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Abstract—In control center applications, such as road and
air traffic management, a human operator’s situation awareness
(SAW) is of prime relevance. Operators need to assess critical
situations emerging in that environment in order to undertake
the appropriate (counter)actions, which becomes increasingly
difficult w.r.t. today’s rapidly changing and information-rich envi-
ronments. Whereas automated SAW systems assisting operators
are maturing, their focus is mainly on analyzing snapshots of
the current state of the environment. Support for specifying and
tracking evolving situations, however, is only partly dealt with,
although being highly needed, as recent studies revealed. To
address this issue, we therefore propose a conceptual situation
evolution model (SEM) for rule-based SAW systems. This allows
on the one hand to specify potential situation evolutions at design
time, thereby exploiting domain experts’ knowledge, and on
the other hand serves as enabling mechanism to track actually
assessed evolutions at runtime by model-based reasoning.

I. INTRODUCTION

Situation Awareness. In control center applications, such as
road and air traffic management, a human operator’s situation
awareness (SAW) is of prime relevance. SAW corresponds to
the operator’s adequate interpretation of the observed envi-
ronment, gained through Situation Assessment (SA), i.e., the
process of assessing relevant, potentially critical situations.
Maintaining one’s SAW of an evolving environment, however,
also necessitates to track the evolution of these situations.
To react accordingly, operators need to discriminate emerging
situations from already on-going ones [1]. Furthermore, their
assessment of a given situation depends on its past evolution,
as well as its likely future development [2]. This highly
complex task of SAW maintenance constitutes a difficulty for
humans, as has been concluded in a user study on control
center operators [1].
SAW Systems. Existing automated situation assessment sys-
tems (i.e., SAW systems), however, mainly focus on analyzing
the current state of the environment by assessing on-going
situations. Only few research efforts up to now have aimed
at providing support for maintaining SAW by tracking these
situations’ evolutions, as we have shown in our previous
survey on this topic [3].
Challenges of Situation Evolution. Tracking a situation’s
evolution (e.g., the development of the situation s1 “a mas-
sive traffic jam builds up after an accident”) corresponds to
monitoring and summarizing the evolution of its encompassed

objects (e.g., the accident and the traffic jam): As objects
involved in a situation evolve over time, their interrelations
may change. Furthermore, additional objects may join a
situation (e.g., a rear-end collision occurrs at the end of
the traffic jam, thereby exacerbating the initially encountered
situation s1), whereas other objects may disappear (e.g., the
initial accident has been cleared, whereas the caused traffic
jam still exists). Thus, the appearance of a specific type
of object (e.g., the occurrence of a rear-end collision) may
semantically correspond to a new situation in one case (e.g.,
a rear-end collision occurrs at a differently located traffic
jam, corresponding to another situation s2), whereas in other
cases, an already monitored situation should be just updated
(e.g., the rear-end collision at the end of the built up traffic
jam exacerbates the initially encountered situation s1, thereby
requiring a different interpretation and reaction of the operator
than in s2).
Contributions. In order to cope with such complex evolution
scenarios, we propose a first step towards a dedicated situation
evolution model (SEM), based on our experience with SAW
systems for road traffic management (RTM) [4], which allows
to specify and track situation evolutions of interest. This SEM
serves on the one hand as a meta-model that conceptualizes
how situations evolve over time, extending our previous work
on situation evolution [5] and projection [6]. On the other
hand, this SEM can be employed within established, rule-
based SAW systems to allow for the specification and tracking
of evolving situations. Overall, our approach supports SAW
maintenance by enabling the operator to track different, evolv-
ing situations across their different evolution phases, ranging
from their emergence to their clearance, and to inspect the
interlinked current, past and potential future states of assessed
situations w.r.t. their entire evolution path.
Structure of the Paper. In the next section, we propose a
situation evolution model (SEM) for conceptualizing situation
evolution. In Sec. III, we elaborate on how the SEM supports
the tracking of situations at runtime. In Sec. IV, we describe
a prototypical implementation of our approach, and compare
our approach to related approaches in Sec. V. Finally, Sec.
VI ends with an outlook on further potential applications of
our approach w.r.t. Situation Management, as introduced by
Jakobson [7].
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II. SPECIFYING EVOLVING SITUATIONS

In the present section, we introduce our Situation Evolution
Model (SEM), a conceptual model for specifying and tracking
evolving situations. To motivate the need for the specification
of situation evolutions of interest and a corresponding tracking
algorithm, we start by introducing a very simple example
from the well-understood domain of road traffic management
(RTM). As common in such event-driven systems, let us sup-
pose that the occurrence of a wrong-way driver is encountered
and reported to the system as shown in the lower part of Fig.
1, which is updated as additional events are received.
Situation. The appearance of a wrong-way driver represents
a highly critical situation, which requires an operator’s imme-
date, full attention and proper reaction. However, the operator
must also be instantly alerted if a wrong-way driver approaches
a tunnel, as this situation demands further, situation-specific
counteractions: As a primary response, the tunnel should
be closed for incoming traffic by setting the traffic lights,
variable message signs should display according warnings.
Furthermore, accidents inside tunnels necessitate different
types of rescue operations compared to accidents occurring
at unobstructed road segments, which needs to be taken into
account when informing the emergency units. Therefore, due
to the high criticality and time pressure, the operator requires
according support by the SAW system, allowing to track
and project this situation’s development. Since the wrong-
way driver’s distance to the tunnel is proportional to the time
horizon for undertaking the required actions, this scenario
illustrates an evolving situation. Furthermore, the situation
may evolve differently depending on whether there exists an
exit in front of the tunnel, such that the wrong-way driver
could leave the motorway prior to reaching the tunnel.

A. Our SAW framework at a glance — BeAware!

To support the assessment of such a priori specifiable situ-
ations, rule-based SAW systems basing on the JDL situation
model [8], [9] have been considered as a suitable choice [1].
According to the JDL situation model, situations describe a
specific set of interrelated objects (e.g., a wrong-way driver
that is commensurate to a tunnel). In order to assess situations
on objects observed at runtime, such SAW systems require a
proper configuration by specifying situation types (STs), i.e.,
the operator needs to define which relation types between
which object types are of interest. In our previous work on
the generic, rule-based SAW framework BeAware! [4], we
have elaborated on the application of various spatio-temporal
primitive relation types (e.g., Allen’s temporal relations [10],
the Region Connection Calculus for spatial relations [11]), in
order to model arbitrarily complex relation types of interest
by combining such formally defined relation calculi. Thus, a
part of the evolving example situation could be specified in the
following fashion, which describes the ST where the wrong-
way driver is in a commensurate distance to the tunnel:

WDCommTunnel := ({w : WrongwayDriver, t : Tunnel},
{RDistance

Commensurate(w, t)}),
(1)

whereby RRelationFamily
Relation (x, y) denotes a relation type of a

specific relation family. These STs are translated to rules,
and during SA, the descriptions of objects observed from
the environment are matched against these rules. Objects that
match a specific rule thus trigger the creation of a situation
instance of the corresponding type.

However, this JDL-based, state-oriented approach to situa-
tion modeling [7] does not provide means to encode changes
of the situation over time, which has already been criticized
[1]. As a situation’s criticality varies across its lifetime, we
therefore took a first step towards conceptualizing the different
evolutionary phases of a situation in our previous work [5].
Therein, we proposed to structure situation evolution into a
trigger phase, corresponding to the emergence of a situation
that may potentially develop to a critical one, a climax phase
corresponding to a highly critical situation, and finally its
clearance phase. However, our approach required the speci-
fication of a dedicated ST for each of these phases, thereby,
yielding a different situation instance for each matched ST.
Consequently, this approach did not enable operators to track
a single situation instance from its emergence to its clear-
ance. This hinders investigative Situation Management [7],
which bases on a retrospective analysis of past situations,
and situation learning in general, as it does not support
analysis and conclusions on encountered situation evolutions
(e.g., such as determining the overall lifespan of a given
situation). Therefore, we identify a need to provide a means
for specifying and tracking evolving situations across their
entire lifetime, spanning their trigger phases to their clearance
phases. Furthermore, we have not elaborated on how to track a
situation’s evolution across varying member objects, as further
objects may join a situation, whereas others may disappear.

B. Expanding BeAware!’s Situation Types

In order to enable operators to specify not only STs, but
entire situation evolution types (SET), by denoting potential
situation evolutions of interest, we need to expand our previous
approach. Therefore, we propose to extend the approved state-
based notion of situations in a fashion corresponding to
Lambert’s STDF model [12], i.e., by introducing transitions
between situation states defined according to the JDL notion.
The rationale behind our approach is that we modify Lambert’s
model by formalizing the potential situation transitions of
interest, which are specified within the SET.

Thus, instead of specifying different STs describing the
evolutionary phases, which yield different situation instances
at runtime, the operator specifies different Situation State
Types (SST ) within a single SET. A SST implements the
JDL situation model and is formalized as

SST := (Ω, ρ), (2)

whereby,
– Ω is a finite, non-empty set of object references (OR). An
object reference corresponds to an object type (OT ) referenced
by an alias, such as Wrong-way Driver w or Tunnel t. The OT
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corresponds to an ontological description of the observed real-
world object, which may have various properties. The purpose
of the alias will be elaborated on in Sec. III.
– ρ is a set of n-ary relation types (RT RelationFamily

Relation ) holding
between these ORs, i.e., ρ : Ωn → {true, false}. Since we
do not impose any restrictions on the relation types’ arity,
relation types may be

• unary, i.e., ρ : Ω → {true, false}, correspond-
ing to filters on specific object types’ attributes (de-
noted by OT .attribute), such as RT Filter

Location :=
(OT .location == x),

• binary, i.e., ρ : Ω × Ω → {true, false}, for example
RT Distance

Close (OT 1,OT 2)),
• or n-ary, describing multiple interrelated OT s.

The employed RT s can be taken from various relation
families. These can base on well-defined relation calculi (as
described above, such as [10], [11]), whose interrelations have
been studied and summarized by Conceptual Neighborhood
Graphs (CNGs), as described for instance in [13], [14], or
may be arbitrarily defined domain-specific relations.

An operator should be enabled of quickly assessing a given
situation’s evolutionary phase, i.e., whether it corresponds to
a trigger situation that is starting to develop towards a critical
one, or whether it is a formerly critical situation in its clearance
phase. Therefore, a SST has dedicated properties, such as its
evolutionary phase (i.e., whether it corresponds to a trigger,
climax or clearance SST ) and criticality1, which for instance
allows to filter or rank assessed situations accordingly.

C. Extending BeAware! to Situation Evolution Types

To allow for a specification of a situation’s evolution along
its entire lifetime, ranging from its preconditions to its clear-
ance, we extend these single state-based notions by introducing
evolution transitions, denoted by the formal symbol ’→’,
between the SST s. These describe how a situation evolves
from one SST to a succeeding SST , i.e., concatenate the
distinct SST s to comprise an overall SET. A specific situation
evolves from SST sti to a subsequent SST sti+1, if either
one or multiple of its relations ρ change, or the object type
composition Ω changes:

sti → sti+1 := (sti.ρ 6= sti+1.ρ)∨
(sti.Ω 6= sti+1.Ω ∧ sti.Ω ∩ sti+1.Ω 6= ∅),

(3)

whereby sti.Ω denotes the set of object references defined in
the SST sti and sti.ρ the set of relation types holding in
sti. The purpose of the last condition, sti.Ω ∩ sti+1.Ω 6= ∅,
will become evident in Sec. III, as at least a part of the
situation’s comprising objects need to overlap within a single
evolution step in order to allow for a tracking of the situation.
In this fashion, we summarize a situation’s overall evolution by
means of qualitative changes between its encompassed objects,
thereby abstracting from fine-grained, quantitative changes.
Thus, the overall evolution, i.e., the entire Situation Evolution

1A measure indicating the situation’s severity, which may for instance be
denoted by a ranking between 1 (lowest) to 10 (highest criticality).

Model (SEM) of a SET, instantiates a labeled State Transition
System (S,Λ,→): Its states S correspond to the SST s,
whereas its transitions ’→’ are triggered by the evolution of the
SST s’ encompassed objects (Ω) and relations (ρ). Its labels
denote the change sets between the encompassed object type
sets Ω and relation type sets ρ, summarizing the qualitative
change between two successive SST s.

SEM := (S,Λ,→), (4)

whereby,
• S comprises the set of SST s,
• → encodes the transitions, i.e., binary relations over S,

thus →⊆ S × S,
• Λ : (Ω, ρ) consists of change sets in Ω and ρ be-

tween two succeeding states, i.e., (sti.Ω \ sti+1.Ω →
sti+1.Ω\sti.Ω, sti.ρ\sti+1.ρ→ sti+1.ρ\sti.ρ), thereby
highlighting those objects and relations that are only part
of one state but not the other, outlining what has changed
within the evolution step.

A potential SEM for possible evolutions of the situation
wrong-way driver approaching tunnel described above is
shown by means of a state transition diagram in Fig. 1. This
general definition of situation evolution, which encompasses
both, changing object sets and changing relation sets, allows
to address the variability of real-world situations: Only the dis-
tance relation changes between the SST s WD Commensurate
to Tunnel and WD Close To Tunnel, as would be expressed by
the corresponding label (RT Distance

Commensurate(WD,Tunnel)→
RT Distance

Close (WD,Tunnel)), which discretizes the wrong-
way driver’s continuous movement to qualitative statements,
whereas Ω, the set of ORs, remains equal (wrong-way driver
w and tunnel t). Furthermore, the SEM allows to model the
nondeterministic behavior of the underlying real-world, since
the OT wrong-way driver may cause an accident in any of
these SST s, which is modeled by a transition into the SST
WD Causes Accident.

D. Supporting the Modeling of Situation Evolution Types
At a first sight, the general modeling approach of our SEM

seems to induce also a drawback regarding complex real-
world situation types, as the state space spanned by the SEM
may appear vast and cumbersome to model, i.e., may lead
to complexity explosion. However, this fact is mitigated by
introducing further constraints on the possible transitions ’→’,
which facilitates an automated, semi-supervised state space
generation. Tools supporting the modeling of SETs should
exploit epistemic knowledge on relation interdependencies,
i.e., CNGs, (i) to verify the correctness of the specified
SETs (e.g., by detecting impossible relation combinations or
transitions), and (ii) to generate and/or prune the state space.
We have already realized such concepts in our previous work
on the situation projection support provided by BeAware!
[5], [6]. For instance, if two moving objects are Close, they
may become either Commensurate or Very Close in the next
evolution step, but not Very Far. Since the transitions can
be thus formally defined by relation changes, the user may
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only need to specify trigger (e.g., the SST Wrong-way driver
commensurate to tunnel) and climax (e.g., the SST Wrong-
way driver in tunnel) situations of interest, and leave the
generation of the full state-space to a dedicated tool, which
reduces necessary modeling efforts.

III. TRACKING EVOLVING SITUATIONS

The most elaborate situation evolution model would be of
limited use, if the specified evolution could not be tracked at
runtime. Our SEM enables evolution tracking by employing
rule-based SA, as we will elaborate on in this section. Whereas
the SEMs of different SETs encode the operator’s interest
in and knowledge about what could potentially happen, the
tracking algorithm needs to keep track of an actual situation’s
evolution, which thus corresponds to a path through its SEM.
Thus, it determines the actual development across a set of
potential evolutions.

A. Goal of Evolution Tracking

Tracking Object Evolution. The tracking of the objects’
evolution represents the grounding for tracking a situation’s
evolution, which SAW systems typically realize by the lower-
level information fusion components [15] prior to SA, which
are therefore assumed as given and not the focus of our
discussion. Following [16], the overall evolution of an object
O can be denoted by a sequence of snapshots of its current
states o, thus a sequence of object states described by

O :=< ot1, . . . , otn >, (5)

where n denotes the number of observed snapshots (taken at
time instants t1 to tn).
Tracking Situation Evolution. Analogously to the object
evolution model stated in Eq. 5, a situation’s evolution over
its entire lifetime would be formalized as

S :=< st1, . . . , stn >, (6)

whereby each sti corresponds to an actually assessed observed
situation state of a specific observed situation S. Updates of
a situation are triggered by updates on its contained objects.
An observed situation state sti is created if a set of object
states oti of different objects O matches a SST . This sti
has a property sti.SST referencing the SST it has matched
(which in turn is associated with the SET it is contained in),
furthermore each oti is associated with the SST ’s OR it has
matched (oti.OR). The goal of tracking a situation’s actual
evolution at runtime is to determine the “path” through its
SET, as pictured in Fig. 1, and, ideally, project its probable
evolution (i.e., the most probable successor states of the
presently observed state).
Tracking Examples. We will exemplify this evolution track-
ing w.r.t. the wrong-way driver approaching tunnel SEM,
which is illustrated in Fig. 1. The SAW system receives a
message on the appearence of a wrong-way driver W1. Its first
status w1t1 creates s1t1, corresponding to the SST wrong-way
driver commensurate to tunnel of the SEM wrong-way driver
approaching tunnel. Another status update w1t2 creates s1t2,

as it again matches the SST wrong-way driver commensurate
to tunnel. The next status update w1t3, however, matches the
SST wrong-way driver very close to tunnel in s1t3, i.e.,
the SST wrong-way driver close to tunnel has not been
observed. w1t4 matches the climax SST wrong-way driver
inside tunnel, w1t5 indicates that the wrong-way driver has
passed the tunnel, before the next status update w1t6 is an all-
clear signal, leading to the clearance SST s1t6 that denotes
the situation’s end. All these observed situation states need to
be associated to a single overall situation S1. Other situations,
however, may take a different path through the SEM. For
instance another situation S2 may be started in the more
critical SST wrong-way driver close to tunnel, before the
wrong-way driver W2 recognizes his mistaking and leaves
at the next exit, thereby update w2t2 is the all-clear signal,
leading to an actually observed situation evolution that is
ended before criticality escalation.

Real-world observations 

SEM 
„Wrong-way 
driver 
approaching 
tunnel“ 

Situation State 
Assessment 

W1 = < w1t1, w1t2, w1t3, w1t4, w1t5, w1t6,> 

S1 = < st1, st2, st3, st4, st5, st6,> 

SST1 SST3 SST2 SST4 

SST5 

SST6 

t 

Situation 
Evolution 
Assessment 

Tracked Situation Evolution 

Tracked Object 
Evolution 

t1 t2 t3 t4 t5 t6 

Legend: 
Trigger SST 
Climax SST 
Clearance SST 

SST1: 
WD Commensurate to 
Tunnel 
Ω:  {w: WD, t: Tunnel} 
ρ: {RDist.

Commensurat𝑒𝑒(w, t)} 

SST2: 
WD Close to Tunnel 
Ω:  {w: WD, t: Tunnel} 
ρ: {RDist.

Close (w, t)} 

SST3: 
WD Very Close to Tunnel 
Ω:  {w: WD, t: Tunnel} 
ρ: {RDist.

VeryClose (w, t)} 

SST4: 
WD Inside Tunnel 
Ω:  {w: WD, t: Tunnel} 
ρ: {RRCC8

ProperPart 
(w, t)} 

SST5: 
WD Causes Accident 
Ω:  {w: WD, a: Accident} 
ρ: {RAllen

Before 
(w, a)} 

SST6: 
WD Left 
Ω:  {w: WD} 
ρ: {RFilter

Lifetime 
(w)} 

Figure 1. The tracking of an observed evolving situation w.r.t. its SEM.

Challenges of Evolution Tracking. Our algorithm for track-
ing a situation’s evolution through its corresponding SEM must
take into account the following issues:

• Situations may start in any SST , not necessarily a
trigger SST , and end in any SST , not necessarily a
clearance SST indicating a resolved situation (e.g., the
situation evolution may end when the wrong-way driver
causes an accident). This may be due to incomplete
information sensed from the environment, but also due to
incompletely specified evolutions, as not every potential
evolution will be known in advance, but learned at
runtime.

• The set of involved objects Ω may change across the situ-
ation’s evolution, i.e., si.Ω 6= si+1.Ω for two succeeding
situation states si and si+1.
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• The SAW system may not be able to observe every
transition of the evolving situation since it may receive
incomplete information from the environment, for in-
stance due to low sampling frequencies. This challenge is
exaggerated by the fact that the number of skipped SST s
is typically unknown.

B. The SEM Tracking Algorithm

The SAW system’s situation assessor component is triggered
in regular intervals. Its input consists of the current object
states oi corresponding to the latest states of observed objects
O, i.e., the current environmental snapshot sensed from the
environment at time instant ti. The goal is to assess situations
S corresponding to situation instances of the defined SETs,
whereby the assessor should create new situations, or update
existing situations S by appending a new situation state si,
accordingly. Since the inference of the potential evolution
path should not impact the performance of SA by any means,
we thus propose to split SA in two subsequent stages. By
decoupling the assessment of the current situation states from
determining the evolution paths in-between, the actual SA is
thus not confounded by evaluating the potential evolutions.
(1) Situation state assessment. Situation states from the
environment are assessed by matching the current object
states oi of the observed objects O against all SST s of the
defined SETs. If a SST is matched, an observed situation
state is instantiated. Thus, this stage entirely conforms to SA
as performed in most currently available, rule-based SAW
systems. The output of this stage comprises assessed situation
states si.

Situation Evolution Assessment 

Shortcut: 
si , no si- of 
same SEM?  

New situation. 

si and si- of 
same SEM?  

si and si- of 
same SST? 

MINOR Evo. MAJOR Evo. 

SSTi reachable from SSTi-? 

Objects match? 

si never matched? 

si- ends, no si of 
same SEM?  

End situation. 

Update situation. 

true false 

Figure 2. A flow chart summarizing situation evolution assessment.

(2) Situation evolution assessment. The second assessment
phase is responsible for determining whether the currently
assessed situation states si correspond to a new situation S, or
denote an update to an already existing situation S, thereby
assessing the situations’ evolutions. The assessed situation
states si are thus fed into the second assessment engine, which
contains the situation states assessed in the previous runs, si−.
Remember that each s is associated with the SEM that created

it, as explained in the course of Eq. 6. The assessment of a
situation’s evolution boils down to the following steps:
(a) si exists, no old situation state si− of the same SEM
available: In this case, a new situation S of the corresponding
SET is instantiated, and the situation state si is added as initial
situation state.
(b) si− exists, no new situation state si of the same SEM is
found: In this case, the situation is finished, thus its lifetime
is set to end.
(c) si and si− found, which are of the same SST : In this
case, it needs to be assessed whether all object states oi of
the new si refer to the same objects as the object states oi−
of the old situation, i.e., denote an identity or evolution of the
same overall objects O, thus requiring unification, similar to
the Rete algorithm [17], according to

∀oi ∈ si.Ω : ∃oi− ∈ si−.Ω : O(oi) == O(oi−)

∧∀oi− ∈ si−.Ω : ∃oi ∈ si.Ω : O(oi) == O(oi−),
(7)

whereby O(oi) denotes the overall, evolving object O associ-
ated with object state oi according to Eq. 5.

Thus, if both situation states refer to the same objects, an
existing situation S needs to be updated. This case is termed
minor evolution, which denotes the case where the objects
of a situation have evolved, however in a way that their
interrelations did not change. Since we want to be able to
persist a situation’s entire evolution, such small changes have
to be considered as well (e.g., the SAW system has received an
update on the wrong-way driver’s current position, however,
its distance relation to the tunnel is still commensurate).
(d) si and si− found, which are of the same SEM, but of
different SST s: This case corresponds to a major evolution,
denoting a situation whose encompassed objects have evolved
in a way that their relations have changed (e.g., another update
on the wrong-way driver’s current position has changed its
distance relation to the tunnel from commensurate to close),
indicated by a transition between distinct SST s. In order
to assess whether si, matched from SST i, represents an
evolution from a previously recognized SST i−, i.e., si−,
the situation assessor needs to possess the knowledge about
the valid evolution paths. Thus, it must essentially know the
corresponding SEM, which describes the valid transitions.
In order to determine whether an evolution of SST i− to
SST i is valid according to the specified model, we solve this
evolution tracking by performing model-based reasoning [18]
on the SEMs. Thus, prior to performing object unification,
the situation assessor first performs a reachability analysis on
the corresponding SEM, to assess whether transitioning from
SST i− into SST i is possible. If this is the case, then object
unification can be performed, in which it is evaluated that
both situation states refer to the same objects that should have
remained within the situation during its evolution. Thus, the
unification must be performed on the object identities of the
SST s’ overlapping object references Θ, defined as

Θ := (SST i−.Ω) ∩ (SST i.Ω). (8)
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Unification is performed as:

∀(oi ∈ si.Ω ∧ oi.OR ∈ Θ) :

∃oi− ∈ si−.Ω ∧ oi−.OR ∈ Θ :

oi.OR == oi−.OR∧O(oi) == O(oi−).

(9)

In order to be able to uniquely refer to specific objects across
SST s, we require that the distinct OT s of Ω need to be
distinguished by aliases in Eq. 2, to enable the operator to
specify which objects have evolved. In the unification step,
objects whose ORs are referred to in Θ are bound to these
aliases, and checked for identity between equal aliases of the
objects in si.Ω and si−.Ω.

If no existing si− can be found in the update steps (3) and
(4) that matches si, a new situation S is instantiated for si.

IV. PROTOTYPICAL IMPLEMENTATION

In the present section, we provide a short over-
view on our prototypical implementation of our approach.
We based our implementation on Java, a PostgreSQL
(www.postgresql.org) database as knowledge base, including
the PostGIS (postgis.refractions.net) extension to allow for
high-performance spatial computations, and the JBoss Drools
(www.jboss.org/drools) rule engine.

We employ two different rule engines, more specifically
stateful knowledge bases, which thus maintain their state dur-
ing the invocations. Therefore, the first knowledge base, which
performs the situation state assessment, can be initialized
with static (e.g., environmental infrastructure) data. The SA
process is periodically triggered in user-specifiable intervals,
whereby the rule engines are subsequently fired according to
the procedure described in Sec. III. In each assessment run, the
first knowledge base is populated with facts corresponding to
the state of objects observed from the monitored environment.
An object state remains valid until an updated state of the
respective object, denoted by a unique identifier, is inserted,
in which case its corresponding fact handle is updated, or the
denoted lifetime of the object ends, in which case it is retracted
from the knowledge base. Each rule of the first rule engine
corresponds to the description of a specific SST , in which
the observed object states are matched towards the sought-after
OT s and their corresponding relations. Matched rules trigger
the instantiation of a situation state of the corresponding SST .
After rule execution, all these situation states are inserted as
facts into the second knowledge base, which is then fired. If
an object of the first knowledge base is retracted, due to its
expired lifetime, it is checked whether it has been defined
as situation clearance object for any SET, and has been
participating in any situation states of such SETs. If this is
the case, we generate a dedicated situation state denoting this
situation’s end, which is also fed into the second knowledge
base.

The second knowledge base consists of four general rules
only implementing the algorithm proposed in III-B. In the
matching procedure of the two rules for updating an existing
situation instance, a dedicated component performs model-
based reasoning on the situation states’ SET objects in order

to perform reachability analysis and object unification. If a
specific situation is updated, then its previous situation state is
retracted. Thus, one situation state per situation instance is kept
in the knowledge base. A situation is set to end if a situation
ending state is received, in which case the respective situation
instance is retracted from the knowledge base. Therefore, the
evolution specification is solely comprised in the SET objects,
whereas it is not necessary to create any specific rules for
tracking a certain SET.

V. RELATED WORK

Although it has been recognized that tracking evolving
situations represents a crucial task in SAW systems, (c.f., [7],
[19], [20], [21]), only few concrete approaches addressing this
issue have been suggested, as encountered in our recent survey
on the evolution support of SAW systems [3]. In the present
section, we will discuss these approaches, starting with the
most closely related ones.

A first step towards specifying and tracking evolving situa-
tions over their entire lifetime in a rule-based SAW system has
been undertaken in [22]. Operators can specify a temporally
ordered sequence of relations between objects, depicting how
these relations change over time. However, the system detects
these situations after they have completed their evolution, in-
stead of monitoring evolving on-going situations. Assessing an
intermediate state within an evolving situation is not supported,
which has been also identified as necessary future work by the
authors themselves.

Pereira et al. [23] have elaborated on means for situa-
tion lifecycle management in rule-based SAW systems. Their
implementation-focused approach supports activation, state-
maintenance and deactivation of a situation instance. Whereas
we have employed similar situation deactivation strategies
in our prototypical implementation described in Sec. IV,
which also bases on the JBoss Drools platform, our approach
extends to detecting and managing a situation’s lifecycle across
different evolutionary phases, corresponding to different rules.
In our approach, a situation instance is allowed to match
different rules across its lifecycle, for which we propose an
explicit tracking algorithm. Furthermore, since situations in
our application domain consist of objects evolving themselves,
our situation deactivation strategies allow to keep track of the
object’s encompassed in a situation. If specific objects disap-
pear, which have been registered to end specific situations,
our approach takes into account that all situations referring to
these objects need to be finished either.

Lambert’s State Transition Data Fusion (STDF) model [16]
denotes snapshots of the environment as states, and considers
changes over time as transitions between these states. Regard-
ing situation evolution tracking, Lambert identifies the prob-
lem of how to distinguish an initiation process, corresponding
to the detection of a novel situation, from an update process
which delivers a new state for an existing situation, which
he solves with a Bayesian approach. Thus, evolution tracking
is solved in a probabilistic fashion, by evaluating the most
likely evolution sequence, and does not allow for an explicit
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specification of evolving situation types of interest, as is the
focus of our approach.

Meyer-Delius et al. [24] model situations as Hidden Markov
Models (HMM), which depict a situation as a sequence of
states. Regarding situation evolution tracking at runtime, the
likelihood of sequences of observations from the environment
is evaluated for each trained situation model, whereby the
model that provides the best explanation for the given se-
quence is chosen. Thereby, whereas the operator can specify
the structure of the HMM, the successful tracking depends on
a representative set of training data. Furthermore, since each
situation instance is evaluated independently from the others,
the complexity of the situation tracking algorithm increases
linearly with the number of situation types and the number of
objects (that are assessed w.r.t. the situation types).

VI. FUTURE WORK

In the present section, we outline our plans for future work,
in which we aim at supporting the modeling of SETs and
studying means of learning from actually tracked situations.
Support for Specifying SEMs. To support operators in the
specification of SEMs, we are currently developing a Situation
Type Editing Suite, which should facilitate the specification of
SETs, as sketched in Sec. II-D. Our tool aims at supporting
the operator-guided specification of SETs, which are verified
for syntactical and semantical correctness, and generates the
corresponding rules.
Learning from Tracked Situation Evolutions. We further
advocate that tracking a situation’s evolution may not only
address the online information requirements of human op-
erators, but could also be exploited to refine the SEMs.
Persisting the tracked evolutions of observed situations could
allow for learning from previously observed situations, which
represents a still under-exploited aspect in currently proposed
SAW systems [3], such as determining the SEM’s transition
probabilities. Modeling and tracking the overall evolution of
an observed situation from its preconditions to the criticality
escalation leading to the climax phase and its final clearance
could allow to “reuse” knowledge from previously found situ-
ations to refine situation assessment, the situation models, and
the situation predictions in the future: (i) Storing a situation’s
preconditions (i.e., the trigger situation) would help to detect
emerging situations in the future, which allows to undertake
preventive action before the situation reaches its climax and
becomes too critical, thus allows for Investigative Situation
Management (SM) [7]. (ii) Keeping the evolution path may
help to predict a current situation’s evolution based on previ-
ously observed situations, thus supports Predictive SM. (iii) If
the undertaken actions are also tracked, operators may assess
which actions led to the fastest or most desirable resolution of
past situations, thereby supporting Situation Resolution.
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