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ABSTRACT

Human operators of large-scale control systems face the prob-
lem of information overload induced by the large amount of
information provided by multiple heterogeneous and highly-
dynamic information sources. Situation-aware information
systems support operators by the aggregation of the avail-
able information to meaningful situations. Ontologies are
a promising technology for realizing such systems, because
of their semantically-rich kind of knowledge representation.
The cross-cutting role of ontologies and the streaming char-
acter of situation awareness, however, challenge the design
of an appropriate software architecture. In this paper, we
propose a domain-independent software architecture based
on a core ontology for situation awareness which leverages
the reusability and the scalability of involved software com-
ponents. This is achieved by the application of the well-
known software architecture pattern pipes-and-filters. The
proposed architecture is demonstrated by examples from the
field of road traffic management. In addition, we contribute
several lessons learned which should be helpful for develop-
ing ontology-driven information systems in general.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: domain-specific archi-
tectures, patterns
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Ontologies, Situation Awareness, Software Architecture

1. INTRODUCTION
Information overload is a severe problem for human oper-

ators of large-scale control systems. By large-scale control
systems we mean systems in a heterogeneous and highly-
dynamic environment, which deal with a large number of
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real-world objects as, e.g., in the field of road traffic man-
agement. An operator of such a system has to consider all
streams of information about these objects—typically stem-
ming from different information sources—in order to deter-
mine a complete and coherent view of the occurring situa-
tions and, thereupon, to take the right action (e.g., reduce
the speed limit of a road using variable message signs). Situ-
ation awareness (SAW) supports operators by pointing their
attention to relevant sets of interrelated objects thereby re-
ducing information overload through the aggregation of the
available information to the situations of interest (e.g., a
traffic jam that causes an accident). Since the usage of
ontologies has been regarded to be beneficial for SAW [9],
we have developed a conceptual framework of an ontology-
driven information system for SAW in our previous work
(e.g., [3], [2]).

The first problem towards the implementation of such a
conceptual framework is ascribable to the general character-
istics of ontology-driven information systems (cf., Guarino
et. al. [7]). That is, in ontology-driven information systems,
the ontology is an integral and local part of the system which
is used at run time. With respect to ”traditional” multi-tier
software architectures, this means that the ontology con-
tributes to the persistence layer, the business logic layer,
and the presentation layer across the whole architecture. To
give an example, the individuals of the ontology represent
the persistent information received by various information
sources (e.g., sensor networks), they are aggregated to situa-
tions via mostly declarative business logic, and they are also
used for the communication with the human operator on the
presentation layer. Thus, the ontology has a cross-cutting
role and induces a tight coupling of the layers of the archi-
tecture thereby endangering its reusability. Unfortunately,
discussions how to overcome this problem in high-level soft-
ware architectures for ontology-driven information systems
are scarcely available.

The second problem is that current ontology-driven in-
formation systems typically focus on query answering. In
contrast, SAW applications usually operate on streams of
information, since they have to constantly monitor the en-
vironment under control. That is, the focus is on pushing
dynamic individuals rather than pulling static individuals
from an ontological knowledge base. Thus, ontology-driven
information systems dealing with such streams of informa-
tion have to be capable of processing highly-dynamic and
volatile individuals (e.g., a continuously growing traffic jam)



which not least compromises the scalability of the software
architecture.

In the scope of this paper, we contribute a software archi-
tecture for an ontology-driven, reusable framework for SAW
applications which tackles the above problems and leverages
reusability as well as scalability. Beforehand, we provide an
overview of related work in section 2. Along with the intro-
duction of the software architecture in Sect. 3, we demon-
strate our approach by applying it to the domain of road
traffic management1. In addition, we provide a number of
lessons learned during the development of the proposed ar-
chitecture which should be helpful for reconciling software
architectures and ontologies in general (cf., Sect. 4). We
conclude the paper with a summary of our contribution as
well as an overview of further prospects in Sect. 5.

2. RELATED WORK
Naturally, the closest field of related work are current

ontology-driven approaches to SAW (cf., our comparison in
[1]). SAWA (Situation Awareness Assistant) by Matheus
et. al. [10], an ontology-driven SAW application originating
from the military domain, provides an overview of the over-
all system architecture its SAW ontology is used in. How-
ever, Matheus et. al. merely depict the functional building
blocks of their system, a discussion of the technical soft-
ware architecture elaborating on the problems identified in
the previous section is missing. In this respect, the work
by Chen et. al. [5] is similar—CoBrA (Context Broker Ar-
chitecture) provides an ontology-driven system architecture
for pervasive context-aware environments. However, Chen
et. al. do not discuss the aspects of reusability and scalabil-
ity when developing such a highly-dynamic, ontology-driven
system.

The second area of related work are software architec-
tures for ontology-driven information systems. Protégé [6]
is a framework or set of tools for building ontology-driven
information systems. However, Protégé focuses on the per-
sistence and presentation layers of a multi-tier architecture
omitting the actual implementation of declarative business
logic—which is admittedly not the goal of Protégé. Nev-
ertheless, one can not deduce a generic software architec-
ture for ontology-driven information systems by using the
framework. In general, such middleware for using ontolo-
gies largely focus on specific layers. For example, Kalyan-
pur et. al. [8] provide, like many others, an approach to
automatically map OWL ontologies into Java thereby pro-
viding an approach to tackle the persistence layer. In con-
trast to our work, all of them target software design—we are
rather interested in high-level software architectures above
concepts and classes. One of the scarcely available examples
that detail the cross-cutting role of ontologies is the work by
Tran et. al. [12] who describe an approach to use an ontol-
ogy in a multi-tier web application based on the middleware
KAON22. However, their architecture is more about query
answering and semantic mediation, whereas our SAW sys-
tem involves a streaming-oriented processing with a highly
complex business logic.

1Our work is supported by the Austrian highways agency
ASFINAG Traffic Telematics Ltd.
2http://kaon2.semanticweb.org

3. AN ARCHITECTURE FOR ONTOLOGY

DRIVEN SITUATION AWARENESS
In this section, we introduce the application domain of

road traffic management and detail the basic information
flows. Subsequently, we give insight into the proposed soft-
ware architecture for ontology-driven SAW applications.

3.1 From Road Traffic Management to Situa
tion Assessment

A typical road traffic management system involves a num-
ber of heterogeneous information sources each providing in-
formation according to a Terminology (T)-box, i.e., the vo-
cabulary of some domain ontology. The individuals con-
stituting the domain ontologies’ Assertions (A)-boxes form
a continuous stream of information about real-world traf-
fic objects (e.g., accidents, traffic jams) which have to be
aggregated to traffic situations.

Figure 1: Integration of the domain ontologies

In our running example, we incorporate the following in-
formation sources with their corresponding domain ontolo-
gies (cf., Fig. 1 for small extracts of these ontologies based
on our previous work [2]): A road maintenance system pro-
viding information about roadworks, an automatic traffic
jam detection system based on traffic sensors providing in-
formation about current chunks of abnormal traffic, and an
incident management system providing information about
traffic-related incidents. The operator of such a road traffic
management system has to be aware of all available infor-
mation in an integrated way, in order to assess the occurring
traffic situations (e.g., a traffic jam within a section of road-
works). Since these information are continuously and in-
dependently delivered by the different information sources
(e.g., one information source reports an accident and an-
other one independently reports a sensed traffic jam), an
appropriate architecture for achieving SAW has to be ca-
pable of handling streams of A-box statements, depicted as



solid arrows in Fig. 1. These streams are aggregated to
streams of A-box statements about situations (e.g., the sit-
uation ”accident causes traffic jam”), and are finally com-
municated to the operator.

In our architecture, the actual assessment of situations as
indicated above takes place based on an integrated A-box
which adheres to a domain-independent core SAW ontology.
We thereby follow the vision of Musen [11]—he anticipates
that future software systems are actually generic problem
solving methods that operate on specific ontologies; using
such systems is just a matter of mapping a domain ontology
to the ontology of the system. In our case, this mapping
is achieved by means of Domain Mapper components which
make use of a set of mapping rules per domain ontology
(e.g., each instance of the class Accident in the incident
management’s domain ontology is an instance of the class
Object in the core SAW ontology).

Apart from the possibility to reuse the situation assess-
ment facilities, also the overall performance can be influ-
enced via these mappings, because just the relevant individ-
uals are mapped and transfered to the situation assessment
system, thus reducing the size of the integrated A-box (e.g.,
mowing next to the road is negligible because it does not af-
fect the traffic flow). To sum up, the integrated A-box just
consists of the relevant A-box statements about individu-
als from the domain ontologies in terms of the core SAW
ontology.

3.2 Leveraging Reusability and Scalability
in OntologyDriven Situation Assessment

Upon the update and mapping of domain individuals, the
actual situation assessment is triggered. In detail, the whole
situation assessment process is separated into several con-
secutive reasoning steps which themselves make intensive
use of logic programming (LP) on the individuals of the
ontology, the usual ontological inferences, and some pro-
cedural extensions. The reasoning steps depicted as soft-
ware components in Fig. 3 are based on our previous work
[3] and merely serve as examples to describe the architec-
ture. In detail, the reasoning steps to be executed are the
collection of A-box updates (Change Collector), the selec-
tion of situations to be reevaluated (Situation Selector),
the projection of the evolution of the selected situations
(Evolution Tracker), and the actual assessment of new
situations (Situation Assessor). These reasoning steps
should be regarded as functional building blocks which have
to be implemented in coherent components. Then, the ques-
tion arises how to actually reconcile them in an appropriate
software architecture. Since all reasoning steps are triggered
by incoming streams of A-box statements, the individuals
again receive our attention when developing this architec-
ture.

A first intuitive approach sketched in Fig 2 (a) would be
that all components worked within a globally shared A-box
representing the current state of all individuals received from
all domain mappers and the statements inferred by a typical
ontology inference engine (e.g., derived types). However, if
all components worked within this A-box, they would have
to be aware of each other in order to avoid inconsistencies.
In fact, these inconsistencies would be due to the fact that
the different components have a transactional character and
should work in a given order—a requirement that can hardly
be assured when working in a globally shared A-box. Of

course, one could overcome this issue by adding control in-
formation to inference results indicating the results that are
relevant for a component. Such an approach would however
imply further unwanted dependences between the different
components leading to an inflexible architecture reducing
reusability. An alternative approach would be a layered ar-

Figure 2: Two flawed approaches

chitecture as depicted in Fig. 2 (b). With layering we mean
that each component would take the result of the previous
one and would thus work on the collected results so far. Al-
though we would thereby avoid most of the unwanted influ-
ences between the components themselves, we still have the
problem of performance or, hence, scalability. As we move
up the layers, the number of individuals naturally increases,
whereas it is not clear-cut that each higher level component
needs every individual at all. Rather, the number of rele-
vant individuals should decrease, because situation assess-
ment targets at aggregating information about objects to
situations. That is, by focusing on the relevant individuals,
we could omit this burden on the reasoning engine.

Our alternative solution to the above problems of reusabil-
ity and scalability proposed in this paper is the application
of a well-known software architecture pattern: Pipes-and-
filters [4]. The pipe enables the consecutive execution of
several components, each being dependent on the previous
one. Let us view these components as pluggable pipe ele-
ments3, each containing its own volatile, local A-box and
a reference to the local A-box(es) of the following pipe el-
ement(s) (cf. Fig. 3). That is, each pipe element con-
structs an A-box which is accessible from the outside world.
Moreover, the pipe element listens for updates to this A-box
(persistence layer), computes some inferences upon these
updates using the local rule engine (business logic layer),
presents the results to the user (presentation layer), and
writes the results into the referenced A-box(es). Thereby,
just the A-box statements that are relevant for the following
pipe element(s) are handed over via the mutually shared A-
box(es). By starting at the last element, one can construct a
pipe for the whole situation assessment process backwards.
Each pipe element is responsible for its local A-box, which
references the core SAW T-box. Nevertheless, it may be
necessary to incorporate some ground facts into situation
assessment which are independent from the different pipe
elements. Thus, an overall and persistent A-box outside the
pipe exists which is accessible from the pipe elements. Apart
from initial facts like, for example, the structure of the road

3Note that the pattern pipes-and-filters calls these pipe el-
ements ”filters”.



Figure 3: An architecture for ontology-driven situation awareness

network, this A-box contains the final and persistent results
of situation assessment without inconsistencies.

Let us revisit this architecture with respect to the initial
problem of ontology-driven information systems—the cross-
cutting role of ontologies in a multi-tier architecture. Be-
cause this cross-cutting role is inevitable, we have separated
concerns by introducing a fine-granular vertical slicing (col-
lect changes, select situations, track evolution, assess situa-
tions). Each vertical component, i.e. pipe element, has its
internal and—via the ontology—tightly coupled multi-tier
architecture. Flexibility is introduced by a uniform inter-
nal architecture for each pipe element enabling customiz-
able sequences of consecutive components. For example,
we may simply eliminate the assessment of evolving situa-
tions by omitting the corresponding pipe element Evolution
Tracker. In detail, each component has its own, but across
components reusable interfaces to A- and T-boxes (persis-
tence layer), the same ontological inference and logic pro-
gramming engines (business logic layer), and a uniform user
interface.

3.3 Implementation
We have implemented our architecture using the Jena Se-

mantic Web framework4. We have chosen Jena, because it
has a large developer community, a quite consistent API,
and and a tightly integrated LP reasoning engine based on
RDF triples. Regarding the actual setup, the domain ontolo-
gies as well as the core SAW ontology are formalized using
OWL-DL. For the ontological inferences we need for our ap-
plication we use the rule-based OWL reasoner provided by
Jena. Moreover, most of the business logic is implemented
with Jena’s LP engine. Where needed, procedural exten-
sions to rules are implemented.

As described above, each component has its own reason-
ing engine and its own local A-box, which is kept in memory
in order to provide a reasonable performance. Since com-
ponents are triggered by changes to these A-boxes, A-box
updates are performed in a transactional manner in order
to avoid premature, i.e., too early, triggers and, hence, in-
consistencies. The final results of situation assessment are
persisted in the global A-box enabling the publication of the
assessed situations.

4. LESSONS LEARNED
In this section, we describe several lessons we have learned

during the development of the beforehand introduced archi-
tecture and which should be helpful for building ontology-

4http://jena.sourceforge.net

driven information systems in general. We believe that
in particular developers of streaming-oriented systems, i.e.
those that push information instead of pulling it, should
benefit from our experiences.

4.1 ABoxes Drive Software Architecture
Most of current research on ontologies focuses on T-boxes,

whereas actual applications have to cope with individuals in
A-boxes. There are, however, several ontology middleware
projects (e.g., Protégé, Jena, KAON2) that—partially to-
gether with external reasoners and triple stores—may han-
dle thousands of A-box statements in a reasonable amount
of time. Although these middleware mostly provide, for ex-
ample, object-oriented abstraction layers, there are hardly
any guidelines for how to consistently work with these indi-
viduals in a larger scope, especially when working in such a
highly dynamic environment like SAW. In this context, the
most severe problems we came across during the implemen-
tation is the processing of updates to A-boxes. Naturally, in
a streaming-oriented system as induced by SAW, one is just
informed of the delta, i.e. the changed statements regard-
ing an individual which have to be sorted into the A-box.
Therefore, we also had to introduce a mechanism to notify
components about individuals that are created or cease to
exist in a transactional manner in order to avoid inconsis-
tencies. In a nutshell, we advise to not underestimate the
problems involved with highly dynamic A-boxes and rather
volatile individuals (e.g., traffic jams)—in fact, we believe
A-boxes drive the architectural aspects of ontology-driven
information systems.

4.2 Shared ABoxes Enable Separation
of Concerns

A tight coherence of components is one of the most im-
portant requirements in object-oriented design. Because of
an ontology’s cross-cutting role, this coherence can scarcely
be reached along the vertical dimension of a multi-tier archi-
tecture in an ontology-driven information system. The hori-
zontal, functional dimension may, nevertheless, be separated
into coherent components—in case a separation of concerns
regarding the different functional building blocks of the sys-
tem is established. Once such a separation is found, the
question is how coherent components actually interact. Ex-
amining approaches in traditional rule-based systems, such
a separation of concerns corresponds to a combination of
rule grouping and interface rules for bridging groups. How-
ever, such an approach involves a high level of complexity
(cf., Musen [11]) which should be avoided. In our view, this
complexity can be overcome if components interact via—at



best mutually—shared A-boxes thereby omitting rule de-
pendencies. Whereas this approach is especially intuitive in
streaming-oriented ontology-driven information systems, we
believe that it should also be applicable to other applica-
tions. In the end, it seems to be natural to use A-boxes,
which already inhere a cross-cutting role within a compo-
nent, for the interaction with other components as well.

4.3 Sequenced ABoxes Leverage Scalability
Another natural issue regarding logic programming and

ontological inferences is the problem of reasoning perfor-
mance and scalability. Although one may use the perfor-
mance tweaks offered by the applied reasoning engine, a
trivial way to achieve better performance is to decrease the
size of the A-box which allows to keep as much statements as
possible in memory. Our approach to achieve this decrease
is to favor sequences of A-boxes to layered A-boxes. Though
a bilateral dependency between two components that share
an A-box is thereby established, this trade-off is acceptable,
not least because a declarative description of the individ-
uals a component operates with seems to be possible. A
shortcoming of sequencing is that some statements are dupli-
cated from one A-box to the other thereby allocating more
memory than layering. Anyhow, the components become
easier to distribute enabling better scalability. We believe
that using sequences of components with local A-boxes for
ontology-driven information systems involving consecutive
reasoning steps is reasonable, because the application as a
whole will be easier to distribute and to scale.

5. SUMMARY AND FUTURE WORK
In this paper, we have proposed a software architecture for

an ontology-driven information system which should sup-
port SAW of human operators in large-scale control sys-
tems like the field of road traffic management. By the
incorporation of coherent software components, which we
have separated along the functional dimension of a ”tradi-
tional” multi-tier architecture, into the well-established soft-
ware architecture pattern pipes-and-filters, we leveraged re-
usability and scalability despite the cross-cutting role of on-
tologies. In addition to this reconciliation of software archi-
tectures and ontologies for SAW, we have described our ex-
periences gained during the implementation of the proposed
architecture in form of several lessons learned. Although
these lessons learned clearly focus on streaming-oriented sys-
tems, we believe that they should also be beneficial in a more
general context.

An open issue is to verify the claimed reusability and scal-
ability of our approach by concrete evaluation metrics. We
will perform this evaluation based on BeAware!, a software
framework for SAW applications we are currently imple-
menting based on the architecture proposed in this paper.
Potential metrics could be the throughput of the architec-
ture or the lines of code one has to implement for adopting
the framework in a concrete application domain. In the
near future, we plan to demonstrate BeAware!’s real-world
scalability by deploying a prototypical implementation for a
road traffic management system, in order to support oper-
ators achieving situation awareness in complex road traffic
management scenarios. Finally, we are eager to develop pro-
totypes for further application domains, like the field of air
traffic control, thereby verifying the applicability of our ap-
proach with other large-scale organizations.
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