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Abstract—Human operators in today’s control centers, such
as air or road traffic control, need to monitor a plethora of
information obtained from diverse sources. To support them in
detecting critical situations within this information flood and
taking timely actions, operators thus need adequate information
fusion and decision support systems. Research efforts on such
dedicated Situation Awareness (SAW) systems have concentrated
on assisting the operator in managing the current situations.
However, little focus has been so far on integratively supporting
the different phases of knowledge management in SAW systems,
which encompasses the acquisition, representation, validation,
maintenance and reuse of knowledge gathered for and during the
use of these systems, such as configuring and maintaining suitable
situation templates and exploiting already assessed situations. If
operators and domain experts are not supported in these tasks,
however, this may discourage them from a successful adoption
of such systems in real-world control center applications, as user
studies revealed. Based on these, and the lessons learned from the
application of our SAW system implementations BeAware! and
CSI to the domain of road traffic control, we therefore propose
a first step towards a tool suite fostering knowledge management
in SAW systems, which stretches from the configuration phase
of the system to its runtime maintenance in the light of evolving
environments and user needs.

I. INTRODUCTION

Situation Awareness Systems. Human operators in today’s
control centers (e.g., air or road traffic control) need to monitor
a plethora of information obtained from diverse sources. To
assist them in detecting critical situations within this infor-
mation flood and taking timely actions, they need suitable
fusion of information and support for decision making, as
provided by so-called Situation Awareness (SAW) systems.
By reporting event combinations that require the operator’s
focus, i.e., situations, these systems reduce the cognitive load
on the operator by targeting her attention towards such critical
occurrences. Template-based SAW systems [1] allow for the
specification and detection of specific situation types (STs)
of interest and have proven their value for detecting a priori
known, recurring patterns in a range of different application
domains (e.g., maritime surveillance tasks [2] or road traffic
monitoring [3]). In this sense, they are a kind of knowledge-
based system, as these STs formulate the knowledge about
the sought-after real-world situations and must be provided by
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domain experts. However, their usefulness hinges on the ade-
quate specification of the STs of interest, i.e., the maintenance
of that situational knowledge.

Knowledge Management. Consequently, a need for dedicated
specification tools has been recognized from the earliest de-
velopments on template-based SAW systems on [4]. How-
ever, user studies as well as our experiences with our own
SAW frameworks indicated that the application to real-world
problem domains requires adequate support beyond mere
representation of the situational knowledge, i.e., STs. Firstly,
tool support for establishing of the appropriate situational
knowledge base (KB) is needed. This is since: (i) Domain
experts need to transform their potentially tacit knowledge to
explicit representations of the situations of interest, but may
be hampered by the knowledge acquisition bottleneck, as user
studies on control center operators revealed [5]. Especially
the specification of evolving situations, i.e., the behavior of
a situation over time, has been identified to be a difficult task.
(ii) Current tools pursue a purely top-down approach, thus lack
support for determining the “fit” of the specified situational
knowledge to real world data (i.e., validating the suitability of
the represented situational knowledge), as well as exploiting
the situational knowledge gathered during runtime, such as the
encountered situation instances and tracked operator actions
and preferences, which could be reused during situation as-
sessment for refining predictions and action recommendations.
Secondly, tool support for maintaining the situational KB is
needed. This is due to the i) ever-evolving nature of both
the environment under control, but also ii) changes of the
system and iii) its usage by control center operators, therefore
a one-shot establishment of the situational knowledge turns
out to be insufficient, requiring a continuous adaption and
refinement of the situational KB. However, this is scarcely
supported in current SAW systems, as our survey on the
evolution support of SAW systems revealed [6]. Overall, tool
support for an integrative situational knowledge management
for SAW systems involving the human domain expert in the
loop is currently lacking.

Contribution. Therefore, in this paper we introduce our con-
cepts on SEM?Suite, a tool suite supporting the broader
management of situational knowledge for SAW systems.
SEM?Suite assists domain experts in (i) specifying STs



by (ii) fostering knowledge acquisition and (iii) validation
regarding potential situations of interest, (iv) maintaining the
SAW system, i.e., assure its “fit” to evolving environments and
usage needs, and information use and reuse, as it allows to (v)
explore and (vi) systematically exploit encountered situations
and undertaken actions.

Structure of the Paper. In the next section, we attempt at
identifying the different tasks regarding the management of
situational knowledge encountered in SAW systems, exempli-
fied on our own previous work on a SAW framework for
control center applications. In Sec. III, we discuss related
work addressing knowledge management (KM) issues of SAW
systems, before introducing SEM 2Suite, a tool suite for KM
in SAW systems, in Sec. IV. Finally, Sec. V presents an
outlook on future work.

II. KNOWLEDGE MANAGEMENT TASKS IN SAW
SYSTEMS

In literature, a series of different KM processes comprising

partly different tasks can be found (e.g., [7], [8], [9], [10]) —
however for the domain of managing the knowledge relevant
for template-based SAW systems, up to now no common
understanding has been gained so far. Although Jakobson’s
framework of Situation Management [11] serves as a valuable
basis and addresses some KM-related issues of SAW systems
(such as highlighting the central role of the Situation Model,
and characterizing the concepts of Situation Acquisition and
the Situation Memory), its aim is on characterizing the different
processes and tasks necessary in SAW systems. However, no
further characterization is provided w.r.t. the specific tasks
required to build and maintain the situational KB.
Thus, basing on this broad body of literature, in the following
we elaborate on those tasks — and their challenges and open
issues — we identified as foremost relevant based on findings
reported in literature and our experiences on evaluating our
own template-based SAW-Systems BeAware!! [12], [3], [13]
and CSI? [14], [13] in the domain of road traffic management
(RTM), supported by our project partner, Austria’s highway
agency ASFINAG?. In these ontology-driven SAW systems,
domain experts transfer their domain knowledge to the SAW
system by specifying STs representing the sought-after real-
world behavior (thus populate the Model KB, as shown in
Fig. 1), which are then translated to rules. During situation
assessment (SA), the SAW system’s Inference Engine matches
data obtained from the observed environment against this rule
base. Matched rules trigger the creation of a situation instance
of the corresponding ST, which is reported to the control center
operator, and stored in the KB’s (Situation) Memory.

Knowledge Representation doubtlessly denotes one of the
core knowledge-related tasks in template-based SAW systems,
which encompasses the modeling of the domain knowledge,
usually encoded by means of ontologies, and the specification
of the STs of interest in terms of this domain ontology. Thus,
this phase requires both a suitable knowledge representation
for situations, i.e., situation model for specifying STs, as well
as dedicated tools supporting a user-friendly specification of
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Figure 1: The different tasks for managing situational knowl-
edge in SAW systems.

these STs. Different tools have been proposed which aim at
supporting domain experts in specifying STs (e.g., [4], [2],
[15]). These mostly employ the JDL situation model [16] as
knowledge representation model for STs, which, however,
does not provide sufficient account of evolving situations,
as has been acknowledged recently [5]. Only [2] supports
the specification of evolving situations, however, does not
allow to characterize the different evolutionary phases (e.g.,
trigger, climax and clearance phase, as distinguished in
[12]), nor criticalities. Whereas highlighting critical, on-going
situations supports human operators in mitigating them in
a reactive way, the ultimate goal of a SAW system should
be to provide proactive or prescriptive support, i.e., alert the
operator already if a situation may be developing towards a
critical situation, thereby, allowing the operator to prevent the
situation from escalating. Therefore, BeAware! supported the
specification of STs along their different evolutionary phases,
i.e., the domain expert could formulate dedicated trigger,
climax and clearance STs, which however yielded different
situation instances for each phase. During the evaluation of
assessed real-world data sets, we learned that in order to
enable tracking and analysis of evolving real-world situation
instances, we would need a situation evolution model (SEM)
allowing to model situations across their entire lifecycle, as
proposed in [17], [18].

Knowledge Acquisition. The problem of Knowledge Acqui-
sition, i.e., the elicitation of the domain experts’ knowledge,
has been widely acknowledged in the SAW system community
[19], [20]. Prior to being able of specifying STs, the question
arises of what actually would be STs of relevance in the
corresponding application domain. This is complicated by
the fact that highly skilled, experienced experts face more
difficulties in articulating their know-how than novices, and
the more tacit knowledge is, the more valuable it tends to be
[21]. This is a crucial factor for template-based SAW systems,
which depend on the externalization of domain experts’ and
operators’ know-how. User studies involving control center op-



erators revealed that the problem is even more severe regarding
the specification of evolving situations [5]. Therefore, it has
been concluded that in order to support domain experts in
leveraging their tacit knowledge, suitable means for knowledge
discovery and data mining facilities should be provided [19],
[20]. Although data mining techniques have already proven
their capability of discovering important information for SAW
applications, existing tools, however, require expertise in data
mining. Therefore, domain experts would need to be provided
with preconfigured analysis functions [22].

From our experience with BeAware!, we can report that espe-
cially the aim to detect evolving situations from their trigger
on introduces novel challenges: Whereas climax situation states
are typically known, their preconditions are often not known
in sufficient detail, indicating the need for supporting an
incremental acquisition of the required situational knowledge,
starting from the specification and assessment of climax situa-
tion states and providing a “rewind” functionality allowing to
step back in time to investigate on their preconditions.
Furthermore, in our evaluation domain of RTM it turned out
to be completely unrealistic to assume that every potential
situation of interest can be specified a priori, as we need
to expect to encounter novel, previously unknown situations
at runtime. Therefore, analogous to the human operator, the
SAW system must be capable of reacting to the unexpected.
However, whereas (data-driven) anomaly detection based tech-
niques for situation assessment have proven their superiority
in these tasks (e.g., [1], [23], [24]), and hybrid SAW systems
have been proposed that include both rule-based as well as
anomaly detection based situation assessment modules [25],
[26], current SAW systems do not provide means to transfer
the results obtained with anomaly detection methods to rule-
based situation assessors, as suggested for future work in
[26]. This would allow to convert the unanticipated to novel
knowledge, or refine existing STs (e.g., if previously unknown
preconditions or evolutions are detected), thereby maintaining
and enhancing the situational KB. Therefore, in the light that
recent information fusion models emphasize the need for an
integrated approach of combining data analysis with template-
driven approaches [27], concepts for supporting the acquisition
of novel knowledge based on data analysis techniques are
needed.

Knowledge Validation. Whereas knowledge representation
issues have been addressed by providing various ST speci-
fication tools, we have not encountered tool-supported means
to validate the specified STs. However, our experience in the
application of BeAware! to real-world control center settings
indicated a need for considering these issues. Domain experts
should be enabled of validating the modeled STs w.r.t. their
syntactical and semantic correctness (i.e., the specification tool
should provide means to check that the relations specified
within a ST are non-contradictory). As our experience with
BeAware! showed, however, even a semantically correct ST is
of limited use if it fails to capture the real-world behavior of
interest, which we term the adequacy of a ST. For instance
when formulating a ST “An accident causes a traffic jam”, our
system delivered doubtfully few hits — fewer than would be
expected by a domain expert. As a matter of fact, this was due
to improper specifications, as the mental model of the domain
expert did not fully reflect the behavior observed in the data,
requiring to adapt and assess the specifications several times.

Therefore, we concluded that domain experts would need to
be provided with means to assess whether their mental models
“fit” the observed data, i.e., means to validate their a priori
domain knowledge w.r.t. available domain data sets.

Knowledge Adaption. To retain their usefulness over pro-
longed application periods while interfacing dynamic environ-
ments, SAW systems also need to account for various kinds of
evolution: Due to the underlying environment’s evolution, the
STs’ specificity may change over time, i.e., once specified STs
may fail to capture situations of relevance. Operators thus need
to detect this concept drift [28] and adapt the STs accordingly.
Thus, a one-time configuration of STs would be insufficient,
as identified in [27], who state the need for a configuration
management of information models, otherwise the system’s
usefulness decreases over time. [29] even concluded that a
fully automatic system would need to maintain a state similar
to SAW on its own, which resembles the idea of enabling
self-organization of adaptive systems in response to changing
environments. To remain of high value for the operators, the
SAW system needs to maintain the maximum possible degree
of “fitness”, denoting the suitability between knowledge (i.e.,
the STs) and the problems confronted (detecting and prevent-
ing critical situations in a dynamically changing environment).
Furthermore, as template-based SAW systems require substan-
tial configuration efforts, means must be provided to capture
as much information as possible in a non-intrusive way, just
by tracking the operator, i.e., allow the system to learn from
the operators, as well as infer the operators’ preferences and
changing usage (usage evolution) and adapt towards those. The
specification and maintenance of STs could be simplified if
the SAW system could autonomously, or in an operator-guided
fashion, learn STs and actions of relevance from the operators.
This is especially relevant as valuable tacit knowledge often
results in some observable action, when individuals understand
and subsequently make use of knowledge [21], thereby the
tracking of these observable actions allows to dynamically
acquire the experience and tacit knowledge of operators.
Summarizing, in order to maintain the KB’s “fitness” to the
operators’ tasks, knowledge adaption requires the system to
address both self-adaptivity as well as the incorporation of
user-driven changes at runtime (as also demanded in [27]).

Knowledge Exploration. Operators learn from previously
encountered situations and thus gain more experience, which
in turn enhances their future decisions. Thus, a SAW system
should support Investigative Situation Management [11], i.e.,
provide the operators with means to explore and learn from
the constantly growing situation memory, thereby allowing to
explore also distinct evolution patterns (“Why did a situation
evolve in a specific way?”, “What would be the typical evo-
Iution?”’). Regarding our own experience, our domain experts
also indicated the desire to assess the success of undertaken
actions, which, in case of large-scale events, is conducted
by means of after-action-reviews. Forensic analysis w.r.t. to
undertaken actions (e.g., “What went wrong?”, “What could
have been done better?”’) thus requires a means to assess the
effect of actions onto the evolution of encountered situations,
thereby requiring that these actions are tracked and linked to
the persisted situation evolutions.

Knowledge Exploitation. Furthermore, an intelligent SAW
system should be capable of Situation Learning [11], i.e.,



exploit the Situation Memory to enhance its future SA and
predictions. Currently, learning from previously encountered
situations is rarely addressed in rule-based SAW systems, as
opposed to data-driven SA approaches, which by definition
base on observed data, and are capable of learning if they
are continuously incorporating new data (e.g., as in [30]).
Moreover, to enhance the system’s decision support capability
(i.e., support resolution [31]) and aid operators w.r.t. to the
question “What should I do?”, the system should also be able
to retrieve those actions that have yielded the most desirable
outcome in the past. Thereby, it could capture and exploit the
experience of operators by tracking their actions, similar to
the approach of experience retrieval suggested in [32].

Summarizing, Fig. 1 outlines the interplay between the
different KM tasks, which highlights the complexity of KM
in SAW systems. KM in SAW systems is further complicated
by the need for a rapid KB evolution due to environment,
usage, and consequent system evolution. In the light of these
challenges, operators and domain experts would benefit from
tools supporting the identified KM tasks and addressing the
discussed issues.

III. RELATED WORK

In the present section, we elaborate on tools supporting
KM issues in SAW systems.

Knowledge Acquisition. Whereas knowledge acquisition has
been considered an important problem within SAW systems’
research (cf. Sec. II), we did not encounter tools specifically
addressing this issue within template-based SAW systems.

Knowledge Representation. Several tools have been proposed
that aim at facilitating the specification of STs for domain
experts, which, however, provide still limited support regarding
the specification of STs for evolving situations.

Matheus et al. introduced RuleVISor, a custom SWRL rule
editor, which represents a central configuration component of
their Situation Awareness Assistant SAWA [4], and allows to
model STs in terms of a domain ontology, which are then
translated to the corresponding rules.

Edlund et al. also developed a dedicated ST editor, a configura-
tion component within their ontology-driven, rule-based SAW
framework [2]. They especially highlight that it allows for the
specification of evolving situations, by denoting whether the
relations employed within a ST need to hold concurrently or
subsequently. However, this only allows for the specification
of a single evolution path, as alternatives cannot be specified.
Furthermore, as a crucial drawback, their rule engine imple-
mentation detects such situations only after they completed
their overall evolution.

Costa et al. proposed SML, a Situation Modeling Language,
which allows for a graphical composition of STs, which are
then automatically translated to JBoss Drools* rules [15].
However, whereas they consider the possibility of referring to
current and past situations, a more fine-grained distinction of
situation evolution is not supported. Although their approach
allows for specifying behavior over time, only a single course
of events can be specified. Therefore, it is not possible to
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specify a branching ST, which might evolve either one way or
the other.

Knowledge Validation. None of the discussed approaches
that allow for the specification of STs provide specific tool-
supported means to directy assess one’s definitions on available
data during specification, in order to examine the validity and
specificity of the proposed STs.

Knowledge Adaption. Furthermore, we did not encounter
specific tool-based support regarding the maintenance of the
(template-based) SAW system, such as detecting concept drift:
Only Edlund et al. state the need that the system must be able
to incorporate both long-term rules, as well as rules that need
to be added temporarily, thus are only valid for a certain time
frame [2]. However, they leave the maintenance of the temporal
validity to the operators, as they do not foresee any automated
support to detect when certain rules become outdated over
time, or their specificity changes.

As a first step towards bridging the gap between template-
based and anomaly detection SA approaches, Rhodes et al.
introduced SeeCoast, an SAW system for coastal surveillance
that incorporates both, a rule-based situation assessor, as well
as data-driven anomaly detection modules [25]. Thereby, this
SAW system supports both the detection of known, recurring
situation patterns, as well as reacting to novel situations. How-
ever, whereas their anomaly detection SA module continuously
adjusts itself to environmental changes, by gradually being re-
trained on new data, and even learns from operator feedback,
they do not discuss means whether and how the anomalous
situations could be futher on integrated in the existing rule-
base, thereby, do not provide any suggestions to evolve the
system’s KB. A similar approach of combining rule-based
SA with anomaly detection techniques has been described in
[26], which have been neither integrated, which is, however,
suggested as future work.

Knowledge Exploration. Approaches that allow to assess
the situational knowledge the SAW system has gathered over
time, or allow to explore what the system has learned, are
rarely found. Riveiro et al. proposed a visualization interface
that jointly visualizes normal behavioral statistical models
(generated from the data) and expert rules (specified by domain
experts) within a “scatter plot grid”, thereby providing a
means to explore “knowledge space” of the system [26].
Their visualization aims at exhibiting how well the experts’
knowledge correlates with the models extracted from the data.

Knowledge Exploitation. Currently available template-based
SAW systems do not attempt at systematically reusing the
situation instances accumulating in the situation memory to
refine SA or projection. An interesting approach regarding
the exploitation of experience from expert operators has been
suggested in [32]: Operators’ decisions, i.e., actions, are con-
tinuously tracked, along with the current context (employing
a dedicated Action-Observation-Hypothesis model), and stored
in a KB, allowing to retrieve these experiences to aid junior
operators in similar contexts.

However, whereas interesting approaches have beep pro-
posed addressing specific KM tasks, we did not encounter
approaches that comprehensively support different KM tasks
in template-based SAW systems, i.e., stretch across knowledge
acquisition, knowledge representation, knowledge validation,



knowledge adaption, knowledge exploration and knowledge
exploitation. Therefore, as a first step towards providing a KM
tool that integratively supports distinct situational KM tasks,
we elaborate on a tool suite fostering dynamic KM in SAW
systems.

IV. A TooL SUITE FOR KNOWLEDGE MANAGEMENT IN
SAW SYSTEMS

In the present section, we propose SEM?2Suite, a modular
(situation evolution modeling and maintenance) tool suite,
which supports KM tasks in rule-based SAW systems, thus
addresses:

Knowledge Acquisition: comprises components suited to ex-
plore and mine existing domain data sets, in order to acquire
insights about potentially relevant situation types, as well as
anomaly detection components that aim at detecting not yet
specified situations, which may be transferred to the KB.

Knowledge Representation: comprises a specification pane
that allows to graphically compose Situation Evolution Types
(SETs), based on assembling object types and relation types
from a suitable domain ontology.

Knowledge Validation: comprises a set of different validation
components, that support to validate the previously modeled
SETs w.r.t. their syntactical and semantic correctness, as well
as their adequacy, i.e., their “fit” to and specificity on real-
world domain data sets.

Knowledge Adaption: comprises components that assure self-
adaptivity as well as the incorporation of user-driven changes
at the runtime of the system, such as components that detect
concept drift within the monitored environment that influences
the specificity of the modeled SETs, components that allow
operators to activate, deactivate or modify specific SETs,
performance monitoring components that seek to optimize the
situation assessor’s performance, and user tracking components
that aim at optimizing the UI towards the user’s preferences.

Knowledge Exploration: comprises (visual) analytics inter-
faces that allow operators to explore the accumulated situation
memory, i.e., allows to address questions such as “How do sit-
uations typically evolve?” or “What have been good actions in
specific situations?”, thereby also supporting forensic analysis.

Knowledge Exploitation: comprises components that aim at
reusing the experience accumulated in the situation memory
by refining the prediction on currently observed situations and
the recommendation of the most promising actions, based on
comparing the current situations to similar situations observed
in the past, which are retrieved from the situation memory,
thereby, specifically supports real-time decisions.

We realized this range of functionality within a flexible,
configurable tool suite (cf. Fig. 2), as not every monitoring
task may require each aspect, or may provide all prerequisites.
For instance the components for knowledge acquisition, as
well as knowledge validation w.r.t. adequacy, depend on the
availability of a domain data set. If no data set is available,
SETs can only be modeled in a top-down fashion, and be fitted
towards the data at runtime.

Finally, it should be emphasized that SEM?2Suite abstracts
the modeling concepts from concrete technologies and im-
plementation details, thereby allowing to interchange these

technologies. In the following, the different components will
be explained in more detail.

A. Knowledge Acquisition

SEM?Suite’s Data Analyzer component represents a

container for interfacing various established data mining tools
applicable to data from SAW systems, such as R> and Weka-
STPM [33], however, provides a dedicated user interface
tailored towards SAW data sets and applicable, preconfigured
analyses. The employed knowledge discovery tools allow to
gain ideas about potential STs, by detecting aberrations from
the normal environmental picture, which often correspond
to situations of relevance [1], rare and unusual events, and
often co-occurring object types. Furthermore, STs may be
autonomously suggested by means of association rule mining
[34], which therefore retrieves objects in specific relations that
may serve as initial ST suggestion that can be refined by the
domain expert.
The Data Analyzer further comprises anomaly detection mod-
ules that report unusual courses of events at runtime, which
may correspond to novel situations. If the operator decides
that a reported anomaly corresponds to a novel SET, the
Data Analyzer extracts the object types and relations between
the encompasses objects, and provides the operator with an
initial SET suggestion, that can be confirmed or refined by the
operator, before it is incorporated into the SET KB.

The Hotspot Analyzer supports the incremental specifica-
tion of SETs: Operators may begin with specifying the climax,
i.e., hotspot, situation state, and let the system assess these
hotspot situation states on the provided domain data set. Based
on the found situations, the system may automatically try to
infer typical preconditions of these (how were the objects
being part of the hotspot related in earlier timesteps?), and
may already provide the user with a template including the
inferred, potential relations and object types. On the other
hand, if automatic SET suggestion fails, the user should be
enabled to sift through the provided examples (by providing
a “rewind” functionality to assess the situation’s history) and
use her experience to infer the likely causalities.

B. Knowledge Representation

A suitable knowledge representation lies at the very heart of
Situation Management (SM) [11], i.e., a model for specifying
templates for real-world situations of interest, and allows the
tracking and persisting of these situations in order to enable
both investigative as well as predictive Situation Management.
To address the knowledge representation challenges regarding
evolving situations reported in Sec. II and account for the dy-
namic evolution of real-world situations, we therefore proposed
a dedicated Situation Evolution Model (SEM) in our previous
work [18], which constitutes a knowledge representation that
allows to model, track and reason upon evolving situations.
Therefore, situation evolution types (SETs) specified by instan-
tiating the SEM for a specific evolving ST of interest denote
the basic knowledge representation utilized by SEM?Suite.

Domain Ontology Configurator. The specification of SETs
requires a suitable domain ontology. In order to allow for a
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Figure 2: An architectural overview on SEM?2Suite’s different components and how these interface and interact with a SAW

system’s Situational KB.

domain-agnostic SA and S EM?Suite functionality, we there-
fore require to engineer this domain ontology by extending a
generic, i.e., domain independent SAW core ontology (based on
[35]). This SAW core ontology characterizes the basic entities
of relevance in SAW applications, notably Object Types sensed
from the environment, which are characterized by spatial and
temporal properties (e.g., a traffic jam which possesses a spe-
cific location and duration), Relation Types indicating semantic
relationships between such Objects, such as spatio-temporal
relations (e.g., basing on well-known relation calculi such
as Allen’s temporal relations [36] or the Region Connection
Calculus [37]), and the SEM, which allows to model evolving
situations.

Thus, to develop a concrete SAW control center application
based upon this framework, the SAW core ontology needs to
be extended by a suitable domain-specific ontology, in order
to allow for sensing and reasoning about the information
of relevance of the corresponding domain. Furthermore, the
basic spatio-temporal relations provided by the framework
need to be configured by parametrizations suitable for the
given application domain. For instance, suitable threshold
intervals for spatial relations such as Close and Far need to be
determined, which may substantially differ between a maritime
traffic control center and a highway agency.

In our current prototypical implementation, we follow a UML-
based approach of ontology-engineering [38], [39], by employ-
ing a dedicated UML modeling tool® for generating a Java
class library comprising the object ontology, database schemes

and corresponding Hibernate’” mappings. Ontology engineering
is thus currently decoupled from SEM?Suite, which expects
to be provided with a Java Archive (jar) comprising the data
access layer generated by the employed modeling tool.

SET Editor. The SET Editor allows for the graphical
specification of Situation Evolution Types (SETs). Fig. 3 shows
a screenshot of our current prototypical implementation of the
SET Editor, which features the diagram for the specified SET
“Wrong-way driver approaching tunnel” (WDApproachesTun-
nel). A SET captures the potential evolutions of real-world
situations by means of a state-transition system, whereby the
states correspond to a particular relational state within the
evolving situation, for instance the state of affairs where an
object of object type “Wrong-way driver” (WD) is in a relation
type “Close” to another object type “Tunnel” (depicted by
the correspondingly named circles in the diagram shown in
Fig. 3). As a monitored real-world situation instance evolves,
in subsequent time steps, at one point the relation between
the observed objects may change, for instance the monitored
wrong-way driver object may come “very close” to the tunnel,
which is modeled as a transition from the situation state type
(SST) “Wrong-way driver close tunnel” to the SST “Wrong-
way driver very close to tunnel”. In order to reference a specific
object across different SSTs, i.e., refer to it throughout its
evolution, the different object types must be identifiable by
means of an alias (which is unique within a specific SET), as
shown in the Outline View in the lower right section of the
editor screenshot, which highlights the different object refer-

Visual Paradigm for UML, http://www.visual-paradigm.com
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Figure 3: A screenshot of the current SEM?Suite prototype, which shows the SET Editor.

ences (i.e., object types identified by an alias) and relations
employed within a specific SET. A domain experts thus models
the different relational states of evolving situations, i.e., SSTs,
by assembling them from object types and relation types from
the employed domain ontology, which is comprised in the
two views on the left side (the upper one comprises distinct
relation types, the lower one comprises the object ontology),
and specifying the evolution transitions between these SSTs
afterwards. Tracked real-world situations then correspond to
a specific path throughout their SET, i.e., are persisted as a
list of interlinked SST instances created by matched SSTs
(along with the temporal information how long each of these
“situation snapshots” lasted). Furthermore, the domain expert
can specify additional properties for those SSTs, such as their
evolutionary phase and criticality (visualized by means of the
different colors of the states shown in Fig. 3). SEM?Suite
fosters the reusability of modeled components by allowing to
include already specified SSTs in other SETs. Furthermore,
different action types can be specified for a SST, such as
“closing the tunnel for incoming traffic” (and encompassed
actions, such as “setting the traffic lights”) and “informing
emergency units”, which can be suggested to the operator as

soon as a situation instance of that specific SST is detected.

Translator. Finally, each modeled state needs to be trans-
lated to a rule according to the language the SAW system’s rule
engine employs, such as JBoss Drools Expert® or Jess®. There-
fore, SEM?Suite requires a dedicated Translator library that
allows to attach the translation rules how a SST pattern can
be translated into the target rule language, i.e., a IF-THEN
pattern. The left-hand side of the rules (IF) needs to match the
Object Types i.e., check the type of the matched object and
bind it to the given alias. Furthermore, a specific translation
for each Relation Type must be implemented.

Optimizer. Since a situation comprises a set of relations, no
ordering is implied on these relations. Regarding the evaluation
of IF-THEN rules, however, the different IF-clauses are pro-
cessed in sequential order. Thus, the ordering of the IF-clauses
matters in the respect that a clause that significantly reduces
the number of matched objects should be prioritized, as it
raises the performance of the rule evaluation, as we evaluated
in [13]. Therefore, a dedicated Optimizer strategy library

8http://www.jboss.org/drools/drools-expert
http://www.jessrules.com



encodes different optimization patterns targeted at specific rule
engines and application domains. These may provide rules on
the sequential ordering of relation evaluation, such as spatial
relations should be prioritized over temporal relations.

C. Knowledge Validation

Assuring syntactical correctness means to check that the
specification complies with the chosen specification formalism,
i.e., the SEM. The Syntax Checker may validate that Object
Types are referenced by an alias, the arity of relations is met,
and Object References overlap across a single evolution step,
as demanded by the formalism described in [18].

The Semantics Checker goes one step further by assuring
that the specifications correspond to meaningful and possible
real-world situations, by taking into account the semantic
interpretations of the relations. As it may be possible that
specifications are syntactically valid, but semantically wrong,
this would not be discovered by a tool providing only syn-
tactical checks. For instance a user may erroneously specify
that an accident has occurred inside a tunnel and is located in
front of a tunnel, which is contradictory. However, to enable
SEM?Suite to perform such semantic checks, this informa-
tion must be provided in the domain ontology, by means of
Conceptual Neighborhood Graphs (CNGs) representing the
epistemic knowledge on how relations of different relation
families can be combined (as elaborated on in our previous
work on exploiting CNGs for situation projection [40]).

Further validation w.r.t. the adequacy of the specified
SETs, i.e., determining whether the specified SETs are ac-
tually indeed capable of capturing the sought-after real-world
situations, can be done by using the Adequacy Checker. This
component needs to be provided with a database on data
collected from the corresponding application domain, which
is accessible from the data access layer loaded in the Domain
Ontology Configurator. The Adequacy Checker can be used to
assess Relation parametrizations, such as providing histograms
for the parametrizations of relation families, and object types
of interest. For examples, one may be interested in how the
specificity of the SET “Probably fusing traffic jams” defined
by the relation “traffic jam j1 close to traffic jam j2” changes if
the relation type is changes from close to very close, or if the
threshold intervals of these relation types are adapted (e.g., if
the threshold interval for the relation type very close is changed
from O - 1 km to O - 2 km, thereby widening the set of matched
relations). Thus, the Adequacy Checker pane provides before
- after histograms, showing the number of situations assessed
with the previous and the new definitions. Thereby, it provides
a means to inspect and adjust the specificity of the specified
SETs, as the domain expert is enabled to incrementally adapt
the relation parametrizations and SET specifications, until
the desired specificity is reached, depending on whether she
wants to receive a multitude of situations, or a smaller set of
results. As investigated on in [25], individual operators exhibit
different preferences regarding the alarm rate, i.e., situation
hit rate. Thus, SEM?Suite thereby provides operators with
a means to configure the SETs’ specificity to their personal
preferences.
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Figure 4: A tentative design draft of the Adequacy Checker,
which highlights the quantity structure observed from the data
for different definitions (e.g., the quantity structure before and
after changing the thresholds).

D. Knowledge Adaption

Even after a careful specification phase, the specification
of the SETs is unlikely to be perfect. Furthermore, as the
monitored real-world is continuously changing, these changes
need to be adequately incorporated to the SAW system, to
retain its usefulness.

The SET Activator provides an interface for operators to
manage the activation and deactivation of SETs at runtime,
thereby allowing the operator to enable and disable the assess-
ment of specific SETs. New SETs can be added and existing
ones refined, as this component allows to launch the SET
Editor upon a specific SET. However, such adaptions on-
the-fly, during runtime of the SAW system, require the SAW
system to keep track of the specific version of a SET a situation
has been assessed with, therefore, requiring a SET versioning
system, as well as provenance tracking.

The Concept Drift Alerter aims at preserving the desired
specificity of the SETs, in spite of environmental evolution
which may induce concept drift. Therefore, it continuously
assesses the specificity of the activated SETs, and compares it
to their common distributions stored in a KB. Furthermore, this
component also stores the distributions of the environmental
normalcy models, in order to detect changes within the normal
environmental picture indicating concept drift. The Concept
Drift Alerter thus detects if the specificity of a specific SET
changes, and reports it to the operator, who is provided with a
summary of the encountered changes and thus can investigate
on these changes and adapt the SETs accordingly.

The Performance Tracker aims at providing a continuous
runtime tuning of the SAW system, i.e., addresses system
evolution. By performing a fine-grained tracking of the quan-
tity structure of matched objects and relations, depending
on temporal and load contexts, this provides the basis for a
detailed analysis on the optimality of the translated rules. For
instance, it may have been assumed during configuration of the
system that assessing the temporal relations before assessing
the spatial relations would be faster than vice versa. However,
the logs provided by the optimization tracker may reveal that
assessing the spatial relations first would more significantly
reduce the number of matches for the next clauses. Thus, the
Optimizer’s strategies can be adapted accordingly and existing



SETs may be recompiled thereafter.

SEM?Suite’s Operator-guided Situation Learner ana-
lyzes the human operators’ operations, such as the semantic
grouping of objects forming a situation for reporting purposes,
derives object types and computes relations, and provides the
domain expert with these SET suggestions, which can again
refine these suggestions.

The Action Tracker records the actions undertaken by the
operators, both routine monitoring actions, as well as actions
that represent a dedicated response to a specific situation,
which are directly linked to the corresponding situation. Over
time, the operator’s experience can be thus collected by the
system, and allows to asses which actions have proven to be
beneficial in which situations.

The Preference Tracker logs the operator’s interaction with
the UI, in order to infer the operator’s preferences and adjust
the OP display accordingly (for instance by only showing the
operator’s preferred layers and level of detail).

E. Knowledge Exploration

The Situation Memory Explorer provides Visual Analyt-
ics support for interactively exploring the Situation Memory,
thereby allowing to assess the evolution patterns of actually
observed situations. The user can define a context of interest
by moving a spatio-temporal selection frame and different
filters. The Situation Memory Explorer then constructs the
corresponding query and retrieves situations matching the
context of interest from the memory. To highlight their evo-
lution patterns, these situations are mapped onto the graphical
representation of their SET (i.e., by retrieving the SSTs of
their situation snapshots), thereby highlighting the common
evolution patterns of the current context of interest, i.e., which
developments are more likely and occur more frequent than
others, how long situations last on average etc. By modifying
the context, for instance by panning and zooming the spatial
selection frame (cf. Fig. 5), the user can assess how these
evolution patterns may change under different contexts. The
Situation Memory Explorer thus allows to save a snapshot of
the current context and result, and allows to arrange different
assessed contexts in a scatter-plot like fashion, in order to
compare and contrast the results. For instance, it may become
apparent that situations in tunnel X tend to develop less critical
than situations in tunnel Y and take less time to be resolved.
Based on such insights, for instance, the causalities for these
distinct evolution patterns may be investigated on, thereby
helping to elaborate on countermeasures.

F. Knowledge Exploitation

The Evolution Predictor refines the projection of the
currently observed situation based on retrieving similar sit-
uations observed in the past. By mapping these past situations
onto the SET, the transition probabilities from the current
situation’s SSTs to succeeding SSTs can be computed. The
Evolution Predictor thereby allows to employ different sit-
uation similarity measures, such as retrieving all situations
of the corresponding SET, limiting the results to situations
with a similar spatio-temporal context (e.g., the same week-
day, the same time of day, the same region), or providing
a weighting strategy strengthening the influence of recently
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Figure 5: A design sketch of the Situation Memory Explorer,
showing the spatio-temporal selection pane which allows
to highlight regions and periods of interest. The Evolution
Analysis Pane (at the bottom of the main pane) highlights
the evolution transition frequencies w.r.t. to the selection, as
assessed from the situation memory, thus allowing the operator
to investigate on and contrast local characteristics.

observed situations over situations in the further past (thereby
taking environmental evolution into account). Since it may
be unclear which similarity measure and projection strategy
provides the most accurate results, the Evolution Predictor
thus needs to track its predictions (stored in the Situation
Evolution Prediction KB shown in Fig. 2) and later on compare
it with the actual developments, in order to be able to optimize
its prediction strategy.

The Action Recommender realizes a kind of case-based
reasoning functionality, in order to suggest the best action
for a current situation. It retrieves situations similar to the
current situation from the situation memory, analyzes which
of the actions performed on those (retrieved from the Action
Records KB) have led to the most favorable situation evolution,
and recommends these to the operator. The operator is also
enabled to inspect these historic situations, if she requires
further details on how the past situations evolved. Action
recommendations are stored in a dedicated KB (cf. Fig. 2),
which allows to optimize action recommendations w.r.t. the
operator’s preferences (by comparing action recommendations
with actually performed actions).

V. CONCLUSION AND FUTURE WORK

In the present paper, we characterized the challenges of
knowledge management in SAW systems, based on findings
in literature and experiences gained from the application of
our SAW systems BeAware! and CSI to the domain of road
traffic management. Based on the identified requirements,
we sketched our vision on a tool suite fostering knowledge
management in SAW systems, which especially focuses on
incorporating the dynamic aspects of evolving environments
and user needs. Regarding future work, we aim at completing
our prototypical implementation of this tool suite, and plan to
evaluate the feasibility of our approach in a real-world case
study involving control center operators from our demonstra-
tors in the domain of traffic management.
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