compatibility checks. For example, the modeling formalism for UPPAAL
is timed automaton while it is HA for SpaceEx, and HP for KeYmaera. For a
concrete model using a timed automaton as modeling formalism a knowledge
representation query would return tools that can handle timed automata di-
rectly (SpaceEx and UPPAAL), and those tools that can handle the model with
some transformation (KeYmaera). In the latter case, the models resulting from



the transformation, however, are likely to not benefit from KeYmaera in the
fullest possible extent, because the structure of the source model is different
from the expected program structure. When comparing SpaceEx and UPPAAL,
the knowledge representation would also provide that an instance of a SpaceEx
model (containing a HA) cannot necessarily be assigned to UPPAAL, as the
modeling formalism of UPPAAL cannot handle HA in general.

Specification Formalism. KeYmaera and UPPAAL use logical statements to de-
fine desired properties about a system, whereas SpaceEx computes a set of reach-
able states that can be compared either for intersection with the set of unsafe
states (safety) or with the set of goal states (liveness).

The CRM also supports comparison of specification formalisms, as a similar
class hierarchy as described above, also exists for logics. While UPPAAL uses a
subset of TCTL for its specifications, KeYmaera uses dL.

Verification Specification. For conditions, all tools support guards and invariants
to restrict the behavior of the models. While SpaceEx returns a set of reachable
states which has then to be analyzed for intersections with desirable or unde-
sirable sets of states, UPPAAL supports the use of path formulae (further clas-
sified into reachability, safety and liveness) and KeYmaera allows arbitrary dL
fomulae to specify safety and liveness properties. KeYmaera furthermore allows
annotating its models with additional conditions (e. g., variants and invariants),
to support the tool during verification of the models.

The CRM supports comparing the available kinds of correctness criteria
specifiable within different tools. When translating from SpaceEx to UPPAAL,
additional correctness criteria must be specified after the translation so that
UPPAAL can verify the model. From UPPAAL to KeYmaera we may want to
enrich the model with annotations to guide the proof search.

Applying the CRM. We use a robot collision avoidance model [29] to illustrate
how hybrid systems models can be captured in the CRM. The collision avoid-
ance model was designed using hybrid programs as a modeling formalism; its
correctness requirements are defined by a specification. Since the robot moves
along sequences of circular arcs and must not drive backwards, the hybrid pro-
gram contains non-linear differential-algebraic equations. The starting condition
PfSInitial of the system is a logical formula, which describes conditions on accel-
eration A, braking B, robot speed vr, robot direction dr, robot positions pr, and
obstacle positions po, under which it is safe to start the robot. The correctness
criterion PfSCorrectness expresses that all possible behavior of the robot has to
avoid collision, and furthermore has to retain at least one maneuver for obstacles
to avoid collision as well, which means that it uses nested modality operators
and, hence, can only be expressed in dL. From these instances we immediately
see that KeYmaera is the tool which fits best for verification of this model, since
dL and non-linear DE are not supported by SpaceEx or UPPAAL (cf. Fig. 3b).



5 Conclusion and Future Work

In this paper, we introduced a conceptual reference model that can be used to an-
alyze the properties of hybrid system modeling and verification tools and classify
them accordingly. The resulting CRM can be used to (i) unify the used termi-
nology, (ii) compare the capabilities of modeling and verification methods, and
(iii) represent and exchange knowledge about those methods and about mod-
els. Furthermore, we see several promising application areas for such a CRM,
spanning from education purposes in order to provide students with a road-map
for CPS development and verification, to an object-oriented knowledge repre-
sentation system, which can be used to automatically check the compatibility
between models and tools, and exchange information between different tools as
emphasized for interchange formats (e. g., [5], [32], [35]).

The CRM is a first step towards a comprehensive classification framework of
hybrid system modeling and verification concepts and should be extended with
further details: For future work, we plan to extend the CRM with stochastic
or probabilistic hybrid systems (e. g., [21], [39], [50]), hybrid games (e. g., [42]),
component-based modeling, and transformation. Finally, we plan to conduct a
survey of hybrid system modeling and verification approaches using a criteria
catalog derived from the CRM.

Acknowledgements This work was funded by the Austrian Federal Ministry of
Transport, Innovation and Technology (BMVIT) grant FFG FIT-IT 829598,
FFG BRIDGE 838526 and FFG Basisprogramm 838181, and by PIOF-GA-2012-
328378. The authors thank Andre Platzer for fruitful discussions and feedback.

References

1. Alur, R.: Formal verification of hybrid systems. In: Proc. of the 9th ACM Intl. Conf.
on Embedded software. pp. 273–278. EMSOFT ’11, ACM, NY (USA) (2011)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)
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