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Abstract—When disaster strikes, emergency professionals
rapidly need to gain Situation Awareness (SAW) on the unfolding
crisis situation, thus need to determine what has happened and
where help and resources are needed. Nowadays, platforms like
Twitter are used as real-time communication hub for sharing
such information, like humans’ on-site observations, advice and
requests, and thus can serve as a network of “human sensors”
for retrieving information on crisis situations. Recently, so-called
crowd-sensing systems for crisis management have started to
utilize these networks for harvesting crisis-related social media
content. However, up to now these mainly support their human
operators in the visual analysis of retrieved messages only and do
not aim at the automated extraction and fusion of semantically-
grounded descriptions of the underlying real-world crisis events
from these textual contents, such as providing structured descrip-
tions of the types and locations of reported damage. This hampers
further computational situation assessment, such as providing
overall description of the on-going crisis situation, its associ-
ated consequences and required response actions. Consequently,
this lack of semantically-grounded situational context does not
allow to fully implement situation-adaptive crowd knowledge
extraction, meaning the system can utilize already established
(crowd) knowledge to correspondingly adapt its crowd-sensing
and knowledge extraction process alongside the monitored situ-
ation, to keep pace with the underlying real-world incidents. In
the light of this, in the present paper, we illustrate the realization
of a situation-adaptive crowd-sensing and knowledge extraction
system by introducing our crowd”“ prototype, and examine its
potential in a case study on a real-world Twitter crisis data set.

I. INTRODUCTION

Crowd-Sensing for Crisis Situation Awareness. When dis-
aster strikes, emergency professionals rapidly need to gain
Situation Awareness (SAW) on the unfolding crisis situation,
thus need to determine what has happened and where help and
resources are needed. Nowadays, such information are often
available first on social media. Platforms like Twitter have
become a popular real-time communication hub for affected
populations to share observations, advice and requests due to
their ubiquitous availability on mobile devices, as examined in
case studies across different crisis events [1]. To aid emergency
professionals in the timely identification of these information
within the plethora of social media chatter, dedicated crowd-
sensing systems have been proposed, which support their
human operators in the retrieval and analysis of crisis-related
social media content (cf. surveys in [2], [3]).

Lack of Semantic Grounding. However, as these surveys
reveal, currently available systems mainly support their hu-
man operators in the visual analysis of retrieved messages.
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These do not assist emergency managers in extracting and
fusing semantically-grounded descriptions of the underlying
real-world crisis events from these textual contents, such as
providing structured descriptions of the types and locations
of reported damage, like flooded areas and blocked roads, for
further computational Information Fusion (IF) and situation
assessment (SA) to provide the overall description of the
on-going crisis situation, its associated consequences and
required response actions. This lack of semantically-grounded
situational context does not allow to fully implement situation-
adaptive crowd-sensing and knowledge extraction, i.e., enable
the system to use already established (crowd) knowledge
to correspondingly refine its crowd-sensing and knowledge
extraction process alongside the monitored situation, such as
querying more information on affected areas, or using already
established information on the on-going crisis event to aid the
interpretation of social media messages, which are frequently
lacking contextual information due to their required terseness.
Contributions. As a first step towards overcoming these
limitations, we present the realization of a situation-
adaptive crowd-sensing and knowledge extraction approach
in crowd®4, an IF architecture for crisis management [4]—
[6]. First, we outline how crowd®# extracts and aggregates
structured object descriptions from textual tweet content,
yielding semantic descriptions of current crisis hotspots, which
we assess in a proof-of-concept case study on a real-world
Twitter crisis data set. Second, we demonstrate means how the
system further on can utilize already established knowledge
on the detected situational context to adapt its crowd-sensing
and knowledge extraction alongside the detected events, to
dynamically acquire further crisis knowledge by learning from
the crowd.

Structure of the Paper. In Sec. II, we provide a brief recap of
the devised crowd®# system and outline the scope addressed
in the present work. Sec. III provides an implementation
overview and initial results of our prototype on a real-world
crisis data set obtained from Twitter. We contrast our approach
to related work in Sec. IV, before concluding in Sec. V.

II. SUPPORTING CROWD-SENSED SITUATION AWARENESS
FOR CRISIS MANAGEMENT WITH crowd®4
To aid emergency managers in maintaining SAW on evolving crisis

situations, we proposed the architecture of crowd®#, a situation-
adaptive IF system which incorporates social media as additional
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Figure 1: Overview of crowd®4’s processing architecture.

data source complementing conventional data sources like physi-
cal sensors [4]-[6]. crowd”# aims at automatically detecting and
tracking crisis situations by means of rule-based SA, i.e., matching
descriptions of the monitored real-world objects against templates
characterizing situations of interest. Thus, emergency managers are
enabled to express their information need and consequently get
timely alerts from the system whenever object and event constel-
lations matching a situation template are detected. In order to obtain
useable information from its crowd-sensing adapters tapping social
media channels, crowd®# needs to provide the following functional
blocks (cf. Fig. 1): Monitoring social media for messages con-
taining potentially crisis-relevant information (Crowd-Sensing),
extracting relevant information nuggets from these messages indi-
vidually (Information Extraction), mapping these to their
corresponding real-world location (Spatial Grounding), infer-
ring the underlying real-world events described in these messages
by aggregating multiple observations, i.e., fusing information from
multiple messages to a single, coherent description of the moni-
tored real-world event (Hotspot Detection), and subsequently
determining the object-level crisis information within the determined
hotspots (Object Extraction), i.e., so-called Crowd Objects
(such as structured descriptions of the disaster agent, damaged
buildings and affected individuals). These in turn can serve as input
for its rule-based SA. In the present work, we will introduce the
realization of this functionality within crowd®*’s crowd-knowledge
extraction pipeline, which fuses crisis-relevant information obtained
from social media (currently focused at Twitter) to event-level in-
formation grounded in a domain ontology. We specifically examine
how semantic Information Extraction (IE) on the messages’ tex-
tual content enables a more precise description of the encountered
situation(s) and supports situation-adaptive IF. As an alternative
to commonly employed machine-learned based IE and its domain
adaptation problems requiring continuous manual curation (cf. Sec.
IV), we examine the applicability of utilizing a knowledge-based
IE approach for extracting semantically-grounded crisis information
from tweets and determining an overall, spatio-temporal-thematic
event summarization. Whereas this demands an initial configuration
effort with respect to (w.r.t.) specifying the general domain knowledge
(in terms of an appropriate domain ontology describing entities of
interest) and suitable extraction rules, further crisis-specific informa-
tion can be obtained automatically: At runtime, new (instance-level)
knowledge is acquired by learning from the crowd, to circumvent

the knowledge acquisition problem commonly associated with such
a top-down, declarative approach. Thus, to enhance the self-adaptivity
of the system, we furthermore contribute means for a situation-
adapative crowd-sensing and extraction refinement by introducing
situational feedback loops, which enable the system to optimize its
processing towards the encountered situation, thus distinguishing our
IE approach from related approaches involving knowledge-based IE
and ontology population, like [7]-[9].

III. DESIGN AND IMPLEMENTATION

In the present section, we discuss the realization of the crowd®*
prototype’s crowd-knowledge extraction pipeline, notably the follow-
ing functional blocks (cf. Sec. II and Fig. 1):

1) Information Extraction — Analyzing the retrieved messages’
textual content to extract crisis-relevant information.

2) Spatial Grounding — Determining the real-world locations the
extracted information refers to.

3) Hotspot Detection — Detecting events based on analyzing densely
covered geographical regions (so-called hotspots), and inferring
the general event context by aggregating information extracted
from tweets assigned to locations in the corresponding hotspot.

We examine how such a crowd-knowledge extraction pipeline can
be assembled by adapting and integrating existing libraries and
frameworks suitable for addressing each of these functional blocks.
Furthermore, to enable situation-adaptivity, we describe how results
obtained from one phase can be used to implement a situational
feedback loop to refine the processing of its preceding phases and
allow for dynamic knowledge acquisition. Fig. 2 presents an overview
of employed components, which we will discuss based on the
following examples from real-world crisis data sets recorded from
Twitter (i.e., the Iselle data set on hurricanes Iselle and Julio affecting
the Hawaiian islands in Aug. 2014', and the Erica data set on tropical
storm Erica devastating Dominica in Aug. 2015%):

Tweet 2

@days_go_by29 hi Katie! No,
#lselle passed Oahu with
mostly wind, rain, surf. The
Big Island had some damage
but luckily no casualties! Now,

RT @reedtimmerTVN: 4 foot
diameter Albezia Tree down
across road near Pahoa,
Hawaii from Tropical Storm
Iselle http://[...]

RT @nbc6: Threat of floods
over for S. Fla., remnants of
#Erika dissipate as Hurricane
#Fred forms: http://[...]
http://[...]

Tweet 4

BREAKING: Police in
Dominica say at least 4 dead
as Tropical Storm Erika hits
Caribbean island...
#PrayForDominica

A. Information Extraction

Motivation. As examined in [1], different types of information
valuable for emergency responders can be obtained from Twitter.
Based on their findings and our own empirical data analysis of
recorded crisis data sets, we collated the following types of crisis
information crowd®* should extract:

o severe weather formations (such as hurricanes, typhoons, thun-
derstorms, tornadoes) and their evolutionary states (a hurricane
instance may form, make landfall, turn, strengthen, weaken, reform,
dissipate), which determine the crisis management (CM) phase

« their weather-related consequences (e.g., torrential rain, flooding,
spring floods, storm surges, erosion, mudslides, high winds)

« different types of entailed infrastructure damage (e.g., downed
trees, blocked roads, damaged buildings, power outages), the states

Recorded from the Twitter Streaming API by tracking the following key-
words: Hurricane, #Hurricanelselle, #HurricanePrep, #updatehurricaneiselle,
#hiwx, #HIGov, Iselle, #Genevieve, #Iselle, #Julio, #HIWX, #HIWx

2Recorded from the Twitter Streaming API by tracking the follow-
ing keywords: #Erika, #TropicalStormErika, #Dominica, #PrayForDominica,
#TSErika, #WestIndies, Roseau, #KeyWest, #flkeys, #FLwx, #florida
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Figure 2: The interplay of the different processing components.

(open, closed, blocked, reopened, evacuated) of key infrastructure
elements (bridges, roads, schools etc.)
« indication of needed or provided resources, such as emergency
supplies (e.g., food, free meals, drinking water, tarps, batteries)
« information regarding affected individuals (e.g., injured people,
casualties)

Whereas such information is also contained in our example Tweets
1-4, it also becomes apparent that extracting the corresponding
factual information entails further requirements, due to the complex
compositional semantics encountered in natural speech. Since factual
information may be embedded in linguistic constructs such negations,
questions, and references to past, present and projected events,
this complicates the task of extracting the semantically coherent
information transported in this message. For instance if we aim to
extract the DisasterEffects contained in Tweet 1, simply extracting the
word casualties as an instance of the concept (i.e., ontology Class)
DisasterEffect obviously would deliver the wrong information (the

correctly extracted DisasterEffect information would even correspond
to the opposite, i.e., “no casualties”). Especially regarding the CM
domain, confirmation of what has not happened, i.e., stated absence of
disaster effects, is of equal importance as the acknowledged presence
of disaster consequences and the key constituent of crisis SAW
in order to adequately organize and prioritize emergency response
actions. Considering such surrounding textual context is furthermore
required to determine the CM phase, i.e., whether the situation is
in the disaster preparation phase or the disaster’s aftermath. This is
essential information for crisis SAW indispensable for the adequate
comprehension and projection of the crisis situation, as for instance
provided in Tweet 3, which contains projection information (“threat
of floods”), and furthermore describes the evolutionary state of
two different disaster agents (one weather disaster is dissipating,
i.e., corresponds to the crisis aftermath, whereas another one is
in its formation, corresponding to the disaster preparation phase).
Thus, a semantic analysis of the tweet texts is key for extracting



information enhancing (instead of confounding) crisis SAW. We thus
examine means for proper extraction and semantic-mapping of a crisis
situation’s evolutionary phase (e.g., hurricane prior landfall vs. has
made landfall), representing the basis for tracking the crisis situation’s
evolution according to situation evolution models [10], [11].
Realization. For realizing crowd®#’s IE, we base upon TwitlE
[12], a plug-in for Natural Language Processing (NLP) on Twitter
content for the popular NLP Framework GATE [13]. TwitIE already
provides a structural analysis of textual tweet content, i.e., determines
grammatical structure, and detects common types of Named Entities
(NEs), such as person names, organizations and locations, and other
domain-independent information types (e.g., dates, addresses, e-
mails, emoticons), i.e., performs a lexical analysis. Since TwitlE
is composed in a modular fashion, as it consists of a declaratively
specified IE pipeline composed of individual components, so-called
Processing Resources (PRs), such as PRs for language de-
tection, tokenization, Gazeetteer lookups, normalization, sentence
splitting, part-of-speech tagging (PoS), and the splitting of multi-
word hashtags into single-word tokens, its functionality can easily be
extended by adding suitably configured PRs. In order to create an
IE pipeline for extracting the CM-relevant information, we utilized
existing PRs from the GATE library, which we provided with a
crisis-specific configuration (as shown in Fig. 2). We devised a
custom crisis domain ontology modeling the CM-relevant
information types listed previously, which was thus based upon own
empirical data analysis as well as findings presented in other work
[1], [14], [15]. To detect these concepts in free-form text, we attached
suitable lexicalizations (i.e., natural language descriptors for a specific
concept) as class properties for each concept, and supplied custom
gazetteer lists (i.e., word lists or dictionaries on a specific concept,
such as a gazetteer on country names or currency units). These
information can be made available to the TwitlE pipeline by adding
a custom Gazetteer PR (which is configured with the devised
gazetteer lists, currently we use 14 lists) and OntoGazetteer PR
(which compiles custom gazetteer lists from an ontology’s concepts
and their lexicalizations). In order to extract matching text spans from
free-form text, we specify corresponding extraction rules on sought-
after information types, in form of so-called JAPE (“Java Annotation
Patterns Engine”) rules, GATE’s annotation pattern description rule
language. These rules are supplied to a JAPE Transducer PR
(CrowdSA Transducer in Fig. 2), which compiles them into
Finite-State-Transducers for matching the specified patterns in texts,
and thus comprises the core IE logic. Simple rules can be based on
Gazetteer look-ups (e.g., for annotating the text span “power outage”
with the ontological class PowerOutage). However, such a structural
and lexical analysis, as shown below for Tweet 13, does not allow to
address composite semantics:

Tweet 1, Structurally & Lexically Analyzed & Annotated

@days_go_by29 hi Katie! No, #Iselle passed [Oahulzocqtion With

mostly [Wind]DisasterEffect > [rain]Disaste'r‘Effect B
[Surf]DisasteTEffect . The [Big Island],ocqtion had some

[damage]DisasterEffect but IUCkily _

[casualties]DiSasterE'ffect ! Now

In order to resolve compositions such as negated concepts (e.g.,
“no casualties” or “no major damage”), we need to devise a semantic
analysis by hierarchically combining annotations such as simple (lex-
icographic) annotations. Therefore, JAPE rules can utilize annotations
created by preceding PRs and can be cascaded to detect composite
patterns consisting of nested annotations. In conjunction with a
Domain Ontology providing the generic, high-level concepts, this
hierarchical composition of annotations enables us to codify domain
information of interest in a high-level, abstract fashion, thereby only
requiring a limited set of generic rules, such as for the detection

3We will further on utilize the following formalism for describing an-
notations, i.e., meta-information interpreting the original text’s semantics:
[original tweet text] A, notationType, 1-€., the annotation’s span is denoted
by brackets, its type by the subscript.

of negated concepts, forecast events, or the association of specific
damage types to specific disasters. Thus, we developed an initial set of
28 CM-specific JAPE rules for our proof-of-concept implementation,
which base upon the basic (domain-independent) JAPE rules provided
by TwitlE to realize our required semantic extraction of CM-relevant
content, which analyze composites of annotations and thus are
capable of producing the following annotations:

Tweet 1, Semantically Annotated

@days_go_by29 hi Katie! No, #Iselle passed [Oahulz,ocqtion With
mOSﬂy [Wind]DisasterEffect 5 [rain]Disaste'rEffect >
[Surf]DisasterEffect . The [Big Island]pocation had some
[damage]DisasterEffect but luckily

[_ [casualﬁes]DisasteTEffect ]DisasterEffect ! Now,

Thus, the sequence of a negation expression followed by a
DisasterEffect annotation is combined to yield a negated Disas-
terEffect, i.e., correctly results in the information “no casualties”.
For instance, for detecting a weather disaster’s evolutionary phase
(which we term LifeCyclePhase, e.g., forms vs. dissipates), as in
Tweet 3, Listing 1 depicts how the corresponding domain concepts
can be associated, i.e., a WeatherDisaster annotation followed by a
LifeCyclePhrase, whereas Listing 2 shows a (simplified) example on
the extraction of forecasts (e.g., indicated by phrases such as “threat
of”, “possible”), by detecting the sequence of a Forecast annotation
and a WeatherDisaster Consequence annotation. Concluding, we
need to note that whereas our lexicalizations and rules are currently
targeted on English texts, this approach can be extended to other lan-
guages by enriching the ontology with corresponding lexicalizations
and providing suitable IE rules, thereby enabling multi-lingual IE.

Listing 1: JAPE Rule Ex. 1 Listing 2: JAPE Rule Ex. 2

Rule: LifecycleDetection Rule: ForecastEvents
( (
( ({Lookup.majorType ==
{WeatherDisaster} forecast})
) :disaster ({Token}) [0,2]
({Token}) [0, 3] ({Lookup.majorType ==
( disaster,
{LifecyclePhrase} Lookup.minorType ==
) :phase consequence}
) :tag ) :typeOfConsequence
—> ) :tag
{ /+ create annotations —--> { /* create annotations
x/} */ '}

Enabling Situation-Adaptivity. However, solely basing upon an a-
priori specified Domain Ontology and Rule-base would entail
the disadvantage of a static system that is not reactive towards novel,
previously unseen events. Therefore, we need to equip the system
with capabilities to dynamically derive new knowledge based on
the extracted data, for which we suggest an approach that combines
knowledge-based IE with data-driven aggregation strategies: Whereas
the general domain knowledge of CM-relevant information can be
specified a-priori, mainly corresponding to our Domain Ontology
classes, each crisis’ characteristics are unique, often corresponding
to new instance-level information. In the tweets stated above, for
instance, one may note that each hurricane event (i.e., hurricane
instance) is given a proper name, a common practice by weather
agencies, allowing to distinguish these different disaster event in-
stances. Thus, hurricanes and related weather phenomena can be
considered as Named Entities (NE). On the other hand, also the omis-
sion of contextual information becomes apparent, which is a crucial
problem for the interpretation of social media content due to its length
limitations: Given the full information, Tweet 3 would actually read
as “... remnants of [tropical storm] #Erika...”. Due to this omission of
relevant context information, an IE component (lacking this instance
level information) would thus interpret “Erika” as first name and
create a Person annotation. If we were not able to dynamically detect
new instances, however, our system would miss a large portion of
relevant information, notably in cases were people were only referring
to the disaster event’s name, and omitting the class-level information



“hurricane” (also termed “‘unmarked” information in literature [14]),
which is actually the case in a large fraction of tweets. Therefore, we
need to implement a means to dynamically derive such new “instance-
level” information from data, and for this we can exploit the fact that
we are analyzing large volumes of tweets, which may allow us to
reconstruct omitted context from other messages, such as Tweet 4.
In this tweet, we can also extract the instance-level information, i.e.,
an instance of a TropicalStorm referred to as Erika, requiring a rule
for extracting such instance-level information, as shown in Listing 3:

Listing 3: JAPE Rule Ex. 3

Rule:
(
({Lookup.majorType == disaster,
weather}
) :disastertype
(({Lookup.majorType == person_first} | {Hashtag}
| {Token.kind == "word", Token.category == "NNP"})?
) :name
) :tag
-—> {

WeatherDisaster

Lookup.minorType ==

/* create annotations x/ }

Tweet 4, Semantically Annotated, Instance Extraction

BREAKING: [Police]organization in [Dominicalrocation say at
least [4 dead]DisasterEffect as

[TI'OPical Storm [Erikalyame lWeather Disaster hits
[Caribbean island]z ocqtion --- #PrayFor[Dominicalz ocation

If we were to observe a considerable amount of such instance-
level information for a specific time window, we can assume this
corresponds to a notable real-world event, and populate our ontology
with a corresponding instance, i.e., TropicalStormErika. To enable
such dynamic, crowd-based ontology population, we thus need to
provide a situational feedback loop from the aggregation level, which
will be explained in the subsequent sections, in order to produce the
following WeatherDisaster-instance-based annotations:
v

RT @nbc6: [[Threat of] porecast [ﬂOOds]DisasterEffect 1Forecast
over for [S. Fla.]z ocation » remnants of

Tweet 3, Semantically & Situation-Adaptively Annotated

[ [#Erikalywy cqtherDisaster [diSSipate]Lifecycle ] as

[ [Hurricane [#Fred]Name ]WeatheTDisaste'r [formS]Lifecycle ] .
http://t.co/Pv1SdObLSc http://t.co/8zyG...”)

B. Spatial Grounding

Motivation. Furthermore, no matter what kinds of useful disaster-
relevant information have been extracted, ultimately, emergency
professionals need to know where critical events are happening to
coordinate appropriate response actions. Thus, the system actually
should not extract the location of the tweet’s author, but the location
of the event mentioned in the tweet’s text (as the two locations may
be disparate), i.e., perform foponym recognition (i.e., the detection of
location names in texts), and foponym resolution (i.e., associating a
toponym with its corresponding geographical coordinates) [16].
Realization. To perform toponym recognition and toponym reso-
lution, we based upon CLAVIN-NERD"* (“Cartographic Location
And Vicinity INdexer”), a software package for toponym recognition
and context-based toponym resolution. However, after inspecting the
results, it seemed that CLAVIN’s context-based toponym resolution
is biased towards higher population numbers and populated places.
Although results could be improved by increasing the maximum con-
text window and the maximum number of considered, top-matching
toponyms, which, however, decreases performance, we faced false
resolutions on our data set particularly crucial w.r.t. the fine-grained
location information required for CM, such as

“https://clavin bericotechnologies.com/clavin-core/

« “Big Island” was resolved to Big Island in Virginia, even when
co-occurring with the location “Hawaii”, which should allow to
disambiguate this toponym to the correct location (the Island of
Hawaii, which is commonly referred to as the “Big Island”)

o “Puna”, a region on the Island of Hawaii, which was resolved to
Pune in India

e “Wailea, Maui”, was not resolved to Maui, but to the location of
Wailea on the Island of Hawaii

To overcome this limitation, our Spatial Grounding implementation
consists of two components (cf. Fig. 2): The first component, the
GeoAnnotator, utilizes CLAVIN-NERD for initial toponym reso-
lution. Subsequently, our custom solution, a so-called GeoDisam-
biguator, represents a dedicated toponym resolution component for
determining the most specific geo-locations the tweet is assigned to
(the so-called AssignedGeoLocation), and adapts the results
obtained with CLAVIN-NERD, by incorporating the following types
of contextual information:

o (C.1) “in-tweet-context”: disambiguation within a single tweet
based on the joint context of all location mentions occurring in
this tweet

o (C.2) external context: “between-tweets-context” or “situative con-
text”: employs already established information from subsequent
processing components (obtained from detected event hotspots)

For incorporating these two types of contextual information, we
employ a multi-step approach consisting of an iterative refinement
of toponym resolution, which uses ontology-based reasoning on
the GeoNames ontology’. Regarding (C.1), we disambiguate the
toponyms based on the “joint” context of all toponyms encountered
in the tweet. The GeoDisambiguator queries the GeoNames web
service to retrieve the toponyms’ ancestry hierarchy, based upon
which it constructs ancestry trees (a local tree per tweet is generated),
and tries to find a better configuration which corresponds to more
specific results. Finally, the leaves of the constructed ancestry tree are
selected as AssignedLocations. Thus, we note that a tweet may also
be assigned to multiple locations, which is also the case if it contains
GPS meta-data, which are also added as AssignedLocations. Tweet 2
illustrates this principle, which is assigned to Pahoa, corresponding
to its most specific location. If multiple locations are on the same
hierarchical level, the tweet is assigned to all of these.

Tweet 2, Semantically Annotated

RT @reedtimmerTVN: 4 foot diameter Albezia

[Tree down]DisasterEffect across [road]Infrastructure near
[Pahoalpocation » [Hawaiilrocation from

[Tropical Storm [Iselle] Name lweather Disaster http://[...]

Enabling Situation-Adaptivity. Whereas the GeoDisambiguator can
correctly resolve the toponym “Puna”, if given a tweet with multiple
locations mentions (e.g., which also mentions “Hawaii”), the question
remains of how to resolve ambiguous topoynms if such contextual
information is omitted. How do we resolve a tweet that solely
mentions ‘“Puna”, without providing a further indication whether it
should be attributed to India or Hawaii? Similarly to the IE phase,
we can aim at providing the component with a situational context
based on using information obtained with subsequent components -
thus, this limitation will be tackled with a situational feedback loop
from the aggregation level.

C. Hotspot Detection

Motivation. After mapping the extracted information to real-world
locations, the system can analyze which regions exhibit considerable
coverage, thus corresponding to hotspot locations receiving substan-
tial social media attention, which typically indicate large-scale events.
Upon extracting these hotspot locations, it can aggregate information
extracted from its assigned tweets to identify frequently corroborated
information, and thus, infer the underlying events and provide a
suitable summarization on these.

Shttp://www.geonames.org



Realization. crowd>* identifies these hotspot locations by employ-
ing a spatial kernel density estimation on the AssignedLocations.
Since it operates on the assigned locations, and not only on the
tweets’ meta-data, it can determine the most-discussed regions, as
opposed to approaches operating the locations of the tweets’ authors,
which are likely to be biased towards densely populated regions.
The required spatial aggregation computations are implemented in
R [17], which is accessed from the core Java implementation via
Rserve [18], a binary R server providing R functionality via TCP/IP
sockets. The Java-based Hotspot Detector component thus opens a
connection to the R server, sends the data to the created R session,
and invokes an evaluation function performing and returning the
density computation, employing the sp [19], [20] and spatstat
[21] packages to perform a fixed-bandwidth kernel estimation of the
point pattern intensity of the assigned geolocations using an isotropic
Gaussian smoothing kernel. Bandwidth is adjusted by setting the
corresponding parameter adjust to 0.1, which is multiplied with
the value of o, the standard deviation of the isotropic Gaussian
smoothing kernel. Following kernel density estimation, the contour
lines of high-density regions are extracted and sent back to the Java-
based Hotspot Detector component, which aggregates these to the
different Hotspot locations. In our Iselle data set, two major hotspot
locations could be determined, as shown in Fig. 3, which seems
surprising in the light we only intended to monitor hurricane Iselle’s
effects on the Hawaiian islands, as tracking the Twitter stream for the
general keyword “hurricane” also recorded another hurricane event in
a different part of the world, which, however, should be accordingly
detected by the system. Determining the hotspot locations, however,
only allows to detect locations where presumably some event is
happening - to infer the further characteristics of this event (i.e.,
which type of disaster event is striking, and its effects), a so-called
Event Detector subsequently aggregates the information extracted
from the tweets assigned to each hotspot. Thus, for each hotspot,
its extracted concepts and hashtags are accumulated — the most
frequent concepts and hashtags per hotspot then are considered as
being descriptive for the hotspot, i.e., form the general situational
context. This spatially-driven aggregation thus delivers us the spatial
extent and semantically-grounded information of the on-going events,
the results obtained on our Iselle data set are shown in Fig. 3, thus,
detects that the hurricanes Iselle and Julio are affecting the Hawaiian
islands, and another hurricane event - which we did not intend to
monitor, but which could be solely determined based on the tweets
matching our general keywords - named Bertha is making landfall
in the UK and causing flooding.

D. Incorporating Situative Feedback Loops

The established situative context furthermore can be used to
fine-tune the sensing and extraction pipeline towards the detected
hotspots. Based on the detected situation, we outline how the derived
situative context can inform the processing pipeline. Currently, we
have examined the following situational feedback loops:
Situation-adaptive Crowd-sensing. The system can immediately
aim at collecting more detailed information on the detected hotspot
events, by reconfiguring its adapter to incorporate the determined
information: Therefore, we can include a feedback loop to the adapter,
which appends keywords derived from the top descriptive concepts
and most frequent hashtags to the utilized filter query (e.g., includes
the keyword “Bertha”). Furthermore, for CM tasks, it would be
highly desirable to receive more fine-grained location information
on crucial on-goings (e.g., knowing what types of damage occurred
in Puna is of more actionable value, than knowing that the state
of Hawaii is affected). Thus, we seek to increase the fraction of
tweets reporting more localized information, by incorgorating a query
expansion on presumably affected locations: crowd* thus queries
the GeoNames web service to receive all toponyms located within
the identified hotspot regions, which can be included in the adapter
query. Since this typically results in an extensive list exceeding the
number of keywords allowed for Twitter monitoring, we seek to
include strategies for selecting promising toponyms for future work.
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Figure 3: A screenshot of crowd>4’s Ul, showing the hotspot
areas detected by the system. Their corresponding extracted
event-level contexts, i.e., their top annotation aggregation
results, are shown below the screenshot.

Situation-adaptive Entity Disambiguation. In crowd>’s default
configuration, the text “Iselle” would match the concepts “Person”
(corresponding to a name) or “Location” (corresponding to a place
in Italy). However, in the temporal context of the disaster event, its
occurrence in a tweet may likely correspond to a hurricane instance.
Therefore, after crowd-based ontology population by extracting a
considerable fraction of tweets mentioning a weather disaster instance
named Iselle, crowd®* furthermore can utilize a feedback loop to the
IE component, which prioritizes the disambiguation of the concept
“Iselle” to the weather disaster instance in the corresponding time
window, as long as a considerable mentioning of this concept is
observed.

Situation-adaptive Toponym Resolution. Furthermore, the geo-
fencing performed by hotspot detection informs the GeoDisam-
biguator, which thus can incorporate a geographic bias (derived
from the hotspot area) as query expansion in the Geonames query
issued during toponym resolution. Thus, for instance, it searches the
toponym “Puna” under the spatial context of Hawaii, which thereupon
is correctly resolved to a village on the Island of Hawai’i (instead of
being wrongly mapped to Pune in India).

Whereas we examined the feasibility of these feedback loops
in initial off-line experiments, a comprehensive evaluation of these
is beyond the scope of the present work, as ground truth data
sets are difficult to obtain. For future work, we plan to study the
effectiveness of these feedback loops based on comprehensive long-
term evaluations on online stream-monitoring, for which we need to
elaborate a test bed allowing to log the behavior of the crowd®*
system and correlate it with “ground truth” on the recorded events
gathered from external reports (e.g., by analyzing news reports on
areas severely hit by a specific disaster, and examining whether
crowd®* has been able to fine-tune its crowd-sensing behavior
towards these areas in the course of its monitoring process).

Addressing user refinement represents a further strain of planned
future work. Naturally, the proposed feedback loops also may serve
as a means for integrating the human operator’s knowledge into
the system, who can use these interfaces to manually supply re-
quired situational context information: The operator may enter novel
keywords driving crowd-sensing, mark known hotspot areas on the
user interface map to guide toponym resolution, correct or guide
entity disambiguation, as well as manually populate the ontology
(e.g., by adding a forecast weather disaster’s name). Whereas the



focus of the present work has been on examining the potential of
automated processing, we plan to develop dedicated interfaces for
human interventions for future work, to provide a unique interface
for integrating both, knowledge derived from the system as well as
the human operator’s expertise.

IV. RELATED WORK

In the present section, we contrast our devised implementation to
related work, and pinpoint its differences w.r.t. existing solutions.
Information Extraction. Whereas several crowd-sensing systems
apply NLP for IE of CM-relevant information from the tweets’ textual
content [3], most systems focus on NE extraction, such as extracting
locations, persons and organizations, but do not further examine their
interrelations and compositional semantics. We therefore concentrate
our discussion on approaches aiming at the extraction of CM-
relevant, high-level information types as classified in [22] (such as
information regarding the categories Caution and Advice, Casualties
and damage etc.). Imran et al. [23] proposed a machine-learning
approach for automated extraction of such CM-relevant information
from tweets. Consequently, their approach requires human-labeled,
thus costly to obtain, training data, as a separate classifier for each
type of information is needed. Since examinations of different crises
revealed non-satisfactory domain adaptation - i.e., a classifier trained
on one crisis event poorly generalizes towards another crisis event
(even when corresponding to a similar type of crisis) [2], they
developed AIDR, a system incorporating a crowd-sourcing platform
for informativeness filtering of crisis tweets. Thus, human crowd-
workers need to label incoming data streams to generate training data
for the subsequent online learning suite in real-time [24]. ESA, the
CM system proposed in [25], classifies incoming tweets whether they
contain any information on infrastructural damage, but does neither
extract the specific type of damage nor identify its location, deferring
these tasks to the system’s human operators.

Aggregation. AIDR and ESA produce lists of informative tweets,
but do not investigate towards further extraction of their content and
fusion to object-level information (i.e., inferring descriptions of the
underlying real-world events and objects reported in these tweets).
Although several crowd-sensing enhanced CM systems aggregate
retrieved messages to summarize the overall event topic, these mainly
perform text clustering, and do not aim towards a semantically
grounded fusion of the clustered textual content to object-level
descriptions [3]. Thus, our approach seeks to extend these valuable
preparatory works by studying the integration of these approaches to
synthesize an overall crowd-knowledge extraction pipeline.
Situation-Adaptivity. To the best of our knowledge, automati-
cally evolving crowd-sensing along-side the monitored events in a
knowledge-driven fashion has not been investigated up to now [3].
Whereas rule-based IE techniques for ontology population, as utilized
in our approach, have been investigated for CM [8], [9] and in other
domains (cf. [7]), to the best of our knowledge, current IE techniques
for ontology population make use of the contextual information
in terms of the surrounding textual content encountered within the
analyzed document (i.e., tweet), but do not incorporate a dynamically
determined, external situative context.

V. CONCLUSION

On the one hand, the basic information types of relevance for
CM are known. On the other hand, each disaster’s characteristics
are unique - thus, machine learning-based IE techniques so far
have shown poor generalization towards other types of disasters.
We therefore have proposed an approach that seeks to interweave
knowledge-based with data-driven strategies: Whereas the general do-
main of discourse (e.g., CM) needs to be modeled, our approach aims
at dynamically learning new instance-information from the crowd,
which we illustrated based on a case study on a historic crisis data
set. Furthermore, we proposed three concrete situational feedback
loops enabling a situation-adaptive processing, which thus incorporate
established information on the detected situation to provide additional
context refining its sensing and processing configuration.
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