
Towards Neural Situation Evolution Modeling:
Learning a Distributed Representation

for Predicting Complex Event Sequences
Andrea Salfinger

Department of Cooperative Information Systems
Johannes Kepler University Linz

Linz, Austria
andrea.salfinger@cis.jku.at

Lauro Snidaro
Department of Mathematics, Computer Science and Physics

University of Udine
Udine, Italy

lauro.snidaro@uniud.it

Abstract—In real-world monitoring tasks, a situation can be
understood as a sequence of causally related events of interest. In
road traffic control, such a situation could be a rear-end collision
at the end of a traffic jam, which worsens congestion and requires
clearing operations and potentially rerouting. Whereas conven-
tional event sequence prediction focuses on sequences of individ-
ual events 〈e1, . . . , en〉, evolving situations thus can be conceived
as sequences of states composed of multiple concurrent events,
i.e., complex events: 〈{e1, . . . , em}, . . . , {el, . . . , en}〉. Situation
(evolution) prediction thus requires learning a transition model
for these complex events to provide the expectations for potential
successor event types. In previous work, this was represented by a
Markov Chain defined on the observed complex events. However,
using the entire event composite as “atomic” situation state repre-
sentation does not allow capturing patterns between its individual
events (e.g., events of type “accident” share similar successor
event types across different event composites), nor generalizing
behaviors between similar event types or incorporating additional
features. Hence, we propose a neural modeling approach to
learn a distributed representation of a given situation dataset.
By encoding the input states as conjunction of their individual
comprised events, the devised model can learn associations (i.e.,
enable an “information flow”) between individual event types,
allowing to capture similar behaviors across different situations.
We test our approach on both synthetic and real-world datasets.

I. INTRODUCTION

Motivation. In many control center domains, such as road
traffic control, human operators need to track and forecast
the development of situations composed of an evolving set of
related events. Human operators typically rely on their experi-
ence for forecasting a situation’s evolution as a basis for their
decision making and planning of appropriate response and
mitigation actions. Modern-day control centers’ data recording
infrastructures, however, would enable complementing their
human intuition with empirically grounded forecasting models,
developed from previously recorded situations. Hence, this
would allow deriving rich models factoring in a variety of in-
formation (such as subtle location- and time-specific patterns)
to support predictive situation management [1].

ti

ti-1

ti-2

ti+1

(a)

i

ti+1

ti-1

?

ti

ti+1

ti-1

A

A

B

C

A

A

B

C

(b)

Figure 1: Object tracking (a) vs.
situation tracking (b).

Challenges. Whereas the
recent advances in machine
learning have led to elab-
orate forecasting models in
a variety of application do-
mains, these have mainly
focused on predicting the
evolution of individual ob-
jects and events from a fixed
set of input features, e.g.
measurements, such as [2],
[3]. Conversely, situations are defined as sets of interrelated
entities [4]. Their development over time thus corresponds to
the joint evolution of the set of comprised entities (see Fig. 1).
Previous work [5] formulated situation evolution prediction as
a sequence prediction problem defined on sequences of sets
of concurrent events, i.e., sequences of complex events (CEs).
Open Issues. However, this approach encoded CEs with
“atomic” tokens: each CE is represented by a single symbol
from the alphabet for encoding the observed situations1. This
alphabet hence can be conceived as the state space of an
underlying Markov Chain (MC), which allows estimating the
transition probability between the different symbols, i.e., the
situations’ states, from the transition frequencies observed
in the database. Consequently, this entails the following
shortcomings:
. Problem 1 (sparsity): Since the situations’ states are

encoded by single tokens (each representing a particular joint
event type composite), this triggers combinatorial explosion.
We may observe many slightly different combinations of event
types e1, . . . , en (both during model learning and operation),
which thus yield different symbolic representations. This leads
to sparsity in the sequence and MC representation of the
dataset, as we may have only few observations for each token
(in particular for tokens corresponding to large event com-

1For example, the four potential situation states shown in Fig. 1b correspond
to three distinct event type constellations (indicated by the differently colored
ellipses), thus the prediction problem could be encoded by three different
symbols {A,B,C}.

posites or rare event types), thus resulting in rather unreliable
probability estimates.
. Problem 2 (out-of-vocabulary words): Event type com-

posites encountered at operation time but not during model
learning conform to “out-of-vocabulary words”. As the MC has
not “tokenized” this event type composite before, i.e., does not
have a corresponding state, no predictions can be made.
. Problem 3 (“shared” event type associations): Further-

more, the MC cannot generalize from similar observations. The
model’s representation using the entire joint event type com-
posite as basic token or symbolic representation does not allow
to generalize event-level patterns between similar event type
composites, i.e., does not allow to exploit similar, “shared”
event type associations. For instance, situations involving the
event type “accident” may require similar clearing works and
potentially trigger the formation of traffic jams, thus likely will
share some event types across their successor states.
. Problem 4 (additional features): Finally, the MC does not

inherently support incorporating additional non-symbolic fea-
tures, such as location or time. However, such properties may
indeed influence a situation’s evolution (e.g., accidents during
rush hour may lead to more severe traffic conditions), thus,
likely would impact the transition probability distribution.
Goals. We argue that the root cause of . Problems 1 – 4 lies in
the coarse state representation adopted by the MC, representing
a situation’s state by a single symbol denoting the entire CE:
This only allows capturing patterns between entire states, but
does not allow to leverage the associations among and between
the states’ individual elements.
Contributions. Therefore, we adopt the idea of a distributed
representation [6]: We propose representing a situation’s state
by its individual composing events and fitting a neural network
to these decomposed CE sequences to learn the probabilistic
evolutionary relationships between the individual situational
elements. Inspired by neural language modeling, this approach
thus learns an implicit representation of the evolution patterns
underlying the situation dataset. Unlike conventional language
modeling, the learned model forms a distributed representation
by design2, since the composite states have been decomposed
by splitting up (“distributing”) the original alphabet from one
token for each set of events (i.e., CE) into one token for
each individual event. This enables the network to learn a
representation individually capturing the individual elements’
impact on a situation’s evolution. The learned neural evolution
model provides soft decision support to the human opera-
tors by outputting the individual estimated expectations for
observing each event type in the next evolution step. This
accounts for the fact that road traffic incidents frequently
evolve according to common patterns, however, alternative –
and often more critical – courses of events are possible and
need to be prepared for. We empirically analyze the learned
situation evolution models in experiments on both generated
and real-world datasets.

2Distributed representations of tokens in language models are only achieved
by means of the additional preprocessing step of training embedding layers.

II. RELATED WORK

As defined by the well-known JDL data fusion model [4],
situations represent high-level information fusing the joint
behavior of a set of interrelated elements. By incorporating the
interplay of the set of related elements, valuable information
can be gleaned (e.g., the estimated duration of a traffic jam
may not only depend on the features of the traffic jam itself,
but also on associated co-located events, such as roadworks),
which motivates the need for predictive models operating on
such situation-level input. Interestingly, however, only few
approaches have tackled this problem so far. The problem
of situation tracking has been formalized in [7], proposing
logical reasoning for inferring potential developments of a
monitored situation. Such qualitative situation prediction has
also been approached with Colored Petri Nets [8]. These
approaches to situation (evolution) prediction base on formal
logics, thus infer potential future developments by determining
which courses of events could be reached from the currently
observed state, but do not provide any any estimates of their
probabilities derived from empirical data. Therefore, exten-
sions of classical logics have been proposed to support proba-
bilistic reasoning based on empirical evidence and uncertainty,
such a Markov Logic Networks (MLNs), which have been
adopted for the fusion of uncertain sensory and contextual
information for maritime situational awareness [9]. The MLN
framework has been employed to both encode a priori and
contextual knowledge [10] and to fuse evidence from multiple
sources, possibly reasoning over incomplete data. Knowledge
is expressed by formulas in first-order logic with the possibility
of associating to each of them a level of uncertainty encoded
by a weight factor. In [11], empirical data was leveraged
for parametrizing situation models represented by Hidden
Markov Models, thereby also supporting evolution prediction,
which have been employed for tracking overtaking situations
in a driver-assistance system. However, prediction accuracy
strongly depends on the suitable discretization of the state
space (number of states etc.), which has to be parametrized
manually, and the states’ actual semantics needs to be deter-
mined by manual analysis. To enable an automated mining
of a such a discretized situation state space from structured
datasets, dedicated representations and approaches have been
developed in [12], based on which [5] formalized situation
evolution prediction as a sequence prediction problem. We will
briefly recap these conceptualizations in the following, laying
the preliminaries for the present work.

III. BACKGROUND

Situation Modeling. Fig. 2 shows a road traffic situation
as recorded by human control center operators following the
European Union’s “Data Exchange for Traffic Management
and Travel Information” standard, DATEX II [13]. From the
high-level perspective of a human control center operator, such
situations can be conceived as sets of causally related events
of different types (e.g., traffic jams, accidents, roadworks etc.)
that evolve over time, i.e., receive updates on their current
state (which might change their event type or other properties

ACI LS1

ACX LS1

LS2

}

update
update

}
}

1s
t
st
at
e

2n
d
st
at
e

3r
d
st
at
e

Situation ID: 5111623

begin time: 2015-03-27 15:49:00

element ID: 5111669, type: ACI (accident)
element ID: 5111621, type: LS1 (stationary traffic)

begin time: 2015-03-27 16:21:00

element ID: 5111669, type: ACX (accident cleared)
element ID: 5111621, type: LS1 (stationary traffic)

begin time: 2015-03-27 16:42:00

element ID: 5111621, type: LS2 (slow-moving traffic)

Figure 2: The evolution of a road traffic situation through three
different states.

such as location etc.). The individual situational elements’
evolution thus can be characterized by a sequence of their
different states (for example, the element with ID 5111669
can be characterized by the sequence 〈ACI, ACX〉 to describe
its evolution from the accident to the cleared accident site).
Consequently, the entire situation’s evolution corresponds to
the joint development of its comprised events. For example,
the course of events shown in Fig. 2 could be characterized
by the following sequence of sets of concurrent events3:
〈{ACI,LS1}, {ACX,LS1}, {LS2}〉, i.e., a sequence of the three
“event type composites” (i.e., states) it passes through. Sim-
ilarly, a situation starting with slowly moving traffic (LS2),
which caused an accident (ACI) and worsened the traffic jam
to stationary traffic (LS1) that still persisted when the accident
site was already cleared (ACX), could be expressed as 〈{LS2},
{ACI,LS1}, {ACX,LS1}〉. Predicting a currently observed sit-
uation’s further evolution thus translates to the following
sequence prediction problem: 〈{LS2}, {ACI,LS1},?〉.
To tackle this problem, previous work [5] thus denoted each
such set of concurrent events (and potentially their interrela-
tions) by a CE [9], [14] describing this state, termed Situation
State Type (SST). Hence, these SST s can serve as “token
representation” (i.e., alphabet) for encoding a situation SI
in a high-level fashion by the sequences of SST s it has
evolved through, i.e., SI = 〈SST1, . . . , SS

T
n〉. Consequently,

the probability distribution of potential successor event states,
given the already observed sequence, can be mathematically
expressed in terms of the following posterior distribution:

P (SSTk+1|〈SS
T
1 . . . ,SS

T
k〉) (1)

This sequence prediction problem was approached by fitting a
first-order MC model to the situation dataset (assuming “mem-
orylessness”, i.e., that the Markov property holds), taking the
set of SST s encountered in the dataset as the set of possible
situation states and thus the state space of the MC [5].
Language Modeling. Problems of the form in (1), i.e.,
determining the probabilities of the next symbol(s) condi-
tioned on the already observed sequence, can be conceived
as a sequence-to-sequence prediction problem familiar from
Natural Language Processing (NLP). In particular, statistical
language modeling seeks to determine the probability of
the next word wt given its context (such as the preceding
n− 1 words) from a given corpus: P (wt|wt−1

t−n+1). Recently,

3Notation: Sets are denoted by {. . .} and sequences by 〈. . .〉.

neural language modeling [15] has become the predominant
technique to learning these distributions from large-scale cor-
pora [16]. Neural sequence-to-sequence prediction has also
been applied to event sequence prediction problems [17],
focusing on sequences of individual successive events. Thus,
language modeling and event sequence prediction essentially
model sequences of individual “tokens” and events, respec-
tively. Conventional event sequence prediction corresponds to
predicting the individual situation elements’ evolution (i.e.,
in terms of our previous examples, sequences 〈ACI, ACX〉
representing the accident’s development and 〈LS1, LS1, LS2〉
representing the traffic jam’s development), but does not
consider jointly evolving sets of events.

IV. A MODEL FOR LEARNING A DISTRIBUTED SITUATION
REPRESENTATION

Core Idea. Concluding, existing approaches to situation evolu-
tion modeling, language modeling and event sequence predic-
tion operate on sequences of individual, atomic tokens, which
are either individual events, or tokens representing the entire
CE describing the situation’s state. However, by employing a
symbol notation which uses the entire event type composite,
i.e., SST , as “atomic” symbol, models learned on these repre-
sentations are incapable of dealing with the problems outlined
in Sec. I, which would require a more fine-grained modeling
of these states in terms of the individual elements making
up the CEs. Thus, we need to find a representation capable
of “tearing apart” this atomic situation state representation.
Therefore, we next develop a distributed representation based
on a more fine-grained modeling of these states: Instead of
using an alphabet defined on the observed CEs, we represent
each state by a composite token (which thus represents the
major difference to conventional language modeling) defined
on the alphabet of possible event types, and learn the transition
probabilities between succeeding states by a neural network
modeling the situation dataset, obtained in an unsupervised
manner analogously to neural language modeling. Note that
our focus here is exclusively on learning the predictive model,
assuming that the detected states are given (i.e., the set of
interrelated event types). This is motivated by the fact that
situation state detection and situation tracking can effectively
be handled by dedicated Complex Event Processing systems,
as proposed in previous work [9], [10], [18].
Stateless Approach. For learning a transition model analogous
to a first-order MC (which only considers the current state
as relevant for the probabilities of its successor event types,
but not its history), our goal could be phrased as learning a
(stochastic) mapping function for the current situation state’s
descriptor st, which maps st to some probability distribution
on its potential successor states:

f(st) = P (st+1), (2)

whereby, as opposed to the MC-based model, these states s
are represented in a distributed fashion. Thus, instead of being
simply expressed by one particular SST , a situation state s

at time t, composed of m event types, would be expressed in
terms of its individual constituents:

st = {et,1, . . . , et,m} (3)

Hence, our goal would be learning the posterior event distri-
bution after observing the present state st:

p(st+1|st) = p ({et+1,1, . . . , et+1,n}|{et,1, . . . , et,m}) (4)

Since we may expect one to multiple successor events
et+1,i to occur, our problem can be conceived as a multi-
label classification problem. Consequently, we formulate our
prediction goal as learning n individual Bernoulli distributions
p(et+1,i) for a domain encompassing n potential event types4,
each expressing the individual likelihood of observing event
type ei in the next evolution step t+ 1:

p(st+1|st) ∼ p(et+1,1), . . . , p(et+1,n) (5)

These quantities should be computed by the sought-after
stochastic mapping function, which should output the expec-
tations of observing each of the n individual event types e in
the next situation state st+1:

f ({et,1, . . . , et,m}) = p(et+1,1), . . . , p(et+1,n) (6)

Such a stochastic mapping function f can be obtained by train-
ing a feedforward neural network with a suitable output layer
activation and loss function on our situation dataset, which
corresponds to finding a parametrization θ for this function
f that minimizes the error between our model’s predictions
f(st; θ) and the actually observed next state st+1. To represent
the varying sets of input events, our input i at each time step
t is encoded as a binary vector of size |E| = n, E being the
set of event types possible in our domain, i.e., i ∈ {0, 1}n.
The input signature for a particular st is a vector having 1 at
the index positions of the event types observed in st, and 0
elsewhere. Without loss of generality, we may allocate several
“slots” per event type, if it is possible that multiple events of
the same type may occur in a domain: The first event of type
eq would be allocated at position q, the second on q + 1 etc.,
whereby the number of provided slots represents the offset to
the index of the next event type. We may incorporate additional
(also non-symbolic) features by extending the input vector
i accordingly (e.g., by also including the event’s location,
timing, or spatial extent features). Analogously to i, the
network’s output layer o represents an index over the set of
event types possible in this domain, each of its positions oe
conforming to the probability of observing an event of type
e in the next evolution step, i.e., o ∈ [0, 1]n. Thus, will
use the logistic function as activation function on the output
layer to transform the network’s final activations into the
range [0, 1], representing p(et+1,i). To obtain these estimates
from training to predict our data set, we train our network
based on Maximum-Likelihood Estimation, i.e., by minimizing
cross-entropy loss [20]. During training, stochastic gradient

4Thus, we do not explicitly account for potential cross-correlations between
sets of successor events [19], which represents a direction for future work.

descent (SGD) optimizes the network’s parameters to maximize
its fit to the given dataset, by minimizing the cross-entropy
loss L based on the input-output pairs (st, st+1) given from
our situation evolution sequences. Since we have decomposed
the problem into predicting the individual event probabilities
p(et+1,i), we aim to optimize each output event’s probability
independently, thus employ the binary cross-entropy loss [20]
as follows:

L (f (st; θ) , st+1) = −
n∑

e=1

ye log(oe)+ (1− ye) log(1− oe), (7)

where ye represents the true label for event type e in the
successor state st+1 (1 if it is observed, otherwise 0), and oe
corresponds to its predicted probability p(et+1,i).
Stateful Approach. Whereas training a feedforward neural
network allows learning a memoryless – or fixed-size memory
– stochastic mapping function, we can overcome the limita-
tions of the MC and the feedforward network (in terms of
an a-priori fixed history horizon determined by the order of
the MC, respectively the fixed context-size encoded in the
input vector) by employing a stateful model that autonomously
learns how much of the observed situation’s history should be
incorporated in its predictions, by learning the mapping:

f (〈s1, . . . , st〉) = P (st+1) (8)

This can be achieved by modeling situation evolution pre-
diction as a sequence-to-sequence prediction problem using a
Recurrent Neural Network (RNN). We can simply change our
previous architecture to an RNN by replacing its hidden layer
of feedforward neurons with a hidden layer of recurrent units,
such as LSTM cells [21], which learn to store relevant aspects
of a situation’s history in their hidden cell state h. Hence,
the resulting RNN essentially learns the following mapping
of the situation’s currently observed state st and its history
accumulated in h:

f(〈{e1,1, . . . , e1,l}︸ ︷︷ ︸
s1

, ,︸ ︷︷ ︸
s2,...,st−1︸ ︷︷ ︸

h

{et,1, . . . , et,m}〉︸ ︷︷ ︸
st

)

= f(st, h) = p(et+1,1), . . . , p(et+1,n) (9)

We feed in the entire evolution sequence observed up to the
current state st to predict the expectations of the next tokens in
st+1. Note that we understand t here merely as a sequential
index, which does not imply equidistant time steps, but the
time point where situation composition changes (or the “jump”
to the next state in terms of the MC), i.e., its qualitative change.

Fig. 3 visually summarizes the architecture of the proposed
model. By using a distributed representation based on the
individual composing event types, information can flow from
the individual event types, exploiting both co-occurrence as
well as sequential correlations between the different event
types. The co-occurrence of event types may increase the
likelihood of specific successor event types (e.g., the co-
occurrence of an accident and roadworks may increase the

LSTM
cell1

LSTM
cellm

co-occurrence
associations

sequential
associations

pr
ed

ic
t

distributed, discrete signature of

probabilistic signature of

Figure 3: Architecture of the proposed model. Different model con-
figurations have been tested yielding similar results on the datasets.

likelihood of observing a traffic jam as follow-up event),
whereas in terms of sequential correlations, for example the
occurrence of event type “accident” makes it likely to observe
an event type “accident cleared” in the future. This contrasts
with neural languages models, which, implied by the inherent
structure of language operating on words as atomic units (i.e.,
tokens), solely capture sequential correlations. Conversely, our
situation evolution model operating on event sets can also
factor in the co-occurrence associations between simultane-
ously observed events. Note that our distributed representation
has been achieved “by design”, i.e., is directly encoded by
our problem formulation, and does not refer to the map-
ping of a discrete representation to a continuous, lower-
dimensional space, termed embedding, as common in NLP,
like word2vec [22]. Since the cardinality of event type sets
in situation monitoring domains typically is not comparable
to the huge size of vocabularies common in NLP, we have
decided to keep our initial architecture on the purely symbolic,
i.e., discrete, level. However, the use of an embedding layer
might be investigated in future work, in order to examine
whether such an additional distributed representation may aid
the model’s generalization capabilities by capturing common-
alities between event types (e.g., by allocating different types
of accidents to the same vector subspace).

V. EXPERIMENTS

We empirically examine our approach on a real-world situa-
tion dataset and devise controlled experiments for a systematic
analysis of its representation capabilities. Our experiments are
specifically designed to study whether our model is able of
overcoming . Problems 1 – 4 characterized in Sec. I. Note
that . Problem 2 (out-of-vocabulary words) is dealt with by
design: As our input representation is now directly built on the
domain’s set of distinct event types (which is fixed a-priori),
also event combinations not seen during model learning can
be input which the model should generalize from similar
situations, as we will examine.

A. Real-world Dataset

We apply our proposed approach on a road traffic dataset
consisting of 12,082 situation and situation fragment records5

logged by human control center operators in the form shown
in Fig. 2, comprising 185 different event types. Only 21%
of these are actually evolving situations that consist of more
than one state, whereas the majority ends without having
received any situation update6. Thus, we are dealing with a
small7 and highly imbalanced dataset (as common in many
real-world domains), which also applies to the observed types
of situational elements – whereas some of them occur rather
frequently (such as traffic jams), others (like wrong-way
drivers or vehicles on fire) naturally have extremely rare
occurrences. Hence, this represents a challenging evaluation
setting, and is particularly suited for investigating whether
our model is capable of addressing . Problem 1 (sparsity).
We preprocess our data by postfixing each sequence with
a dedicated “stop” token (.), denoting that a situation has
ended. Since the longest observed evolution sequence consists
of ten different situation states, we thus train our model with
sequences of length ten, padding shorter sequences with zeros.
To assess the generalization capabilities of our model, we split
our dataset into two disjunct periods: We train our models on
a training split involving 10,195 situations (84% of the data)
recorded between April and December, 2014. We then examine
how our model performs on future situations, by testing its
predictions on 1,887 situations (16% of the data) recorded
between December 2014 and April 2015.
Model Configurations. We empirically verified that different
architecture configurations produce consistent results, i.e., con-
verge to the same overall results irrespective of initialization
and network configuration: We used standard keras [23] hy-
perparameter settings and analyzed the standard deviation (σ)
of the prediction results on our dataset produced by networks
with one hidden layer comprising 1 – 7 LSTM cells. After train-
ing for 500 epochs, the average σ of the predicted probability
per event type across these seven experiments is ≤ 0.0012. If
we only consider predictions with a mean p ≥ 0.05 (across
the different models), i.e., the actual predictions (to rule out
the large fraction of basically zero probability event types), we
obtain an average σ of 0.042 between the different models’
predictions. We also verified that different types of recurrent
units (i.e., LSTMs, GRUs and simple RNNs) produce similar
results (results omitted due to space constraints).
Evaluation. Fig. 4 shows the resulting predictions for various
types of situations. As expected, the probability for ending in
the current state (.) is always highest (since the vast majority
of situations are non-evolving), but indeed varies for different

5Note that this dataset also comprises “situations” solely consisting of a
single element, as each appearing traffic element is automatically assigned
to a situation (since each appearing traffic element could potentially cause a
more complex chain of events later on).

6This may be due to the sampling frequency of data collection, or
incompletely recorded situations.

7Note, however, that we are dealing with a rather small number of discrete
features only, which thus simplifies the learning problem.

input sequences. From an intuitive viewpoint, the resulting
predictions appear feasible, i.e., events are predicted as we
would typically expect based on our domain knowledge.

(.) ACI ACX ALL CAL LCL LCR LO1 LS1 LS2 RCD RWK TCX
Event Type

0

0.25

0.50

0.75

p

Input Sequence
{ACI,LS1} {ACI,LS1} {ACX,LS1} {LS2} {ACI} {LS1} {LS1} {ACI,LS1}

st+ 1 Probabilities

ac
ci

de
nt

ac
ci

de
nt

 c
le

ar
ed

al
l a

cc
id

en
t s

ite
s

cl
ea

re
d

no
tif

ic
at

io
n

cl
ea

re
d

le
ft

la
ne

 c
lo

se
d

rig
ht

 la
ne

 c
lo

se
d

on
ly

 1
 la

ne
 o

pe
n

st
at

io
na

ry
 tr

af
fic

qu
eu

in
g

tra
ffi

c

ro
ad

 c
lo

se
d

ro
ad
w
or
ks

tra
ffi

c
di

sr
up

tio
n

cl
ea

re
d

Figure 4: Event type distributions for various ACI situations [best
viewed in color; only event types with p > 0.05 shown]. We
observe how the distributions change with respect to the situation’s
composition and progress, despite the similar composing event types.
Traffic jams ({LS1}, blue) are more likely to end without incurring
additional events or updates than traffic jam situations which have
already involved an accident (ACI, red, violet), as those more likely
trigger additional situation updates. Similarly, a situation which
has already progressed towards its clearance phase (〈{ACI,LS1},
{ACX,LS1}, {LS2}〉, yellow-green), i.e., the accident site has been
cleared (ACX) and the traffic jam has been dissolving from stationary
traffic (LS1) to slowly moving traffic (LS2), is more likely to end
than situations still in their accident phase (ACI, red, green, violet).

Besides qualitative inspection of results, a major challenge
is how to systematically evaluate our model’s learned dis-
tributions. Our model does not make hard decisions, but
provides soft decision support by estimating each event type’s
expected probability of occurring in the next situation state,
i.e., p(et+1,i|〈s1, . . . , st〉). Since our output of interest is the
entire set of probability distributions (not just the most likely
next event type, which would be always the “stop” token due to
the imbalanced dataset), we would like to validate whether the
estimated distributions conform to the empirical distribution
observed in the data. Established metrics for comparing the
related language models, such as the information theoretic-
measure perplexity [16], which base on the idea of comparing
models’ entropy (the lower the entropy, the better the model
characterizes the real-world data), are not applicable in our
case. For comparing two different models’ perplexity, both
need to employ the same vocabulary (i.e., alphabet), whereas
the SST -based model [5] and the distributed representation
naturally use different alphabets, and we have changed the
problem from a multi-class classification problem for the
SST -based model to a multi-label classification problem.

To validate whether the learned probability distributions
for the individual event types, p(et+1,i), reflect the empirical
distributions observed in our test dataset p̂(et+1,i), we com-
pare the distributions learned by model with “ground truth”
estimates p̂(et+1,i), i.e., n-gram statistics explicitly computed
from the evolution sequences observed in the test dataset. We
do not a-priori fix the n-gram size, but use a situation’s entire
history as context for predicting a state sk+1 (i.e., employ
n-grams of size k). Hence, we split each unique evolution

sequence in our test dataset into its k individual subsequences
from length 1 to k, k ranging from 1 to the index of the
last state (excluding the stop token). For each of these k
evolution (sub)sequences 〈s1, . . . , sl〉, l ∈ {1, . . . , k}, we let
the model learned from the training dataset predict its succes-
sor event distributions for sl+1, i.e., p(el+1,1), . . . , p(el+1,n).
We compare these quantities to the empirical ground truth
distribution approximated from our test dataset8: For all g
situation evolution sequences in our test dataset starting with
the current prefix 〈s1, . . . , sl〉, i.e., g = |{〈s1, . . . , sl〉}|, we
determine their g observed successor states sl+1. For each
event type el+1,i occurring in at least one of these successor
states, we compute the fraction of states it occurs, giving
our “ground truth” estimate of the underlying probability
distribution:

p̂(el+1,i) =
|{el+1,i ∈ sl+1 | 〈s1, . . . , sl, sl+1〉}|

|{〈s1, . . . , sl〉}|
(10)

We compute these individual l-gram statistics for all k subse-
quences of each unique evolution sequence and analyze the
difference between these “ground truth” estimates and the
predicted probabilities, i.e., δ = p(el+1,i)− p̂(el+1,i), which,
across all sequence prefixes and successor event types, results
in a mean δ̄ < 0.0002, and variance var(δ) < 0.0023. To
account for the fact that the vast majority of event types
will have a predicted probability around zero (hence, δ̄ will
be driven by this), we also report the error statistics only
for those predictions > 0.1, for which we obtain δ̄ < 0.03
and var(δ) < 0.12. Thus, our learned probabilistic evolution
patterns roughly match the empirical distributions observed in
the data, i.e., we conclude our resulting model approximates
the situation dataset’s characteristics.

B. Controlled Experiments on Synthetic Data

We next discuss experiments on generated data, to compare
the model’s learned distributions to known ground truth.
Recovering the Markov Model’s transitions. We start
with a simplistic scenario, which we subsequently ex-
tend to more complex questions. We first focus on
sequences consisting of sets of a single event type
only, to analyze the network’s capability of recovering
the underlying MC’s transition probabilities. Inspired by
our real-world data, we consider the following scenario:

ACI ACX

.

p

(1− p)

1

1

Figure 5: MC 1.

With probability p, we get a clearance
message (ACX) for an observed accident
(ACI). Otherwise, the accident situation
ends without observing the clearance no-
tification (i.e., p can be interpreted as
our fraction of evolving situations). We
generate a dataset with a proportion of
p% the sequence 〈{ACI}, {ACX}, .〉, and
1 − p% the sequence 〈{ACI}, .〉. As the
underlying MC in Fig. 5 shows, we only have one probabilistic
transition, whereas the others are deterministic. However, the
self-transition in the end-state (.) has never been observed in

8Notation: |{.}| denotes the cardinality or size of the set {.}.

the training data. Fig. 6 shows five different neural model’s
predictions9 for the sequence 〈{ACI}〉, trained on datasets with
increasing p.

Figure 6: Predictions for the successor events for the next evolution
steps for situation 〈{ACI}〉, on 5 different datasets with varying
fractions of evolving situations, by varying p in [0.2, 0.8] (x-axis).
For st+1 (left sub-figure), the probability of observing update {ACX}
(blue) exactly conforms to p, i.e., the fraction of evolving situations
in the underlying data, as emphasized by the identity line.

As to be expected, the predicted probabilities for an update
(i.e., transition to {ACX}), given situation 〈{ACI}〉, converge
towards the observed distributions in the training dataset, i.e.,
recover the underlying MC. SGD drives our model’s output to
match the proportions of positive samples (per class) of the
training set, which yields the minimum cross-entropy loss we
have been optimizing for.

Figure 7: Predictions for different input sequences (panel heading in light-
grey) across the next 4 evolution steps (x-axis).

Fig. 7 shows the predictions of our model trained on a
dataset with p = 0.7 for the next four states given different
input sequences. It also examines the “generalization” capabil-
ities of the network, i.e., its output to sequences not observed
during training, such as the (semantically) “nonsense” input
〈{ACX}, ., {ACI}〉, or starting in state 〈{ACX}〉. For the latter,
predicting the next state would be an easy inference task for
humans, since we only have observed transitions from ACX to
the end state in the training data. Indeed, the network overall
gets the prediction right (in terms of the largest probability),
but seems to be sensitive to the sequential position it expects
the event types – even if the presented sequence represents a
sub-sequence of the observed training data, the confidence of

9Note that the results are averaged across 5 different experiment runs, as
for all following experiments, unless explicitly mentioned. Since standard
deviations are negligible (< 0.05), we do not show error bars to avoid clutter.

this - actually deterministic transition - is comparably lower
than for the actually observed sequence 〈{ACI}, {ACX}〉.
. Problem 4 (additional features). Next, we simulate the

effect of incorporating additional features, which we claimed
to be an advantage of our neural over the MC-based model.
We assume that evolution characteristics are influenced by
the situation’s location (e.g., accident situations at some ur-
ban intersection may produce severe traffic jams, whereas
accident situations on rural roads can be typically cleared
without severe follow-up effects). Conceptually, this would
mean we would not have observed data produced from a
single MC anymore, but actually different MCs based on the
location characteristics. Whereas this problem cannot be easily
modeled with MCs anymore, which would require determining
the different location characteristics before constructing the
MCs, we examine whether the neural network is capable
of autonomously learning the locations’ effects. Technically,
this requires our simple neural architecture to discriminate a
mixture of distributions, conditioned on individual input fea-
tures. In our example, we consider three different distributions
generated by the MC shown in Fig. 5, assuming that situations
at different locations exhibit different evolution tendencies: We
generate three different distributions for accidents at three dif-
ferent locations (i.e., feature loc ∈ {1, 2, 3}, locations binary
encoded), whereby probability p depends on the feature loc
of the preceding state ACI, i.e., we determine the conditional
probability p(. |〈(ACI, loc)〉). Fig. 8 shows that the neural model
has correspondingly learned this feature relation.

Figure 8: Predictions for different locations across 2 time steps, with
p(ACX|(ACI, loc = l)) = pl for l ∈ {1, 2, 3} and pl ∈ {0.33, 0.5, 0.8}
(dashed lines), and prior probabilities for the locations 1, 2, 3 of 0.7, 0.1 and
0.2, resp. Despite different priors, the network perfectly disambiguates the 3
distributions based on the location feature (since our scenario is noise-free),
whereas the predictions for the next evolution step do not differ.

. Problem 3 (“shared” event type associations).

ACI ACXLS1

LCR .

p1

1− p1 − p2

p2

1

1

p3

1− p3

1

Figure 9: MC 3.

We finally examine whether the
model conforms according to in-
tuitive expectations with respect
to unseen event constellations.
We construct the test scenario
generated by the MC shown in
Fig. 9, using five different to-
kens and arbitrarily fixing p1 =

0.2, p2 = 0.3 and p3 = 0.55 to
generate a dataset according to
these proportions. In this dataset,

ACI, LS1 and LCR (right-lane closure) may be starting states,

whereas ACX can only be a consequence state of ACI. After
training our model on the generated data, we feed in the
previously unseen event combination {ACI,LCR} (i.e., co-
occurrence of an accident and a right-lane closure – note that
this state is not modeled in the MC). The model is capable
of intrapolating from its previous observations, by increasing
the expectation of observing a traffic jam in st+1 to 0.56
(mean across 100 training runs, σ = 0.1), thus approximating
intuitive expectations (as opposed to 0.55 for only observing
the right-lane closure and 0.3 for only observing the accident).

Concluding, our experiments have empirically validated that
the learned models encode the empirical distributions of the
underlying situation dataset, conditioned on feature values, and
generalize event combinations not seen during training, thus
are capable of overcoming . Problems 1 – 4.

VI. CONCLUSIONS AND FUTURE WORK

Inspired by neural language modeling, we have developed
an approach towards neural situation evolution modeling to
learn an implicit representation of the evolution patterns in
a given situation dataset. Our approach differs from exist-
ing work by employing a distributed representation defined
upon the set of event types that might compose a situation.
This allows to capture the individual sequential as well as
co-occurrence correlations between a situation’s comprised
event types. The datasets and problem studied in this paper
have been chosen to contribute a first proof-of-concept and
feasibility study demonstrating the utility of a distributed
representation for situation evolution modeling. The presented
model can be adapted to more complex application domains,
by plugging it into a larger, stacked architecture (e.g., for
processing video, these may for example involve preceding
layers of CNNs for upstream object detection tasks, which may
“instantiate” the downstream “symbolic layers”, as proposed
in [24], [25]). Our approach focuses on temporal relations,
assuming that all events are characterized by spatial co-
occurrence, as confirmed in the datasets we analysed. Whereas
our present approach has focused on studying the composition
of the types of situational elements and modeling their tempo-
ral relations, for future work we plan to develop more general
relation representations, either by injecting them in terms of
symbolic input (e.g., inputting relation tuples), or devising an
architecture that autonomously learns these relations from the
input features by adopting specialized architectures, such as
interaction networks [26] or relation networks [27]. Further-
more, it might be interesting to incorporate duration prediction
(i.e., also predicting when the next evolution step is expected
to occur), investigate the use of embedding layers, and refine
the neural model (e.g., by designing a loss function accounting
for mutual exclusiveness between different sets of successor
events).

ACKNOWLEDGMENTS

This work has been funded by the Austrian Science Fund
(FWF) under grant FWF T961-N31. The authors thank ASFI-
NAG (www.asfinag.at) for providing the analyzed data.

REFERENCES

[1] G. Jakobson et al., “A Framework of Cognitive Situation Modeling
and Recognition,” in Military Communications Conference (MILCOM).
IEEE, 2006.

[2] A. Milan et al., “Online Multi-target Tracking Using Recurrent Neural
Networks,” in Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, ser. AAAI’17, 2017.

[3] S. Jung et al., “Sequential Monte Carlo Filtering with Long Short-Term
Memory Prediction,” in 22nd International Conference on Information
Fusion (FUSION), 2019.

[4] J. Llinas et al., “Revisiting the JDL Data Fusion Model II,” in Pro-
ceedings of the Seventh International Conference on Information Fusion
(FUSION), 2004.

[5] A. Salfinger, “Framing Situation Prediction as a Sequence Prediction
Problem: A Situation Evolution Model Based on Continuous-Time
Markov Chains,” in 22nd International Conference on Information
Fusion (FUSION), 2019.

[6] G. E. Hinton et al., “Learning distributed representations of concepts,”
in Proceedings of the eighth annual conference of the cognitive science
society, vol. 1, 1986.

[7] M. Kokar et al., “Situation tracking: The Concept and a Scenario,” in
IEEE Military Communications Conference (MILCOM), 2008.

[8] N. Baumgartner et al., “Situation Prediction Nets,” in Conceptual
Modeling – ER 2010, ser. LNCS. Springer, 2010, vol. 6412.

[9] L. Snidaro et al., “Fusing uncertain knowledge and evidence for mar-
itime situational awareness via markov logic networks,” Information
Fusion, vol. 21, pp. 159–172, January 2015.

[10] ——, “Recent trends in context exploitation for information fusion and
AI,” AI Magazine, vol. 40, pp. 14–27, Fall 2019.

[11] D. Meyer-Delius et al., “Probabilistic situation recognition for vehicular
traffic scenarios,” in IEEE International Conference on Robotics and
Automation (ICRA), 2009.

[12] A. Salfinger, “Situation Mining: Event Pattern Mining for Situation
Model Induction,” in IEEE Conference on Cognitive and Computational
Aspects of Situation Management (CogSIMA). IEEE, 2019.

[13] European Committee for Standardization (CEN), CEN Technical
Committee 278, Road Transport and Traffic Telematics, “Intelligent
transport systems - DATEX II data exchange specifications for
traffic management and information,” 2011. [Online]. Available:
https://datex2.eu

[14] D. C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc, 2001.

[15] Y. Bengio et al., “A Neural Probabilistic Language Model,” in Advances
in Neural Information Processing Systems 13. MIT Press, 2001.

[16] C. Chelba et al., “N-gram Language Modeling using Recurrent Neural
Network Estimation,” CoRR, vol. abs/1703.10724, 2017.

[17] Y. Li et al., “Time-Dependent Representation for Neural Event Sequence
Prediction,” in 6th International Conference on Learning Representa-
tions, 2018.

[18] A. Salfinger et al., “Staying aware in an evolving world – specifying
and tracking evolving situations,” in 2014 IEEE International Inter-
Disciplinary Conference on Cognitive Methods in Situation Awareness
and Decision Support (CogSIMA). IEEE, 2014.

[19] K. Dembczyński et al., “On label dependence and loss minimization in
multi-label classification,” Machine Learning, vol. 88, no. 1, 2012.

[20] I. Goodfellow et al., Deep Learning. MIT Press, 2016.
[21] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, 1997.
[22] T. Mikolov et al., “Distributed Representations of Words and Phrases and

their Compositionality,” in Advances in Neural Information Processing
Systems 26, 2013.

[23] F. Chollet et al., “Keras,” https://keras.io, 2015.
[24] M. Garnelo et al., “Towards Deep Symbolic Reinforcement Learning,”

2016. [Online]. Available: http://arxiv.org/pdf/1609.05518v2
[25] M. Shanahan et al., “An Explicitly Relational Neural Network Archi-

tecture,” 2019. [Online]. Available: http://arxiv.org/pdf/1905.10307v2
[26] P. Battaglia et al., “Interaction Networks for Learning About Objects,

Relations and Physics,” in Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, ser. NIPS’16, 2016.

[27] A. Santoro et al., “A simple neural network module for relational
reasoning,” in Advances in Neural Information Processing Systems 30,
2017.

