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Abstract—When disaster strikes, be it natural or man-made,
the immediacy of notifying emergency professionals is critical
to be able to best initiate a helping response. As has social
media become ubiquitous in the recent years, so have affected
citizens become fast reporters of an incident. However, wanting
to exploit such ‘citizen sensors’ for identifying a crisis situation
comes at a price of having to sort, in near real-time, through
vast amounts of mostly unrelated, and highly unstructured
information exchanged among individuals around the world.
Identifying bursts in conversations can, however, decrease the
burden by pinpointing an event of potential interest. Still, the
vastness of information keeps the computational requirements for
such procedures, even if optimized, too high for a non-distributed
approach. This is where currently emerging, real-time focused
distributed processing systems may excel. This paper elaborates
on the possible practices, caveats, and recommendations for
engineering a cloud-centric application on one such system. We
used the distributed real-time computation system Apache Storm
and its Trident API in conjunction with detecting crisis situations
by identifying bursts in a streamed Twitter communication. We
contribute a system architecture for the suggested application,
and a high level description of its components’ implementation.

I. INTRODUCTION

During the last decade, social media channels have evolved
to the point of becoming omnipresent in our everyday lives.
Platforms, such a Twitter, play a vital role in sharing infor-
mation fast. It should come to no surprise that the Twitter
data pool is popular for information mining as it can reveal
valuable insights, be it for crisis monitoring applications,
or marketing, to monitor the perception of a new product.
Moreover, being able to utilize Twitter data to promptly detect
a situation that requires a responsive action from a rescue crew,
e.g. during natural disasters, can often save lives. However,
even the situation detection alone is non-trivial. For a human,
processing Twitter conversations for this purpose would mean
having to look into the content of each message and extract
the interesting information from it. A more efficient approach,
better suited for a computer, is to cluster similar posts without
having to first consider the semantics of the content. To satisfy
the real-time detection demands, techniques for bursty topics
identification are applicable here.

Bursts are in this context collections of posts mentioning the
same topic more often within the current period than within the
previous one. The problem of detecting burst topics falls under
a broader category of research dealing with Topic Detection
and Tracking (TDT) that has been extensively addressed in
academic articles.

Of the various TDT approaches, clustering is a popular one
to identify bursts. Other methods for burst detection include
finite state automata, Fourier transform, time series, or Wavelet
transform [1]–[3]. For our first setup, the clustering approach
appealed the most to us thanks to its inherent property of being
readily parallelizeable.

However, the enormous throughput of the real-world
streams of Twitter posts prohibits timely online processing
of a sequential implementation of state-of-the-art methods for
topic clustering. For an acceptable performance, this problem
requires single-pass, and optimized methods, as well as scal-
able implementation. In the recent past there has been work
on successfully applying Cloud technologies to the online
clustering problem to guarantee scalability, and near real-
time processing of streaming data [4]–[6]. In this paper we
show that Cloud technologies have a potential in improving
responsiveness during emergency situations through mining
social media content.

Since our system also needs to work with persistent data,
we decided to make use of the Trident API, a high-level
abstraction of Apache Storm, as it makes stateful processing
more manageable than Storm alone. Although Trident is
gaining popularity, to the best of our knowledge, we are not
aware of any other systems that employ Trident for the use
of Burst Topic Detection. In our work, we evaluate Trident’s
applicability to detecting an outburst of a crisis situation in
near real-time. We propose an architecture for such an online
disaster detector system and contribute a high level description
of a Trident topology implementation.

The rest of this paper is organized as follows: In the next
section we discuss a number of research areas related to our
work and identify the specific ideas from which our devised
system borrows. In sec. III, we detail our approach to detecting
new emergency situations from Twitter data streams. Sec. IV
discusses our test cases. Finally, in sec. V, we conclude on
our findings, and provide an outlook on future work.

II. RELATED WORK

Due to the multi-disciplinarity of the envisioned application
domain, related approaches, and valuable preparatory work
need to be drawn from several areas. Techniques essential to
address the requirements imposed by the crisis management
application domain can be found in the research fields of Event
Detection, First Story Detection, Burst Detection, Knowledge



Bases, Keyword and Topic Extraction, and Parallelization,
which we will motivate and discuss in the following.

a) Event Detection: Finding a common topic within a
set of documents has been covered extensively in research
(TDT initiatives). In the subject of crisis monitoring, this
research also finds its application, as event/story detection is
in this subject’s heart. There are various approaches to this
problem: e.g. in [7], [8], the method of clustering documents
based on word similarity using the Vector Space model
(VSM) is presented. In [9], the clustering of the documents
is improved by considering the locality information in the
process of discriminating the events into the clusters. In [10],
the similarity score calculation also incorporates the social
network structure besides the content of the message. Yet
another class of solutions for event detection, and tracking
bases on probabilistic methods, such as presented in [11]–
[13]. There, the actually encountered message density w.r.t. the
specific topics is compared to an expected density. A valuable
work summarizing research on event detection in the realm of
Twitter can be found in [14].

b) Detection of Novel Events: Although organizing mes-
sages into clusters brings a useful insight to our work, it is
not sufficient for our problem solution. We have to consider
methods capable of identifying those topics that have not been
discussed before within some long enough time period. In
other words, we need to identify posts that are discussing a
new story. First Story Detection (FSD) methods are therefore
well applicable here, as they are designed to detect when a
document discusses a previously unseen content. Examples
of FSD implementation are presented in the works of [15],
[16]. The authors propose an optimized approach to FSD,
which makes it well suited for identifying events online, i.e.
for identifying events from real-time streaming text such as
tweets. The ideas set out in these works form the basis of our
new event detection algorithm.

c) Identifying Bursts: Typically, whenever a newsworthy
event occurs, many people tend to share information about it
on social media. This causes a temporal burst of closely related
messages which can be captured [1], [17]. Detecting bursts
has also been well studied [1]–[3], [18]. For example, in [3],
the author achieves real-time event detection by clustering
wavelet-based signals. Wavelet transformation technique is
applied to build signals for individual words, which are cross
correlated and the signals are then clustered using a scalable
eigenvalue algorithm. In our approach, we use a bucketing
method, similar to that proposed by [15], [16], since it directly
fits the parallel programming paradigm we adopted.

d) Knowledge-based Sensing: In our system, we also
need to consider techniques that allow us to report only
events which we are interested in. In this context, an event
is defined as a topic that suddenly draws the attention of
the public. As such, it may often be of no value for our
purposes, since, for example, news about celebrity deaths are
also causing abrupt increase in related posts being sent. Our
application needs to be able to identify only those events that
are related to disasters. To achieve this, a disaster ontology

may be employed. There have been many attempts in building
an ontology related to disaster. It is, however, often the case
that existing disaster ontologies focus only on a specific type
of disaster, which they explore and describe in detail [19],
[20]. For our purposes, it is sufficient to have a high level
disaster dictionary to identify the particular disaster situation
referred to in the tweets. Working with multiple languages
would, therefore, be also feasible.

e) Extracting Keywords: Document keyword and
keyphrase extraction is another complex problem addressed
in the research [21]. The frequent techniques include word
frequency analysis, distance between words, or lexical chains
to rank the keywords. When it comes to keyphrase extraction,
graph-based ranking methods are being successfully used.
However, such methods are proposed primarily for a single
document or a document collection. This is not directly
applicable when it comes to extracting representative words
from such a short document as a tweet. The large variety of
topics found in tweets also makes this task more challenging.
In [22], the authors propose a method specifically for keyword
extraction from Twitter. The approach is based on organizing
keyphrases by topics learnt from Twitter. For our purposes,
the best approach is to apply a content-sensitive keyword
extraction, as our tweet collection from which we need to
extract the keywords is already formed of similar content.

f) Meeting Real-time Demands: The algorithms that can
achieve our task of detecting a new story from a real-time
stream of data are comparatively computationally expensive.
To safely achieve real-time response of a system processing the
full streaming data flow from Twitter (the so called ‘firehose’
), parallelization of the algorithm is necessary. Some recent
studies have shown that the implementation of clustering al-
gorithms on the Storm distributed framework is reasonable [4],
[5]. In our implementation, however, we utilize the higher
level Storm API called Trident. This design benefits from the
guarantee of exactly-once semantics1, as well as the ability to
process streaming messages in batches which performs better
when querying a database system.

III. IMPLEMENTATION

Extracting useful information from Twitter data flow is
no doubt a challenge. The posts are not only short (140
characters), and varied in topic but also highly noisy, in that
most of the conversations contain a lot of useless babble. The
task of identifying bursts offers itself as the best approach to
finding information of value as more people will get drawn
into a conversation about something vital than about a certain
individual reporting on currently drinking the most delicious
cacao.

In this project, we focus on utilizing one of the FSD
technique which applies a Vector Space model and is op-
timized using Locality Sensitive Hashing. This technique is
described in detail in [16], and we provide a brief overview

1During a node failure, only the messages that have not been fully processed
will get resent. This is as opposed to Storm’s at-least-once semantics, where
some messages may get processed twice.



in subsection III-B1. This FSD algorithm outputs a similarity
score for each incoming message together with the ID of the
message to which it is the most similar. The next stage involves
the actual clustering, or bucketing to identify bursts. This is
performed based on the message’s content similarity score
and monitoring of the growth rate of the buckets in which
similar tweets are gathered. The components of our system
are described in sec. III-B.

A. Distributed Platform

Besides Spark Streaming2, the Apache Storm Trident API
is currently the best suited framework for our application. It
simplifies the implementation of parallel tasks by providing
a programming interface suitable for stream processing and
continuous computation3.

As already mentioned in sec. I, the successful use of Storm
Apache in data stream clustering applications has recently
been reported [4], [5]. The advantages of using the Trident
API over the core Storm API in our application are threefold:
First, Trident can guarantee exactly-once semantics as opposed
to at-least-once semantics of Storm. This means, that we don’t
have to worry about already processed messages being resend
in case of a failure in the computing cluster and therefore we
will not be faced with potential erroneous bursty event reports.

Another advantage of using Trident is the fact that it handles
streams of batches of tuples as opposed to streams of tuples.
This achieves better performance for communication with a
database.

Lastly, state persistence handling is incorporated generically
in the Trident API which allows us to be flexible in the
selection of our back-end technology. On the other hand, using
Trident requires some additional checks for our algorithm,
which we point out at the end of subsection III-B2.

B. System Components

Fig. 1 shows a component overview of the proposed system.
In our setup, the topology is fed by data from a KafkaSpout,
where the source of the stream is 1% of the Twitter firehose
accessed through a Hosebird client4.

The first component of our system implements the core
parts of the open source project “First Story Detection on
Twitter using Storm“5 and adopts it for running on an actual
distributed cluster with real-life data streams. For later queries,
tweets are saved in the NoSQL distributed storage mechanism
Apache Cassandra. The next component takes care of grouping
of related tweets into buckets, which are monitored for bursts
based on their growth rate. References to the bulk of tweets
from the fastest growing bucket, i.e. the tweets form the burst,
are also made persistent. The task of the third component is
to decide whether the topic of the burst is of interest. The
final component executes only if a crisis related new event
was detected. Its task is to notify responsible operators from

2http://spark.apache.org/streaming/
3http://storm.apache.org/
4A robust Java HTTP library for consuming Twitter’s Streaming API
5https://github.com/mvogiatzis/first-stories-twitter

the area of the event occurrence, and to automatically spawn
a new instance of a Twitter search tracking this event.

1) FSD using Locality Sensitive Hashing: In this section,
we briefly explain the gist of the FSD component.6 This
component outputs additional information for each incoming
message: the Twitter ID of the closest neighbour message (the
most similar post), and a score of similarity in the range of
[0.0− 1.0], where 1.0 identifies an identical post.

Every newly arriving message from the Twitter data stream
is split into words and a number of preprocessing steps are
applied (e.g. removal of URLs and mentions, replacement
of some, often intentionally, misspelled words, as well as
simplistic7 word stemming). The cleaned up corpus is then
submitted for calculation of the nearest neighbour.

First, this process involves determining the TF-IDF (Term-
Frequency - Inverse Document Frequency) weighting for each
term in the message to convert the representation of the tweet
message into a vector normalized by Euclidean norm. The
new vector must then be compared to the vectors of the
preceding messages. An approximate near-neighbour among
the seen documents can be found fast using the Locality
Sensitive Hashing algorithm. It works on the assumption that
similar tweets tent to hash to the same value. This allows
for an efficient optimization where the number of documents
to which comparison has to be made is greatly reduced.
Namely, it uses hash tables to bucket similar tweets so that
each incoming tweet will be compared with only the tweets
that have the same hash.Finally, cosine similarly measure is
applied to compute the distance of the nearest neighbour from
the incoming tweet. If the calculated distance to the closest
tweet is below a predefined threshold, this algorithm also uses
an additional step of comparing the distance to a fixed number
of latest tweets. This step alleviates the problem of possibly
overlooking a closer tweet posted in the immediate time
proximity. Such problem can easily arise given the method’s
randomness of selecting tweets for comparison in the first
place.

2) Bucketing and Identifying bursts: In effect, the process
of grouping the posts that are similar also identifies a new
event. In other words, if an incoming message was found to
have a low similarity score, this message will be marked as
a potential new event (by placing it in a new bucket). Then,
given that there will be enough related/similar posts following
it, this event will grow in its own cluster. In [16], this process
is referred to as threading, whereas in [10] it is called the
cluster summary. We chose to describe this process in two
subtasks - one of bucketing and the other of identification of
the bursts.

The first task of this component is to gather similar tweets
in the same bucket. Before bucketing, tweets whose simi-
larity score is unfavorable (too low) are filtered out. I.e. if
(1 − cosineDistance) < threshold the tweet is included in

6For detailed explanation, refer to the original author’s website at http:
//micvog.com/2013/09/08/storm-first-story-detection/

7For performance reasons, we only apply stemming to English words that
have a common stem in all their inflected variants
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further processing. The predefined threshold was found to give
the best result if kept in the range of [0.5, 0.6]. As explained
in [16], higher threshold values cause the topics in a bucket
to be diverse and plentiful, while lower threshold makes the
topics very specific and scarce. A passing tweet will then be
placed either in a new bucket, if its nearest neighbour is not
already in one of the existing buckets, or it will join the already
existing cluster of similar tweets in their bucket. If it ends up
in a new bucket, it is considered to potentially contribute to a
new story discussing a previously unseen content. The number
of buckets is finite, so whenever all buckets are occupied and
a new story tweet streams in, the bucket that has the lowest
timestamp of its most recent content update is freed up for
reuse. Also the size of a bucket is limited. Whenever a new
tweet is determined to belong to a full bucket, we simply
remove the older half of the bucket to free up space. The
assumption is that the tweets that the removed IDs refer to
are not of importance (too far apart to be able to form a burst)
since otherwise they would have been already reported as a

burst.
An important Trident implementation detail lies in the

necessity to first simulate the filling of the buckets. This is
because Trident works on batches and, therefore, the state of
the buckets gets updated only at the end of a batch. Let us
consider the case when a new batch contains a new event as
its first tweet, and the tweets following it are related only to
that first tweet. Since that tweet is not placed in the bucket
before the next tweet is processed, the next tweet would also
be (incorrectly) identified as a new event and a new bucket
would be assigned to it. This is a clear disadvantage of using
batches in our algorithm, however, it pays off later when
communication with a database system is required.

Finally, once in a while a fastest growing bucket will be
detected. Before passing the burst content down the processing
pipeline, the Burst Event Detector determines whether this
bulk of tweets could be considered a burst by checking the
time span within which the tweets were posted. The burst
content is then consumed by the Disaster Detector component.



3) Disaster Detector: The task of the Disaster Detector is
to find whether the captured event is an emergency situation
and, if it is, where it is located. First, the keywords must
be extracted and based on them, utilizing our disaster type
dictionary, we identify the topic. Finally, if the topic matches
a disaster situation, we localize it. At this stage, database query
is necessary to access the tweet.

a) Extracting keywords: As keywords, we wish to find
five words that best summarize the content of the burst. Our
approach to finding them involves calculating TF within the
burst. In other words, we only weigh each term positively
for the number of times it occurs within the burst. The
disaster dictionary is meant to contain words representative
of a specific disasters. For our testing purposes, we populated
our dictionary by representative keywords of a hurricane
and snowstorm disasters. The datasets were compiled from
querying Twitter’s historical stream for the specific disaster
types during their known occurrences.

b) Identifying disaster type: The topic is identified by
matching any of the keywords to the part of the dictionary
describing a given (predefined) topic. As an additional check,
needed to prevent overlapping terms causing us to select the
wrong topic, we weigh the keywords negatively relative to
the number of times it occurs in the dictionary entry for other
topics. The entries for topic, keywords, IDs of the contributing
tweets and their text, location (if given) and users’ information
are saved to Cassandra. The database can be queried by
other topologies (possibly spawned later to do retrospective
analysis on the tweets) without affecting the performance of
our system.

c) Geo-localizing the event: In order to inform only
those crisis response agencies that are directly concerned with
the occurring crisis situation, we need to be able to determine
where the event is happening. Spacial grounding of the tweets
in the burst requires to consider not only the coordinates,
if given, but also the user’s location as well as the places
mentioned directly in the text of the tweet. This non-trivial task
is carried out by the Geo-Tagger subcomponent we describe
in our previous work [23].

4) Alert Component: Once a disaster event is detected and
its location, type and representative keywords are determined,
we pass the information to the Alert component. The keywords
are used to start up new data collection sessions from Twitter
both from recent history as well as from a real-time stream.
Finally, the responsible operators can be notified who, for the
duration of the disaster, are assumed to administer searches
also from other social media channels using our CrowdSA
application presented in [23]–[25].

IV. RESULTS AND EVALUATION

Due to the difficulty of determining the “ground truth” and
the appropriate metrics, a fully functional evaluation of our
system (the correct and near real-time detection of a crisis
situation) is beyond the scope of the present work. However,
we devised three types of tests to show that our proposal of
implementing the detection of crisis situations from Twitter

content in Trident is reasonable. All tests carried out are run
in an unsupervised mode, where we do not assume to know
a priori the type of event being detected. The data collected
for this purpose are from hurricane Iselle reaching Hawaii in
August 2014, snowstorm affecting the US East cost in January
2016, and hurricane Patricia hitting Mexico in autumn 2015.

In the first test case, we published our collected historical
data to the Kafka queue and measured the processing speed
in terms of the number of tweets processed in a second.
We were able to reach an average (for the three different
datasets) processing speed of about 4000 messages per second.
This is below what the full Twitter firehose could serve (on
average, there are about 6000 messages posted on Twitter in
one second8). However, after increasing the parallelization and
utilizing a larger cluster, the performance can be boosted to
surpass the firehose requirements.

In the second testing scenario, we evaluated the effective-
ness of the burst detection capability and the keyword extrac-
tion by consuming the historical datasets from the hurricane
Iselle. Our system could detect a number of bursts within
the datasets occurring relative to the time of the day. Most
importantly, the largest burst was detected on the 10th of
August, which corresponds to our graphical inspection of the
dataset.

For the third test, we fed the system by real-time Twitter
streaming data. These account for about 1% of the Twitter
Firehose. Since it was not expected to encounter any hurricane
or snowstorm disaster during the run of the test, we let
the system report on all bursts which it found, essentially
skipping the Disaster Detector component. We observed that
even with only six nodes, the system was performant in that
it processed tweets fast enough without getting congested and
falling behind.

All of the above tests were run on a six node virtual cluster
with 8 cores each, 64 bit CentOS, and 16GB of RAM. The
cluster was provisioned using Ambari9 and runs Storm, Kafka
broker, and a Cassandra server. The 1st node runs Nimbus
(Storms master daemon) while the rest are the worker nodes
(running Storm’s Supervisors). Greater parallelization within
Storm was selectively applied for intensive tasks such as
the dot product calculation in similarity estimations. As a
future evaluation strategy, we plan to experiment with different
parallelization setups within Storm while processing the same
data stream of tweets to better understand the capabilities of
the distributed framework.

V. CONCLUSION AND FUTURE WORK

In this paper, we reported on our work that focused on
the problem of near real-time (online) Burst Topic Detection
from streaming Twitter data in application to detecting newly
occurring crisis situations. Our approach involves clustering
tweet messages based on content similarity and implementing
the algorithms in a parallel fashion using the Apache Storm

8http://www.internetlivestats.com/one-second/
9https://ambari.apache.org/



Trident API. Our results have shown that the use of First
Story Detection in combination with capturing temporal bursts
of similar messages streamed from a Twitter firehose, and
mapping the captured events to a predefined disaster dictionary
enables fast reporting of a crisis situation when implemented
in a distributed fashion.

As a future work, we are interested in looking at the
potential improvements if the structure of the social network is
also considered in the similarity measurements. Additionally,
we plan to compare the results of the unsupervised event de-
tection (as currently performed by our setup) with a supervised
approach in which we would use our dictionary to filter tweets
before they are passed to the clustering component. Last but
not least, we would like to experiment with incorporating a
more sophisticated model for filtering out the tweets before
bucketing. Namely, since in the case of a large burst, it might
be more effective to also include the very near tweets in the
processing, we’d like to use a dynamic threshold value updated
based on the current state of the stream.
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