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Abstract—Situation awareness (SAW) denotes a human’s ad-
equate interpretation of the observed environment, which is
of prime relevance for human operators in control center
applications (e.g., road and air traffic control). Since humans
may lose their SAW due to information overload and time
criticality, a series of intelligent systems have been proposed
that should support human operators in gaining and maintaining
SAW, whereby existing approaches focus more on the gaining
aspect so far. However, a comparative evaluation of the distinct
approaches has not been the focus up to now, as has been recently
acknowledged. Therefore, the present work attempts at filling
this gap by providing a comparative evaluation of approaches
for gaining and maintaining SAW, thereby focusing on the less
studied aspect of support for maintaining SAW. Thus, this survey
highlights open issues and directions of further research.

I. INTRODUCTION

Situation Awareness. Situation awareness (SAW) denotes a

human’s adequate interpretation of the observed environment.

SAW is thus especially relevant in control center applications,

where a human operator needs to stay fully aware of the

state of the monitored environment, and anticipate critical

situations emerging in that environment in order to undertake

the appropriate (counter)actions. However, a human’s correct

situation assessment (SA), i.e., the process to obtain SAW, is

severely affected by information overload and time criticality,

which induce the risk of a partial loss of SAW, or in the

worst case even a complete misinterpretation of the current

situational state [1], which may entail fatal consequences.

Systems Supporting SAW. Therefore, intelligent systems

have been proposed that should support human operators

in gaining and maintaining SAW of today’s increasingly

complex environments. Such SAW systems are capable of

autonomously deriving the situational state, or critical sit-

uations, of the observed environment by fusing, analyzing

and interpreting the sensed data, i.e., performing high-level

information fusion (HLIF) [2]. By communicating this already

interpreted picture to the operator, the operator is supported in

gaining SAW, as the cognitive load on the operator is reduced.

However, as a user study in [3] revealed that time is a key

factor, to further support the operator in maintaining SAW

over time in a rapidly evolving environment, the SAW system

needs to account for evolution in order to retain its usefulness:

(i) by tracking the evolution of the underlying environment,

especially w.r.t. inferred situations, (ii) by allowing the system

to evolve over time to keep up to this changing environment,

and (iii) by evolving to the needs of its users, i.e., incorporate

and adapt to operator feedback.

Contributions. Whereas the necessity to provide support for

these evolution aspects has been acknowledged recently (e.g.,

in [4], [5]), a comparative study of current SAW systems

especially regarding these issues has not been the focus so

far, as also recognized in [6]. Therefore, the aim of the present

paper is to take a first step towards filling this gap for that: We

propose a criteria catalog allowing to study how SAW systems

can support an operator in gaining and maintaining SAW.

Based on these criteria, we perform a comparative evaluation

of SAW systems, and identify directions for further research.

Structure of the Paper. In the next section, we discuss

existing work aiming at giving an overview and explaining

how they relate to our survey. In section III, we outline and

justify the criteria forming the basis for our evaluation of the

selected approaches. Section IV continues with a discussion

of the systems selected for our survey. Section V then presents

the results of the evaluation, and concludes with the lessons

learned. Section VI ends with a summary and an indication

on future work.

II. RELATED WORK

A series of work aiming at providing an overview on

existing and challenges on prospective SAW systems is found

in the overall area of HLIF: A recent, extensive survey on

current HLIF systems, i.e., SAW systems, is presented in

[6], focusing on describing the different functional models

for HLIF, and systems implemented in various application

domains. However, no comparative evaluation of the discussed

approaches is provided, which therein is suggested as neces-

sary future work.

In [7], a literature survey of sixteen publications on frame-

works and framework issues for HLIF applications has been

conducted, where Llinas focuses on outlining different HLIF

procedures, but neither contrasts the approaches w.r.t. SAW

maintenance aspects.

A review of the state of the art in HLIF has traditionally

also been conducted in the course of the International Con-

ference on Information Fusion, based on panel discussions
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or retrospectives identifying the challenges and trends in

this subject (e.g., [8],[9]). [10] also represents the insightful

conclusions from a panel discussion involving leading experts

of the HLIF community, which summarizes the issues and

challenges regarding HLIF. The publications resulting from

these discussions address the state of the art in HLIF from

a methodological perspective, i.e., no explicit comparison

and evaluation of concrete fusion system implementations is

provided. These extensive methodological discussions serve as

a valuable basis for our criteria catalog.

Therefore, despite valuable preparatory work, there is still

a need for a comparative survey as aimed at in this paper,

based on a catalog of criteria, methodologically adhering to

our previous surveys like [11].

III. CRITERIA

In this section, we present our catalog of criteria based on

the core components of SAW systems (cf. Fig. 1), which we

employ for our comparative survey. Since prior to maintaining

SAW, SAW first needs to be established or gained, thus

comprising a prerequisite for the maintenance of SAW, our

criteria catalog is structured into two subsections. The first

focuses on aspects related to gaining SAW, whereas the second

studies which concepts are provided to maintain this SAW, and

thus the usefulness of the SAW system over time.

A. Gaining SAW

The following criteria discuss the abilities of the SAW

system necessary to support the operators in gaining SAW.

Thereby, dedicated criteria investigate the representation of the

observed environment and the core functional capabilities of

the SAW system for supporting the control center operators.

Input Data. Whereas some approaches use a rather homo-

geneous, clearly specified set of input data (e.g., [12], [13]),

other systems employ a variety of heterogeneous data types

(e.g., [14]). The heterogeneity of input data types supported

provides an indication on the potential application domains

of these SAW systems, i.e., whether they are better suited

for homogeneous domains (comprising few different types of

input data) or highly heterogeneous domains (comprising a

variety of different entity types).

Domain Model. Many SAW systems utilize ontological rep-

resentations of the environment of interest, which allows to

encode a priori knowledge of the specific application domain

(e.g., [14], [15], [16]). However, SA techniques exist that

do not utilize an explicit domain model, and thus are of

interest if prior knowledge is not available. Purely data-driven

machine learning methods, for instance, may only operate on

the observed data, without specifically relating it to a dedicated

model of the underlying domain (e.g., [13]).

Situation Assessment. Rule-based expert system implemen-

tations (e.g., [14], [16]) require an a priori specification of

the domain knowledge and situation types of interest, thus

conform to a template-based, top-down approach, as classified

in [13]. Situations are explicitly modeled as situation types of

interest, which need to be specified by the domain experts.

Therefore, their successful application depends on a profound

knowledge of the underlying domain, and may be hampered

by the knowledge acquisition bottle neck [3]. Whereas they

are perfectly suited to monitor recurring events, they fail to

detect novel, unexpected behavior, which, however, is often

of interest, especially in surveillance monitoring applications.

Thus, over the last years SA techniques based on bottom-

up, i.e., data-driven, anomaly detection approaches became

popular in such domains (e.g., [13], [12], [17], [18]). These

methods aim at detecting anomalies from the normal envi-

ronmental picture, which are reported as potential situations

of interest to the operator. Whereas this approach provides

more flexibility, as not everything about potentially interesting

situations needs to be known in advance, it is limited to

detecting “abnormal” situations. Typical behavior of interest

cannot be specified. Furthermore, most of these methods

depend on a sufficiently large training data set. Regarding

the degree of required a priori knowledge, Graphical Models,

such as Bayesian Networks and Hidden Markov Models (e.g.,

[19], [20]) represent an intermediate form. Their structure,

which describes the sought-after situation types, can be either

explicitly defined a priori, or may be autonomously learned

from available data, although techniques for the latter are

currently still in an early stage.

Action Support. As motivated in [4], SAW ultimately pro-

vides the basis for decision support, and forms a key con-

stituent in Boyd’s OODA loop [21]. Advanced SAW systems

could thus go one step further by linking the derived situations

to actions suitable in that situation, which should be suggested

to the human operator.

Application Domain. This criterion states the domain the

system has been applied to, or evaluated on. In case where no

online, real-world evaluation has been performed, it is detailed

whether an analysis of recorded real-world data had been

performed, or only tests on synthetic data had been conducted.

B. Maintaining SAW

Whereas criteria for evaluating the SAW systems’ abilities

of gaining SAW comprised the previous part of the catalog,

the present subsection studies how the systems support main-
taining this SAW, in order to retain their usefulness. Thereby,

from a systemic point of view, we need to consider (i) the

evolution of the observed environment, (ii) the evolution of

the SAW system, and (iii) the evolving needs of the operators

interacting with the system.

i) Environment Evolution
Capturing and Tracking Evolving Situations. As identified

in [3], the evolution of a specific situation is essential to judge

the current situational state, and the effect of time on SA

severely goes beyond the typical definition of SAW in the

HLIF community. The need for SA concepts better capable

of capturing evolving situations has also been recognized in

[4]. Thus, we specifically assess whether and how currently

available SAW systems are capable of capturing and tracking
the evolution of the inferred situations. Capturing evolution

might be supported by explicit evolution models, for instance
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Figure 1. A systemic viewpoint of automated SAW systems.

in form of evolution templates (as e.g., suggested in [20], [22]),

preconditions, or evolution patterns. For tracking aspects,

estimating the probable evolution paths (e.g., as in [20]) and

criticality escalation (as has been recognized in [23]) are

relevant. Further relevant aspects could address the following

questions: Can the operator specify the evolution of situation

types, i.e., templates, of relevance? Is the operator supported

therein, for instance the system could suggest preconditions

to a critical situation, which have been observed in the data?

Is the operator enabled of specifying possible situation evo-

lution patterns of interest? Can the operator specify different

criticality levels and alerts along the evolution path?

Projection. However, not only the past evolution of a specific

situation is of relevance: Projection, i.e., the correct anti-

cipation of the current situation’s future development, repre-

sents the most difficult to achieve level in Endsley’s human

mental model of SAW [1]. Estimating the future development

represents the grounding for taking the suitable actions in a

given situation in order to achieve the desired goals, which

is termed impact assessment in the HLIF terminology. This

criterion therefore assesses whether a SAW system provides

such projection support, and how these predictions are formed

and communicated to the user.

Incorporation of Contextual Knowledge. As could be shown

in a user study on operators in a maritime surveillance cen-

ter [3], operators assess the provided information differently

dependent on certain contextual information (e.g., a sudden

increase in the number of boats departing from Germany

towards Sweden would normally correspond to an unusual

situation, but not at the start of the main holiday season). Thus,

such contextual information (e.g., the time of the day or the

time of the year), albeit not part of the situation definition

itself, severely affects the interpretation of a certain situation.

Therefore, we assess whether currently available SAW systems

provide dedicated means to incorporate contextual knowledge.

Incompleteness and Inconsistency. SAW systems likely deal

with only partially observable environments and additionally

are limited by technical parameters. Thus, they need to expect

to encounter incompleteness and inconsistency in the data

[19]. These issues, of course also present in gaining SAW, are

leveraged however through the evolution in the environment,

since additional environmental information may emphasize

but also contradict existing knowledge and introduce new

inconsistencies or allow to resolve existing ones. This is also

interlinked with adjusting the trustworthiness of the situa-

tional information as the situations evolve, making the proper

detection of the situation even more complex. Therefore,

this criterion investigates how the SAW system deals with

incompleteness and inconsistencies over time.

ii) System Evolution
SA Adaptation. The user study in [3] motivated the need for

SAW systems that can be adapted towards the activities of

the operators, like routine tasks as well as special occasions,

due to the changing roles of the operators, and the changing

underlying environments. This necessitates the functionality

to adapt the SA methods accordingly. Operators of maritime

surveillance centers, for instance, are routinely provided with

lists of suspicious vessels which need to be tracked. This

requires that some rules need to be added “on the fly”, which

may also only be valid during a limited time period, whereas

others remain more stable.

However, the system should also be capable of updating

itself without explicit user intervention, i.e., it should detect

if the previously learned models have become outdated over

time (i.e., detect concept drift), or if situation type definitions

may have become inaccurate over time. This criterion therefore

identifies the ability to either fine grained evolution, by e.g.

updating existing or adding new rules, or coarse grained
evolution, by allowing to incorporate different SA algorithms

and strategies. Additionally, it is highlighted whether this

adaptation is conducted automatically, e.g. incorporating new

rules for identified outliers, or allows for manual SA adapta-

tion.

System Tuning. The workload put onto a SAW system may

heavily depend on various factors like the state of the envi-

ronment, available extent of (sensor) information, identified

situations, complexity of the SA algorithm etc., which are

subject to changes over time. Despite these influencing factors,

such systems are required to respond in a timely manner,

calling for an appropriate reaction of the system through, for

instance, allocation of additional resources or the adjustment

of optimization strategies. Therefore, this criterion evaluates
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whether the system allows for a runtime tuning of the system

to maintain SAW with respect to, for example, performance

and response time.

Knowledge Base. Analogously to a human operator who gets

more and more experienced during this career, an intelligent

system should become better in its assessment capabilities

over its lifetime. Incorporating a dedicated knowledge base

allows for storing available domain knowledge, as well as

persisting historic data, which could be employed to aid

the interpretation of ongoing situations. An intelligent SAW

system could for instance refine its predictions regarding the

Projection of situations based on similar situations experienced

in the past. Conversely, Action Support could be refined based

on analyzing which actions that have been performed in the

past in similar situations have yielded the desired output.

Therefore, we analyze whether the surveyed approaches

make use of a knowledge base, and how this knowledge base

is used within the SA process, in order to learn from past

experiences.

iii) Usage Evolution
Incorporating Human Intelligence. [8] has emphasized the

need to directly incorporate the role of human intelligence

into SAW systems. A successful SAW system should combine

machine computing power with human cognition and intuition.

Therefore, this criterion studies how operators can transfer

their knowledge to these SAW systems (e.g., by guiding the

system learning, as in [24]).

Personalization. As highlighted in [3], different operators

exhibit different roles and preferences, for instance some

individuals prefer many, others fewer or different types of

alerts of different levels of criticality (e.g., as realized in [24]).

Different working procedures also demand for a configura-
tion thereof. Furthermore, tracking, persisting and analyzing

the preferences and working routines of different operators

corresponds to user refinement, and would allow to match

the users preferred working routines. Therefore, this crite-

rion investigates the provided personalization through explicit

configuration support as well as self-learned adaptivity of the

system.

Explanation and Exploration. Trust and understanding is a

critical aspect for the acceptance of a SAW system through

operators [3]. To increase that, a SAW system needs to be ca-

pable of providing an explanation of the conducted processing

of the situational information in terms of data and workflow

provenance [25] over time and allow for an exploration of

that by the operator. Therefore, this criterion discusses the

explanation and exploration capabilities of the system.

IV. SAW SYSTEMS

In the following section, we evaluate and compare a se-

lection of currently available SAW solutions on basis of

our criteria catalog. Our selection of approaches is targeted

towards providing a broad overview of distinct SA techniques,

whereby we aimed at choosing recent as well as influential

approaches. We shortly sketch each approach, and highlight

distinctive and interesting features. The systematic evaluation

w.r.t. our criteria catalog is summarized in Fig. 2.

The Situation Awareness Assistant (SAWA) described by

Matheus et al. [15], [26] represents a flexible tool suite

for creating SAW applications as rule-based expert systems

(Situation Assessment). These are based on an explicit Domain
Model comprising of formal ontologies, which the user must

specify by extending the encompassed SAW Core Ontology

using the provided Knowledge Management suite. In princi-

ple, thus a variety of Input Data is supported, which may

be of heterogeneous nature. SAWA-based systems can only

detect a priori specified situations, and SAWA does not sup-

port uncertainty reasoning (Incompleteness and Inconsistency),

however provides Projection support in the form of what-if
queries. Therefore, SAWA’s successful application massively

depends on the user’s profound domain knowledge, requiring

the user to exactly know all aspects of interest. No facilities

are provided to validate that domain knowledge (e.g., by

incorporating and checking with available data). SAWA has

been evaluated on a simulated, manually constructed scenario

from the application domain of supply logistics (Application
Domain).

Edlund et al. [16] describe a SAW system for sea-

surveillance (Application Domain) similar to SAWA, which

also bases upon an ontology (Domain Model) and a rule-

based reasoning engine (Situation Assessment). It is especially

emphasized that this system is suited to reason about situations

that develop over time (Capturing and Tracking Evolution),

which are modeled by connecting the sets of interrelated

objects with time connectors (e.g., corresponding to later,

contemporary, synchronic, prestart). However, these situation

evolutions thus can only be specified in a sequential manner

using a dedicated rule editor. Alternative evolution cannot be

specified within a single situation type (e.g., a given situation

might either evolve one way or the other). Furthermore,

situations can be only detected after they have occurred.

Therefore, Edlund et al. state the need to extend their system to

allow for situation warning, as operators should be warned of

possible situations while they are occurring, not just after they

have happened. The system has been evaluated in a user study

involving maritime surveillance operators [3], who especially

appreciated the support for detecting and tracking evolving

situations. As this SAW system is realized as an agent system,

Edlund et al. emphasize it would allow for System Tuning.

Regarding load balancing purposes, agents could be moved to

faster systems if their loads were continually high, or currently

unnecessary reasoning modules could be discarded easily.

However, when tested with real-world maritime surveillance

data quantities, the employed agent framework was not capable

of handling the amount of data.

BeAware! [14] represents another framework for ontology-

driven, rule-based SAW systems (Situation Assessment). How-

ever, it specifically targets SAW applications in control cen-

ter environments, therefore spatio-temporal primitive relations

(Domain Model) are introduced, which facilitate the configu-

ration and reusability of this framework for these real-world
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monitoring applications. Baumgartner et al. have demonstrated

the applicability of their framework in a real-world road traffic

monitoring setting (Application Domain). BeAware! provides

concepts for Projection, as the likely evolution of a situation

can be predicted on the basis of these qualitative spatio-

temporal relations. Baumgartner et al. conclude with ideas

to extend their SAW ontology with an action awareness core

ontology, to provide support for modeling Actions suitable in

a given situation, which can be suggested to the operator.

Salerno suggests the integration of knowledge discovery

tools, such as data mining components, into SAW frameworks

[27], which aid analysts in the discovery or learning of domain

models and patterns relevant in this domain (Incorporating
Human Intelligence). Previously discovered or learned models

can drive situation assessment, therefore Salerno proposes to

store learned models in a model library for later use (SA
Adaption). He also underlines the value of historic data, such

as the knowledge of similar situations that occurred in the

past, which should be persisted in the evidence database
(Knowledge Base).

Approaches that employ anomaly detection techniques (Sit-
uation Assessment) for maritime vessel monitoring (Applica-
tion Domain) include [13], [17], [28], [29], [30], whereby

we will discuss the first representatively, where Laxhammar

performs unsupervised clustering (Situation Assessment) of

normal vessel traffic patterns [13]. The learned cluster models

can be used for anomaly detection in sea traffic (Application
Domain), and have been trained and evaluated on real recorded

sea traffic. Laxhammar notes the developed technique would

be applicable to other domains involving surveillance of

moving objects. The momentary location, speed and course

of the tracked vessels are used for creating the patterns,

corresponding to a homogeneous set of Input Data expressed

by defined feature vectors. However, Laxhammar notes that

complex anomalies involving multiple vessels and/or behavior

that develops over time (Capturing and Tracking Evolving
Situations) would necessitate a more sophisticated pattern

model, which remains future work.

Johansson and Falkman used Bayesian networks (Situation
Assessment) to detect anomalies in vessel monitoring (Applica-
tion Domain) [31], which however has only been evaluated on

a synthetic test data set. They advocate for Bayesian networks

due to their explanatory power (Explanation) and their ability

of handling incomplete data (Incompleteness and Inconsis-
tency). Furthermore, they especially highlight the possibility

of easily including domain experts’ knowledge during the

creation and for the validation of the models generated by

data (Incorporating Human Intelligence), which is in their

approach however restricted to the configuration phase of the

system, thus does not aid the maintenance of the SAW system

at runtime.

In [24], Rhodes et al. extend their previous work and present

a highly sophisticated approach by combining a rule-based

pattern recognizer with an anomaly detection model based

on the automatically learned behavior normalcy models sug-

gested in [12] (Situation Assessment). Thus, both anticipated,

routine behavior, as well as novel, unanticipated behavior

can be detected. Their system, which has been implemented

as a prototype for the US Coast Guard port surveillance

system (Application Domain), provides elaborate strategies for

operator-guided learning: Operators can refine the performance

of the learning system by confirming alerts, or indicating

examples of false alarms. Furthermore, they can optionally

guide learning by providing the system with examples and

counter-examples of activities of interest (Incorporating Hu-
man Intelligence). Regarding the incorporation of Contextual
Information, normalcy models can be learned for different

contexts (e.g., based on season, day-of-week, or for different

vessel classes).

Gariel et al. use clustering for anomaly detection (Situa-
tion Assessment) for airspace monitoring [18], in order to

detect non-standard aircraft landings. As an interesting idea

regarding the Explanation to human operators, they suggest

a complexity measure computed from all currently observed

outliers, which is based on Shannon’s entropy measure. This

measure represents an indication of the “disorder” of the

current environmental state in comparison to its typical state,

which increases with the proportion of outliers detected, and

thus serves as valuable information for managerial purposes

(i.e., the higher the disorder of the monitored environment, the

more operators are needed for controlling, and the higher the

workload on the operators).

Meyer-Delius et al. model spatio-temporal situations as a

combination of Hidden Markov Models and Bayesian Net-

works (Situation Assessment) [20]. These situation models

describe how the system evolves over time (Capturing and
Tracking Evolving Situations), and allow to track the current

state of an evolving situation. Furthermore, these models allow

for predicting the situation’s future state (Projection). They

evaluated their approach on simulated and real data on vehicle

passing maneuvers, as would be obtained from a driving

assistance system (Application Domain).

Krishnaswamy et al. propose an Advanced Driving Assis-

tance System (ADAS), which monitors and classifies driver be-

havior in real-time and suggests appropriate countermeasures

(Action Support), such as issuing alerts to fatigued drivers [32].

On-board vehicle data streams are mined, related to contextual

information (Incorporation of Contextual Knowledge) and

compared to a Knowledge Base comprising historical data on

crashes. This Knowledge Base is constantly populated with

new data gathered from the proposed vehicle on-board system.

The employed predictive models (Situation Assessment) are

thus incrementally updated and refined based on this new data

(SA Adaption).

Mirmoeini and Krishnamurthy suggest an algorithm for

adaptive Situation Assessment employing reconfigurable

Bayesian networks [33], [34] , which should account for

dynamic battlespace situation changes (Application Domain).

Bayesian networks have been chosen for the ability to handle

the dependencies among uncertain and incomplete information

(Incompleteness and Inconsistency). By learning the parame-

ters of small batches of data, the Bayesian network’s param-
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eters are adapted to slow changes in the battlespace situation

(SA Adaption). Furthermore, their proposed architecture feeds

the results from SA to a decision making system, where the

derived hypotheses are mapped to a set of actions. Since the

actions’ potential effects are also modeled, their effects on the

battlespace can be examined (Projection) The taken actions’

effects in turn are reflected in the next SA step, thereby this

approach implements a stochastic feedback algorithm.

V. LESSONS LEARNED

Fig. 2 represents a condensed summary of our evaluation,

serving as a quick overview of the capabilities of current SAW

systems in comparison. Based on this evaluation, we draw the

following conclusions regarding the state of the art in research

on systems supporting SAW, and directions for future research:

Indication that certain application domains favor certain
SA methods. The encountered application domains of the

surveyed approaches range from road and air traffic mon-

itoring, maritime traffic surveillance, military applications,

supply logistics to driving assistance systems. It is interesting

to note that the distinct application areas expose trends to

certain SA techniques, implying that the domains exhibit

crucial characteristics that favor one technique over another.

In the course of this survey ontology-based systems have

been applied to road traffic monitoring, supply logistics and

a maritime surveillance application. The approaches in the

maritime surveillance domain rather expose a strong trend

towards anomaly detection techniques whereas in the military

domain, Graphical Models have been very popular. However,

this indication would need to be verified by a dedicated survey,

and does not necessarily exclude the approaches from being

applied in different domains.

Domain characteristics. The choice of a SA technique suit-

able to the problem domain at hand vastly depends on the

heterogeneity of the input data and the available a priori

knowledge about the domain and the situation types of in-

terest: If detailed a priori knowledge about the domain is

available, the input data comprises heterogeneous entities, and

the situation types of interest can be determined in advance

and are not subject to frequent changes, template-based SAW

systems basing on ontologies and rules occur to be preferrable

[3]. However, if the observed domain frequently changes,

comprises rather homogeneous objects, and the situation types

cannot be specified in advance, but correspond to abnormal

events and behavior, machine-learning based anomaly de-

tection techniques represent the favorable choice. Examples

of methodologies for anomaly detection that include human

expert knowledge are rare. Furthermore, models generated by

these techniques are generally more difficult to understand than

human-readable rules.

Hybrid systems. Only recently, hybrid approaches are emerg-

ing, which comprise a combination of expert-defined rules

with anomaly detection based data mining techniques (e.g.,

[24], [35]), thus aiming at combining the advantages of both

approaches. However, this raises the interesting issue of how

these distinct approaches can be interlinked. A highly promis-

ing way towards this direction has been suggested in [35],

where Riveiro et al. studied interactive ways of visualizing

both expert-coded rules as well as the normal behavioral

models built from data of a hybrid SAW system: Joint visu-

alizations of normal behavioral models and the corresponding

rules allow to depict the whole system knowledge space, thus

revealing how the expert-defined rules fit with the normalcy

models built from the data, which highlights areas the system

has not knowledge about. However, this visualization approach

mainly targets at Explanation and Exploration, but thus not

allow to interlink these concepts further based on the derived

conclusions. Future research could investigate whether the

two approaches, which currently are used in an independent

fashion, could be integrated more tightly. An operator might

for instance decide to create a rule for a certain anomaly, in

which case the system could provide support by automatically

suggesting potential rules (e.g., by deriving the spatio-temporal

relations of the current anomalous case).
Action support scarcely available. Supporting the operator

by suggesting suitable actions in a given situation is scarcely

supported by current SAW systems. Of those rare systems like

[34], a dynamic evolution of the suggested actions on basis of,

either user feedback or through dynamically learning applied

actions from a knowledge base, is not provided. This also

entails that the implications of taken actions on the long-term

evolution of the situations at hand cannot be appropriately

analyzed within the SAW system.
Learning from the past is mostly not supported. Previously

observed data is rarely reused to refine the predictions of

evolving situations, or suggest actions that should be un-

dertaken in a given situation, which could be considered

squandered potential in the light of ever-growing amounts of

sensed data, and decreasing prizes for data storage devices.
Explanations of not a priori defined situations problematic.
A priori specified, rule-based situation types are considered to

be more or less “self-explaining” to a human reader, likewise

for the visually descriptive Graphical Models. Contrastingly,

the results of machine-learning based techniques, allowing for

the detection of situations that are not a priori known, are

often more difficult to interpret, especially if they incorporate

feature vectors of multiple dimensions, which cannot be jointly

visualized. Consequently, this hampers the trust of operators in

the systems. However, interesting concepts have been proposed

aiming to address these issues (e.g., [17]).
Maintaining SAW evolution not yet matured. As can be

inferred from the evaluation, concepts for maintaining SAW

have been emerging just recently. Maintaining SAW is sup-

ported only by some recent approaches like [24], whereas

older approaches disregard SAW maintenance completely. If

maintenance is supported, it is however not supported to a full

extent, leaving space for further improvements.
Evolution models rare. Whereas the capability of tracking

evolving situations, as well as predicting their likely evolution,

is stated as a relevant issue in numerous publications, situation

models explicitly accounting for this are rarely found.
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VI. CONCLUSION

In the present survey, we analyzed a range of recent SAW

systems w.r.t. their abilities for supporting human operators

in gaining and maintaining SAW, which requires that these

systems are capable of tracking the evolution of the mon-

itored environment and adapt themselves to environmental

changes and user needs. Based on a set of criteria allowing to

study these issues, we performed a comparative survey, which

revealed that especially the aspects needed for maintaining
SAW are not fully supported by current SAW systems, thus

indicating needs for further research in this direction.
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