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Abstract. Hybrid systems with both discrete and contin-
uous dynamics are an important model for real-world physi-
cal systems. The key challenge is how to ensure their correct
functioning w.r.t. safety requirements. Promising techniques
to ensure safety seem to be model-driven engineering to de-
velop hybrid systems in a well-defined and traceable manner,
and formal verification to prove their correctness. Their com-
bination forms the vision of verification-driven engineering.
Despite the remarkable progress in automating formal verifi-
cation of hybrid systems, the construction of proofs of com-
plex systems often requires significant human guidance, since
hybrid systems verification tools solve undecidable problems.
It is thus not uncommon for verification teams to consist of
many players with diverse expertise. This paper introduces a
verification-driven engineering toolset that extends our previ-
ous work on hybrid and arithmetic verification with tools for
(i) modeling hybrid systems, (ii) exchanging and comparing
models and proofs, and (iii) managing verification tasks. This
toolset makes it easier to tackle large-scale verification tasks.

1 Introduction

Motivation Computers that control physical processes, thus
forming so-called cyber-physical systems (CPS), are today
pervasively embedded into our lives. For example, cars equip-
ped with adaptive cruise control form a typical CPS, responsi-
ble for controlling acceleration on the basis of distance sensors.
Further prominent examples can be found in many safety-
critical areas, such as in factory automation, medical equip-
ment, automotive, aviation, and railway industries. From an
engineering viewpoint, CPSs can be described in a hybrid
manner in terms of discrete control decisions (the cyber-part,
e. g., setting the acceleration of a car) and in terms of differen-
tial equations modeling the entailed physical continuous dy-
namics (the physical part, e. g., motion) [28]. More advanced
models include aspects of distributed hybrid systems [32] or
stochasticity [31], but are not addressed in this paper.
Challenge The key challenge in engineering hybrid systems is
the question of how to ensure their correct functioning in order
to avoid incorrect control decisions w.r.t. safety requirements
(e. g., a car with adaptive cruise control will never collide with
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a car driving ahead). Especially promising techniques to en-
sure safety seem to be model-driven engineering (MDE) to
incrementally develop systems in a well-defined and traceable
manner and formal verification to mathematically prove their
correctness, together forming the vision of verification-driven
engineering (VDE) [20]. Despite the remarkable progress in
automating formal verification of hybrid systems, still many
interesting and complex verification problems remain that are
hard to solve in practice with a single tool by a single person.

Because hybrid systems are undecidable, hybrid systems
verification tools work over an undecidable theory, and so
verifying complicated systems within them often requires sig-
nificant human guidance. This need for human guidance is
true even for decidable theories utilized within hybrid sys-
tems verification [5], such as the first-order theory of non-
linear real arithmetic (also called the theory of real closed
fields or RCF), a crucial component of real-world verifica-
tion efforts. Though decidable, RCF is fundamentally infea-
sible (it is worst-case doubly exponential in the number of
variables [6]), which poses a problem for the automated ver-
ification of hybrid systems. Much expertise is often needed
to discharge arithmetical verification conditions in a reason-
able amount of time and space, expertise requiring the use
of deep results in real algebraic geometry. It is thus not un-
common for serious hybrid systems verification teams to con-
sist of many players, some with expertise in control theory
and dynamical systems, some in software engineering, some
in mathematical logic, some in real algebraic geometry, and
so on. Hence, well-established project management techniques
to coordinate team members are crucial to achieve effective
collaborative large-scale verification of hybrid systems. Suc-
cessful examples of team-based large-scale verification of non-
hybrid systems include the operating system kernel seL4 [19]
in Isabelle/HOL and the Flyspeck project [15], and show, that
indeed collaboration is key for proving large systems.
Vision This paper introduces a VDE toolset (including a
backend deployment for project management and collabora-
tion support) and sketches our vision on further enhancing
this toolset. It applies proof decomposition in-the-large across
multiple verification tools, basing on the completeness of dif-
ferential dynamic logic (dL [28, 33]), which is a real-valued
first-order dynamic logic for hybrid programs, a program no-
tation for hybrid systems. The VDE toolset Sϕnx extends our
previous work on the deductive verification tool KeYmaera
[36] and on the nonlinear real arithmetic verification tools
RAHD [26] and MetiTarski [27] with modeling tools for (i)
modeling of hybrid systems in dL, (ii) exchanging and com-



paring models and proofs via a central source repository, and
(iii) exchanging knowledge and tasks through a project man-
agement backend.
Structure of the paper In the next section, we give an
overview on related work. In Sect. 3 we introduce our architec-
ture of a verification-driven engineering toolset, and describe
implementation and features of its components, including a
vision of further work. Section 4 introduces an autonomous
robotic ground vehicle as application example. Finally, in
Sect. 5 we conclude the paper with an outlook on real-world
application of the toolset.

2 Related Work

Model-driven engineering in a collaborative manner has been
successfully applied in the embedded systems community.
Efforts, for instance, include transforming between different
UML models and SysML [16], modeling in SysML and trans-
forming these models to the simulation tool Orchestra [2], in-
tegration of modeling and simulation in Cosmic/Cadena [13],
or modeling of reactive systems and integration of various
verification tools in Syspect [10].

Recent surveys on verification methods for hybrid systems
[1], modeling and analysis of hybrid systems [8], and modeling
of cyber-physical systems [9], reveal that indeed many tools
are available for modeling and analyzing hybrid systems, but
in a rather isolated manner. Supporting collaboration on for-
mal verification by distributing tasks among members of a
verification team in a model-driven engineering approach has
not yet been the focus. Although current verification tools for
hybrid systems (e. g., PHAVer [11], SpaceEx [12]), as well as
those for arithmetic (e. g., Z3 [7]) are accompanied by mod-
eling editors of varying sophistication, they are not yet par-
ticularly well-prepared for collaboration either. Developments
in collaborative verification of source code by multiple com-
plementary static code checkers [4], modular model-checking
(e. g., [22]), and extreme verification [17], however, indicate
that this is indeed an interesting field. Most notably, usage
of online collaboration tools in the Polymath project has led
to an elementary proof of a special case of the density Hales-
Jewett theorem [14].

3 The VDE Toolset Sϕnx

In order to integrate different modeling and verification tools,
the verification-driven engineering toolset Sϕnx1 proposed in
this paper follows a model-driven architecture: metamodels
for different modeling and proof languages form the basis for
manipulating, persisting, and transforming models. The no-
tion of a model here denotes an instance of a metamodel,
i. e., it comprises models, proofs, and strategies. Following the
definition of the OMG2, a metamodel defines a language to
formulate models: one example for a metamodel is the gram-
mar of dL, which, among others, defines language elements for
non-deterministic choice, sequential composition, assignment,
repetition, and differential equations. An example for a model
is given in Sect. 4: it is a set of formulas, differential equations,
and other dL language elements. It conforms to the grammar
of dL, and thus is an instance of the dL metamodel. Figure 1
gives an overview of the toolset architecture. As can be seen,

1 http://www.cis.jku.at/sphinx/ 2 http://www.omg.org

the dL, KeY, arithmetic, and arithmetic proof metamodels
represent interfaces between tools and to the backend.

dL metamodel The hybrid modeling components (textual
and graphical editors for dL, as well as model comparison)
manipulate models that conform to the dL metamodel. A
transformation runtime transforms between models in dL
and their textual form read by KeYmaera.

KeY proof metamodel The proof comparison component
reads proofs that conform to the KeY proof metamodel.
These proofs may either be closed ones (completed proofs,
nothing else to be done) or partial proofs (to be contin-
ued). A transformation runtime transforms between proofs
in KeY and their textual form as generated by KeYmaera.

Arithmetic metamodel Arithmetic editors (not yet imple-
mented) manipulate arithmetic models. Again a transfor-
mation runtime transforms between models expressed in
terms of the arithmetic metamodel and the correspond-
ing textual input (e. g., SMT-LIB syntax [3]) as needed by
arithmetic tools, such as RAHD, MetiTarski, or Z3.

Arithmetic proof metamodel Finally, the proof compar-
ison component reads arithmetic proofs expressed in terms
of the arithmetic proof metamodel, and transformed to and
from the arithmetic tool’s (textual) format by a transfor-
mation runtime.

Let us exemplify the toolset with a virtual walk-through
a collaborative verification scenario. We begin with model-
ing a hybrid system using textual and graphical dL editors.
As both operate on the same model, changes in either edi-
tor are reflected instantly in the other. The resulting model,
which conforms to the dL metamodel, is transformed on-the-
fly during editing by the transformation runtime to a textual
input file, and loaded into KeYmaera. In KeYmaera, we ap-
ply various strategies for proving safety of our hybrid system
model, but may get stuck at some difficult arithmetic prob-
lem. We mark the corresponding node in the partial proof
and save it in KeYmaera’s textual output format. The proof
collaboration tool transforms the partial proof text file into
a model of the partial proof. We persist the hybrid model
and the model of the partial proof in the model and proof
repository, respectively. Then we create a request for arith-
metic verification (ticket) in the project management reposi-
tory using the task planning component. The assignee of the
ticket accesses the linked partial proof, and extracts an arith-
metic verification model from the marked proof node. Then
a transformation runtime creates the textual input for one of
the arithmetic verification tools. In this tool, a proof for the
ticket can be created, along with a proof strategy that docu-
ments the proof. Such a proof strategy is vital for replaying
the proof later, and for detecting whether or not the arith-
metic proof still applies if the initial model changed. Both
proof and proof strategy, are imported into the proof collabo-
ration tool and persisted to the corresponding repository. The
ticket is closed, together with the node on the original proof
(if the arithmetic proof is complete; otherwise, the progress
made is reported back). We fetch the new proof model version
from the repository and inspect it using the proof comparison
component. Then we transform the proof model into its tex-
tual form, load KeYmaera and continue proving our hybrid
system from where we left off, but now with one goal closed.
In case the corresponding arithmetic prover is connected to
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Figure 1: Overview of components in the verification-driven engineering toolset

KeYmaera, we could even load the proof strategy from the
strategy repository and repeat it locally.

3.1 KeYmaera: Hybrid System Verification

KeYmaera3 [36] is a verification tool for hybrid systems that
combines deductive, real algebraic, and computer algebraic
prover technologies. It is an automated and interactive theo-
rem prover for a natural specification and verification logic for
hybrid systems. KeYmaera supports differential dynamic logic
(dL) [28, 29, 30, 33], which is a real-valued first-order dynamic
logic for hybrid programs, a program notation for hybrid
systems. KeYmaera supports hybrid systems with nonlinear
discrete jumps, nonlinear differential equations, differential-
algebraic equations, differential inequalities, and systems with
nondeterministic discrete or continuous input.

For automation, KeYmaera implements a number of auto-
matic proof strategies that decompose hybrid systems sym-
bolically in differential dynamic logic and prove the full sys-
tem by proving properties of its parts [30]. This composi-
tional verification principle helps scaling up verification, be-
cause KeYmaera verifies a big system by verifying properties
of subsystems. Strong theoretical properties, including rela-
tive completeness results, have been shown about differential
dynamic logic [28, 33] indicating how this composition prin-
ciple can be successful.

KeYmaera implements fixedpoint procedures [34] that try
to compute invariants of hybrid systems and differential
invariants of their continuous dynamics, but may fail in
practice. By completeness [33], this is the only part where
KeYmaera’s automation can fail in theory. In practice, how-
ever, also the decidable parts of dealing with arithmetic may
become infeasible at some point, so that interaction with other
tools or collaborative verification via Sϕnx is crucial.

3 http://symbolaris.com/info/KeYmaera.html

At the same time, it is an interesting challenge to scale to
solve larger systems, which is possible according to complete-
ness but highly nontrivial. For systems that are still out of
reach for current automation techniques, the fact that com-
pleteness proofs are compositional can be exploited by inter-
actively splitting parts of the hybrid systems proof off and
investigating them separately within Sϕnx. If, for instance,
a proof node in arithmetic turns out to be infeasible within
KeYmaera, this node could be verified using a different tool
connected to Sϕnx.

KeYmaera has been used successfully for verifying case
studies from train control [37], car control [24], air traffic
management [35], and robotic surgery [21]. These verification
results illustrate how some systems can be verified automat-
ically while others need more substantial user guidance. The
KeYmaera approach is described in detail in a book [30].

In order to guide domain experts in modeling discrete and
continuous dynamics of hybrid systems, the case studies, fur-
ther examples, and their proofs are included in the KeYmaera
distribution. When applying proof strategies manually by se-
lection from the context menu in the interactive theorem
prover, KeYmaera shows only the applicable ones sorted by
expected utility. Preliminary collaboration features include
marking and renaming of proof nodes, as well as extraction of
proof branches as new subproblems. These collaboration fea-
tures are used for interaction with the arithmetic verification
tools and the collaboration backend described below.

3.2 Arithmetic Verification

Proofs about hybrid systems often require significant reason-
ing about multivariate polynomial inequalities, i.e., reasoning
within the theory of real closed fields (RCF). Though RCF
is decidable, it is fundamentally infeasible (hyper-exponential
in the number of variables). It is not uncommon for hybrid
system models to have tens or even hundreds of real variables,



and RCF reasoning is commonly the bottleneck for nontrivial
verifications. Automatic RCF methods simply do not scale,
and manual human expertise is often needed to discharge a
proof’s arithmetical subproblems.

RCF infeasibility is not just a problem for hybrid sys-
tems verification. Real polynomial constraints are pervasive
throughout the sciences, and this has motivated a tremen-
dous amount of work on the development of feasible proof
techniques for various special classes of polynomial systems.
In the context of hybrid systems verification, we wish to take
advantage of these new techniques as soon as possible.

Given this fundamental infeasibility, how might one go
about deciding large RCF conjectures? One approach is to
develop a battery of efficient proof techniques for different
practically useful fragments of the theory. For example, if an
∃ RCF formula can be equisatisfiably transformed into an
∧∨-combination of strict inequalities, then one can eliminate
the need to consider any irrational real algebraic solutions
when deciding the formula. Tools such as RAHD, Z3 and
MetiTarski exemplify this heterogeneous approach to RCF,
and moreover allow users to define proof strategies consisting
of heuristic combinations of various specialised proof meth-
ods. When faced with a difficult new problem, one works to
develop a proof strategy which can solve not only the prob-
lem at hand but also other problems sharing similar struc-
ture. Such strategies, though usually constructed by domain
experts, can then be shared and utilised as automated tech-
niques by the community at large.

3.3 Modeling and Proof Collaboration

In order to interconnect the variety of specialized verification
procedures introduced above, Sϕnx follows a model-driven en-
gineering approach: it introduces metamodels for the included
modeling and proof languages. These metamodels provide a
clean basis for model creation, model comparison, and model
transformation between the formats of different tools. This
approach is feasible, since in principle many of those proce-
dures operate over the theory RCF, or at least share a large
portion of symbols and their semantics. One could even imag-
ine that very same approach for exchanging proofs between
different proof procedures, since proofs in RCF, in theory, can
all be expressed in the same formal system. Currently, proofs
in Sϕnx are exchanged merely for the sake of being repeated
in the original tool (although KeYmaera already utilizes many
such tools and hence is able to repeat a wide variety of proofs).

In the case of textual languages, Sϕnx uses the Eclipse
Xtext4 framework to obtain such metamodels directly from
the language grammars (cf. Figure 2, obtained from the dL
grammar [28]), together with other software artifacts, such as
a parser, a model serializer, and a textual editor with syntax
highlighting, code completion, and cross referencing.

These metamodels are the basis for creating models in dL,
as well as for defining transformations between dL and other
modeling languages. The models in dL make use of mathe-
matical terms, and are embedded in KeY files since KeYmaera
uses the KeY [25] format for loading models and saving proofs.
In the following sections, we introduce dL in more detail and
describe the support for creating dL models and working on
proofs in Sϕnx.

4 www.eclipse.org/Xtext

3.3.1 Differential Dynamic Logic

For specifying and verifying correctness statements about hy-
brid systems, we use differential dynamic logic dL [28, 30, 33],
which supports hybrid programs as a program notation for hy-
brid systems. The syntax of hybrid programs is summarized
together with an informal semantics in Table 1; it reflects the
metamodel introduced in Figure 2. The sequential composi-
tion �α; β� expresses that β starts after α finishes (e. g., first
let a car choose its acceleration, then drive with that acceler-
ation). The non-deterministic choice �α ∪ β� follows either
α or β (e. g., let a car decide non-deterministically between
accelerating and braking). The non-deterministic repetition
operator �α∗� repeats α zero or more times (e. g., let a car
choose a new acceleration arbitrarily often). Discrete assign-
ment �x := θ� instantaneously assigns the value of the term
θ to the variable x (e. g., let a car choose a particular acceler-
ation), while �x := ∗� assigns an arbitrary value to x (e. g.,
let a car choose any acceleration). �x′ = θ & F� describes
a continuous evolution of x within the evolution domain F
(e. g., let the velocity of a car change according to its acceler-
ation, but always be greater than zero). The test �?F� checks
that a particular condition expressed by F holds, and aborts
if it does not (e. g., test whether or not the distance to a car
ahead is large enough). A typical pattern that involves as-
signment and tests, and which will be used subsequently, is
to limit the assignment of arbitrary values to known bounds
(e. g., limit an arbitrarily chosen acceleration to the physical
limits of a car, as in x := ∗; ?x ≥ 0). The deterministic choice
�if(F ) then α else β� executes α if F holds, and β otherwise
(e. g., let a car accelerate only when it is safe; brake otherwise).
Finally, �while(F ) do α elihw� is a deterministic repetition
that executes α as long as F holds.

To specify the desired correctness properties of the hybrid
programs, differential dynamic logic (dL) provides modal op-
erators [α] and 〈α〉, one for each hybrid program α. When φ is
a dL formula (e.g., a simple arithmetic constraint) describing
a safe state and α is a hybrid program, then the dL formula
[α]φ states that all states reachable by α satisfy φ. Dually,
dL formula 〈α〉φ expresses that there is a state reachable by
the hybrid program α that satisfies dL formula φ. The set
of dL formulas is generated by the following EBNF grammar
(where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expres-
sions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Thus, besides comparisons (<,≤,=,≥, >), dL allows one to
express negations (¬φ), conjunctions (φ∧ψ), universal (∀xφ)
and existential quantification (∃xφ), as well as the already
mentioned state reachability expressions ([α]φ, 〈α〉φ).

3.3.2 Creating Models

For creating models of hybrid and cyber-physical systems,
Sϕnx currently includes dL as generic modeling language. The
concrete textual syntax and dL editor created from the dL
metamodel is shown in Figure 3, together with a concrete
graphical syntax and the KeYmaera prover attached through
the console. In order to facilitate creation of textual models in
dL, Sϕnx includes templates of common model artifacts (e. g.,
ODEs of linear and circular motion). These templates, when



Figure 2: The dL metamodel extracted from the input grammar of KeYmaera

Table 1: Statements of hybrid programs

Statement Metamodel element Effect

α; β Chop sequential composition, first performs α and then β afterwards
α ∪ β Choice nondeterministic choice, following either α or β
α∗ Star nondeterministic repetition, repeating α n ≥ 0 times
x := θ Assign (term) discrete assignment of the value of term θ to variable x (jump)
x := ∗ Assign (wild card term) nondeterministic assignment of an arbitrary real number to x(
x′1 = θ1, . . . , ContinuousEvolution continuous evolution of xi along differential equation system

x′n = θn & F
)

DiffSystem x′i = θi, restricted to maximum domain or invariant region F
?F Quest check if formula F holds at current state, abort otherwise
if(F ) then α else β IfThenElse perform α if F holds, perform β otherwise
while(F ) do α end WhileSym perform α as long as F holds
[α]φ BoxModality dL formula φ must hold after all executions of hybrid program α
〈α〉φ DiamondModality dL formula φ must hold after at least one execution of hybrid program α

instantiated, allow in-place editing and automated renaming
of the template constituents. As usual in the Eclipse platform,
such templates can be easily extended and shared between
team members.

Since generic modeling languages, such as dL for hybrid sys-
tems, tend to incur a steep learning curve, the Sϕnx platform
can be extended with dedicated domain-specific languages
(DSL). Such DSLs should be designed to meet the vocabu-
lary of a particular group of domain experts. They can be in-
cluded into Sϕnx in a similar fashion to the generic modeling
language dL, i. e., in the form of Eclipse plugins that provide
the DSL metamodel and the modeling editor. In order to be
processable in a verification tool, such as KeYmaera, a model
transformation specification (e. g., using the Atlas transforma-
tion language ATL [18]) from the DSL to the tool’s modeling
language (e. g., dL) must be provided by these plugins.

For modeling hybrid systems, an interesting opportunity
for inspecting the behavior of such a system prior to verifica-
tion is provided by Mathematica5 9, which is able to simulate

5 www.wolfram.com/mathematica

and plot hybrid system behavior. Specifically, hybrid systems
behavior can be plotted using a combination of NDSolve and
WhenEvent. We envision transforming corresponding excerpts
of dL to Mathematica for visualizing plots of the dynamic be-
havior and their hybrid programs over time in Sϕnx.

3.3.3 During the Proof

Collaboration support in Sϕnx currently comprises model as
well as proof comparison, both locally and with the model and
proof repositories maintained in a central source code repos-
itory. For this, not only textual comparison is implemented,
but also structural comparison of models expressed in terms
of the dL metamodel, as well as of proofs expressed in terms
of the KeY metamodel is supported (cf. Figure 4). Especially
for collaboration, exchanging proofs and inspecting updates
on partial proofs is vital. For example, highlighted changes
between different versions of a partial proof lets one easily
spot and adopt proof progress made by other team members,
go back and forth between versions, and detect conflicts.



Figure 3: Textual and graphical syntax, proof in KeYmaera

Figure 4: Comparison of the structure of two proof versions

To further facilitate knowledge and expertise exchange, spe-
cific unsolved subproblems of a proof (e. g., complex arith-
metic problems) can be flagged in KeYmaera and extracted to
other tools. Thereby, division of verification work is achieved.
An open question, however, concerns the merging of the
partial verification results into a coherent proof. In a first
step, we plan to extend KeYmaera to let experts close proof
branches in the same manner as it currently trusts mathemat-
ical solvers. To avoid unintentionally closing a proof goal with
a proof that may no longer apply in case the original model
changed, Sϕnx checks that the statement remained the same
(textually) when replaying an arithmetic proof. Later, actual
proof certificates and proof strategies will be exchanged to
further increase trust, and more sophisticated comparisons of
proof goals are envisioned to better support replaying proofs.

3.4 The Collaboration Backend

The Sϕnx modeling tool uses existing Eclipse plugins to con-
nect to a variety of backend source code repositories and on-
line project management tools. As source code repository we
utilize Subversion6 and the Eclipse plugin Subclipse7. Cur-
rently, Mylyn8 and its connectors are used for accessing on-
line project management tools (e. g., Bugzilla9, Redmine10, or
any web-based tool via Mylyn’s Generic Web templates con-
nector) and exchanging tickets (i. e., requests for verification).
These tickets are the organizational means for collaborating

6 subversion.apache.org 7 subclipse.tigris.org
8 www.eclipse.org/mylyn 9 www.bugzilla.org
10 www.redmine.org

on verification problems and tasks within a working group.
Exchange of models and proofs may then be conducted either
by attaching files to tickets, or by linking tickets directly to
models and proofs in the source code repository. In the latter
case, one benefits from the model and proof comparison capa-
bilities of Sϕnx. Verification tools (currently KeYmaera), are
linked to the modeling tool by implementing extensions to the
Eclipse launch configuration. These extensions hook into the
context menu of Eclipse (models in dL and proof files in KeY
in our case) and, on selection, launch an external program.

As a vision of extending collaboration support, it is planned
to integrate Wikis and other online collaboration tools (cur-
rently, we use Redmine both as project management reposi-
tory and for knowledge exchange) for exchanging knowledge
on proof tactics. Additionally, collaboration with experts out-
side the own organization can be fostered by linking to Web
resources, such as MathOverflow11 and Amazon Mechanical-
Turk12. Especially interesting, in this respect, is the possibil-
ity to create a social-network-like expert platform. In such a
platform, requests could be forwarded to those experts whose
knowledge matches the verification problem best.

4 Application Example

With the increased introduction of autonomous robotic
ground vehicles as consumer products—such as autonomous
hovers and lawn mowers, or even accepting driverless cars on
regular roads in California—we face an increased need for en-
suring product safety not only for the good of our consumers,
but also for the sake of managing manufacturer liability. One
important aspect in building such systems is to make them
scrutable, in order to mitigate unrealistic expectations and in-
crease trust [38]. In the design stage of such systems, formal
verification techniques ensure correct functioning w.r.t. some
safety condition, and thus, increase trust. In the course of this,
formal verification techniques can help to make assumptions
explicit and thus clearly define what can be expected from
the system under which circumstances.

We discuss a model of an autonomous robotic ground vehi-
cle and its proof (to increase trust), and describe how we can
derive bounds on the behavior of that vehicle. The sample au-
tonomous robotic ground vehicle used in this paper operates
on predefined tracks and, thus, cannot steer freely (i. e., single
wheel drive with angular velocity zero). The control options of
such vehicles are limited to choosing the value of acceleration
and result in sequences of straight lines as trajectories. The
trajectories are thus akin to those produced by our previous
car models [23],[24].

In this example, navigation of autonomous robotic ground
vehicles is considered safe, if such vehicles are able to stay
within their assigned area (e. g., on a track) and do not ac-
tively crash with obstacles. Since we cannot guarantee rea-
sonable behavior of obstacles, however, autonomous ground
vehicles are allowed to passively crash (i. e., while obstacles
might run into the robot, the robot will never move into a
position where the obstacle could not avoid a collision).

11 mathoverflow.net 12 www.mturk.com



Model 1 Single wheel drive without steering (one-dimensional robot navigation)

swd ≡ (ctrl; dyn)∗ (1)

ctrl ≡ (ctrlr ‖ ctrlo) (2)

ctrlr ≡ (ar := −b) (3)
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+ 1

)
·
(
A

2
· ε2 + ε · vr

))
< xr < xb −

1 + or
2
·

(
v2r
2b

+

(
A

b
+ 1

)
·
(
A

2
· ε2 + ε · vr

))
(6)

∧ ‖xr − xo‖ ≥
v2r
2b

+

(
A

b
+ 1

)
·
(
A

2
· ε2 + ε · vr

)
+ V ·

(
ε+

vr +A · ε
b

)
(7)

ctrlo ≡
(
?vo = 0; oo := ∗; ?o2o = 1

)
(8)

∪ (vo := ∗; ?0 ≤ vo ≤ V ) (9)

dyn ≡ (t := 0; x′r = or · vr, v′r = ar, x
′
o = oo · vo, t′ = 1 & vr ≥ 0 ∧ vo ≥ 0 ∧ t ≤ ε) (10)

4.1 Modeling

Model 1 shows the model of a hybrid system comprising the
control choices of an autonomous robotic ground vehicle, the
control choices of a moving obstacle, and the continuous dy-
namics of the system. The system represents the common
controller-plant model: it repeatedly executes control choices
followed by dynamics, cf. (1). The control of the robot is ex-
ecuted in parallel to that of the obstacle, cf. (2).

The robot has three options: It is always allowed to brake,
as expressed by cf. (3) having no test condition. If its current
state is safe (defined by (6)), then the robot may accelerate
with any rate within its physical bounds, cf. (4). For this,
we utilize the modeling pattern introduced above: we assign
an arbitrary value to the robot’s acceleration state (ar := ∗),
which is then restricted to any value from the interval (−b, A)
using a test (?−b ≤ ar ≤ A). Finally, if the robot is stopped, it
may choose to remain in its current spot and may or may not
change its orientation while doing so, cf. (5). This is expressed
again by arbitrary assignment with subsequent test: this time,
the test ?o2r = 1, however, restricts the orientation value to
either forwards or backwards (or ∈ {1,−1}).

For always remaining safely inside its area, the robot must

account for (i) its own braking distance ( v2

2b
), (ii) the distance

it may travel with its current velocity (ε ·vr) until it is able to
initiate braking, and (iii) the distance needed to compensate
the acceleration A that may have been chosen in the worst
case, cf. (6). Note, that the safety margin applies to either the
upper or the lower bound of the robot’s area, depending on
the robot’s orientation: when driving forward (i. e., towards
the upper bound), we do not need a safety margin towards
the lower bound, and vice versa. This is expressed by the
factors 1−or

2
and 1+or

2
, which mutually evaluate to zero (e. g.,

1−or
2

= 0 when driving forward with or = 1). The distance
between the robot and the obstacle must be large enough to
(i) allow the robot to brake to a stand-still, (ii) compensate its
current velocity and worst-case acceleration, and (iii) account
for the obstacle moving towards the robot with worst-case
velocity V while the robot is still not stopped, cf. (7). Note,
that w.r.t. the obstacle we have to be more conservative than
towards the bounds, because we want to be able to come to

a full stop even when the obstacle approaches the robot from
behind.

The obstacle, essentially, has similar control options as the
robot (with the crucial difference of not having to care about
safety): it may either remain in a spot and possibly change
its orientation (8), or choose any velocity up to V , cf. (9).

4.2 Verification

We verify the safety of acceleration and orientation choices as
modeled in Model 1 above, using a formal proof calculus for
dL [28, 30]. The robot is safely within its assigned area and
at a safe distance to the obstacle, if it is able to brake to a
complete stop at all times13. The following condition captures
this requirement as an invariant that we want to hold at all
times during the execution of the model:

r stoppable (o, b) ≡ ‖xr − xo‖ ≥
v2r
2b

+
v · V
b

∧ xb +
1− or

2
· v

2
r

2b
< xr < xb −

1 + or

2
· vr

2

2b

∧ vr ≥ 0 ∧ o2r = 1

∧ o2o = 1 ∧ 0 ≤ vo ≤ V

The formula states that the distance between the robot to
both the obstacle and the bounds is safe, if there is still enough
distance for the robot to brake to a complete stop before it
reaches either. Also, the robot must drive with positive veloc-
ity, the chosen directions of robot and obstacle must be either
forwards (or = 1) or backwards (or = −1), and the obstacle
must use only positive velocities up to V .

Theorem 1 (Safety of single wheel drive). If a robot is in-
side its assigned area and at a safe distance from the obstacle’s

13 The requirement that the robot has to ensure an option for the
obstacle to avoid a collision is ensured trivially, since the obstacle in
this model can choose its velocity directly. In a more realistic model
the obstacle would choose acceleration instead; then the robot had
to account for the braking distance of the obstacle, too



position xo initially, then it will not actively collide with the
obstacle and stay within its area while it follows the swd con-
trol model (Model 1), as expressed by the provable dL formula:

r stoppable (o, b)→ [swd]
(
(v > 0→ ‖pr − po‖ > 0)

∧ xb < xr < xb
)

We proved Theorem 1 using KeYmaera. With respect to
making autonomous systems more scrutable, such a proof
may help in a twofold manner: on the one hand, it may in-
crease trust in the implemented robot (given the assumption
that the actual implementation can be traced back to the ab-
stract model). On the other hand, it makes the behavior of the
robot more understandable. In this respect, the most interest-
ing properties of the proven model are the definition of safe
and the invariant, which allow us to analyze design trade-
offs and tell us what is always true about the system regard-
less of its state. As an example, let us consider the distance
between the robot and the obstacle that is considered safe:
‖xr−xo‖ ≥ v2

r
2b

+
(
A
b

+ 1
)
·
(
A
2
· ε2 + ε · vr

)
+V ·

(
ε+ vr+A·ε

b

)
.

This distance can be interpreted as the minimum distance
that the robot’s obstacle detection sensors are required to
cover; it is a function of other robot design parameters (max-
imum velocity, braking power, worst-case acceleration, sen-
sor/processor/actuator delay) and the parameters expected
in the environment (obstacle velocity). ‖xr − xo‖ can be op-
timized w.r.t. different aspects: for example, to find the most
cost-efficient combination of components that still guarantees
safety, to specify a safe operation environment given a par-
ticular robot configuration, or to determine time bounds for
algorithm optimization.

With respect to the manual guidance and collaboration
needed in such a proof, we had to apply knowledge in hy-
brid systems and in-depth understanding of the robot model
to find a system invariant, which is the most important man-
ual step in the proof above. We further used arithmetic in-
teractions, such as the hiding of superfluous terms to re-
duce arithmetic complexity, transforming and replacing terms
(e. g., substitute the absolute function with two cases, one for
negative and one for positive values).

4.3 Model Variants and Proof Structure

Since it is hard to come up with a fully verifiable model that
includes all the details right from the beginning, the models
discussed in the previous section are the result of different
modeling and verification variants. In the process of creating
these models, different assumptions and simplifications were
applied until we reached the version in Model 1. For example,
one can make explicit restrictions on particular variables, such
as first letting the robot start in a known direction (instead of
an arbitrary direction). Such assumptions and simplifications,
of course, are not without implications on the proof. While
in some aspect a proof may become easier, it may become
more laborious or more complex in another. In this section, we
discuss five variants of the single wheel drive model (without
obstacle) to demonstrate implications on the proof structure
and on the entailed manual guidance needed to complete a
proof in KeYmaera.

The following model variants are identical in terms of the
behavior of the robot. However, assumptions on the starting

direction were made in the antecedent of a provable dL for-
mula, and the starting direction as well as the orientation of
the robot were explicitly distinguished by disjunction or non-
deterministic choice, or implicitly encoded in the arithmetic,
as described below.

Assumed starting direction, orientation by disjunction
In the first variant, the robot is assumed to start
in a known direction, specified in the antecedent of
or = 1 . . . → [swd](xb < xr < xb). Also, the orientation
of the robot is explicitly distinguished by disjunction in
safe ≡ (or = −1∧xb + . . . < xr)∨ (or = 1∧xr < xb− . . .),
and the robot had an explicit choice on turning during
stand-still (?vr = 0; or := −or; . . .) ∪ (?vr = 0; . . .).

Orientation by arithmetic In the second variant, we kept
the assumed starting direction of the first variant. However,
the orientation by disjunction in the definition of safe was
replaced by using or as discriminator value encoded in the
arithmetic, as in safe ≡ xb−

1+or
2
· (. . .) < xr < xb + 1−or

2
·

(. . .).
Arbitrary starting direction by disjunction The third

variant relaxes the assumption on the starting direction
by introducing a disjunction of possible starting directions
in the antecedent of the provable formula (or = 1 ∨ or =
−1) . . .→ [swd](xb < xr < xb).

Arbitrary starting direction by arithmetic The fourth
variant replaces the disjunction in the antecedent by stating
the two orientation options as o2r = 1 in o2r = 1 . . . →
[swd](xb < xr < xb).

Replace non-deterministic choice with arithmetic
Finally, we replace the non-deterministic turning choice
with (?vr = 0; or := ∗; ?o2r = 1; . . .).

Table 2 summarizes the proof structures of the five vari-
ants. Unsurprisingly—when considering the rules of the dL
proof calculus [29] as listed in Table 2—disjunctions in the
antecedent (∨l) or in tests of hybrid programs, as well as
non-deterministic choices ([∪]) increase the number of proof
branches and with it the number of manual proof steps. The
number of proof branches can be reduced, if we can replace
disjunctions in the antecedent (but also conjunctions in the
consequent) or non-deterministic choices in the hybrid pro-
gram by an equivalent arithmetic encoding. Conversely, this
means that some arithmetic problems can be traded for easier
ones with additional proof branches.

5 Conclusion

In this paper, we gave a vision of a verification-driven engi-
neering toolset including hybrid and arithmetic verification
tools, and introduced modeling and collaboration tools with
the goal of making formal verification of hybrid systems ac-
cessible to a broader audience. The current implementation
features textual and graphical modeling editors, integration
of KeYmaera as a hybrid systems verification tool, model and
proof comparison, and connection to various collaboration
backend systems. The VDE toolset is currently being tested in
a collaborative verification setting between Carnegie Mellon
University, the University of Cambridge, and the University
of Edinburgh.



Table 2: Nodes, branches, and manual proof steps of variants

Variant Nodes Branches Manual steps Avoids

(i) Assumed starting direction, orientation by disjunction 387 34 24
(ii) Orientation by arithmetic 331 28 25 (∨l)
(iii) Arbitrary starting direction by disjunction 650 56 44
(iv) Arbitrary starting direction by arithmetic 185 17 22 (∨l)
(v) Replace non-deterministic choice 160 14 29 ([∪])(∧r)

Γ, φ ` ∆ Γ, ψ ` ∆

Γ, φ ∨ ψ ` ∆
(∨l) [a]φ ∧ [b]φ

[a ∪ b]φ ([∪])
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆ (∧r)
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laborative verification and testing with explicit assumptions’,
in FM, eds., Dimitra Giannakopoulou and Dominique Méry,
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hard Beckert, Reiner Hähnle, and Peter H. Schmitt, vol-
ume 4334 of Lecture Notes in Computer Science, 599–626,
Springer Berlin Heidelberg, (2007).

[26] Grant Olney Passmore, Combined Decision Procedures for
Nonlinear Arithmetics, Real and Complex, Ph.D. disserta-
tion, University of Edinburgh, 2011.

[27] Grant Olney Passmore, Lawrence C. Paulson, and
Leonardo Mendonça de Moura, ‘Real algebraic strate-
gies for MetiTarski proofs’, in AISC/MKM/Calculemus,
eds., Johan Jeuring, John A. Campbell, Jacques Carette,
Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker
Sorge, volume 7362 of Lecture Notes in Computer Science,
pp. 358–370. Springer, (2012).
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